resample.c 44.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
/* Copyright (C) 2007 Jean-Marc Valin
      
   File: resample.c
   Arbitrary resampling code

   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions are
   met:

   1. Redistributions of source code must retain the above copyright notice,
   this list of conditions and the following disclaimer.

   2. Redistributions in binary form must reproduce the above copyright
   notice, this list of conditions and the following disclaimer in the
   documentation and/or other materials provided with the distribution.

   3. The name of the author may not be used to endorse or promote products
   derived from this software without specific prior written permission.

   THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
   DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
   INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
   (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
   SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
   STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
   ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   POSSIBILITY OF SUCH DAMAGE.
*/

/*
   The design goals of this code are:
      - Very fast algorithm
      - SIMD-friendly algorithm
      - Low memory requirement
      - Good *perceptual* quality (and not best SNR)

   Warning: This resampler is relatively new. Although I think I got rid of 
   all the major bugs and I don't expect the API to change anymore, there
   may be something I've missed. So use with caution.

   This algorithm is based on this original resampling algorithm:
   Smith, Julius O. Digital Audio Resampling Home Page
   Center for Computer Research in Music and Acoustics (CCRMA), 
   Stanford University, 2007.
   Web published at http://www-ccrma.stanford.edu/~jos/resample/.

   There is one main difference, though. This resampler uses cubic 
   interpolation instead of linear interpolation in the above paper. This
   makes the table much smaller and makes it possible to compute that table
   on a per-stream basis. In turn, being able to tweak the table for each 
   stream makes it possible to both reduce complexity on simple ratios 
   (e.g. 2/3), and get rid of the rounding operations in the inner loop. 
   The latter both reduces CPU time and makes the algorithm more SIMD-friendly.
*/

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#ifdef OUTSIDE_SPEEX
#include <stdlib.h>
65 66 67
#include <glib.h>

static inline void *
68 69
speex_alloc (int size)
{
70
  return g_malloc0 (size);
71
}
72
static inline void *
73 74
speex_realloc (void *ptr, int size)
{
75
  return g_realloc (ptr, size);
76
}
77
static inline void
78 79
speex_free (void *ptr)
{
80
  g_free (ptr);
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
}

#include "speex_resampler.h"
#include "arch.h"
#else /* OUTSIDE_SPEEX */

#include "speex/speex_resampler.h"
#include "arch.h"
#include "os_support.h"
#endif /* OUTSIDE_SPEEX */

#include <math.h>

#ifndef M_PI
#define M_PI 3.14159263
#endif

#ifdef FIXED_POINT
#define WORD2INT(x) ((x) < -32767 ? -32768 : ((x) > 32766 ? 32767 : (x)))
#else
#define WORD2INT(x) ((x) < -32767.5f ? -32768 : ((x) > 32766.5f ? 32767 : floor(.5+(x))))
#endif

/*#define float double*/
#define FILTER_SIZE 64
#define OVERSAMPLE 8

#define IMAX(a,b) ((a) > (b) ? (a) : (b))
#define IMIN(a,b) ((a) < (b) ? (a) : (b))

#ifndef NULL
#define NULL 0
#endif

typedef int (*resampler_basic_func) (SpeexResamplerState *, spx_uint32_t,
    const spx_word16_t *, spx_uint32_t *, spx_word16_t *, spx_uint32_t *);

struct SpeexResamplerState_
{
  spx_uint32_t in_rate;
  spx_uint32_t out_rate;
  spx_uint32_t num_rate;
  spx_uint32_t den_rate;

  int quality;
  spx_uint32_t nb_channels;
  spx_uint32_t filt_len;
  spx_uint32_t mem_alloc_size;
  int int_advance;
  int frac_advance;
  float cutoff;
  spx_uint32_t oversample;
  int initialised;
  int started;

  /* These are per-channel */
  spx_int32_t *last_sample;
  spx_uint32_t *samp_frac_num;
  spx_uint32_t *magic_samples;

  spx_word16_t *mem;
  spx_word16_t *sinc_table;
  spx_uint32_t sinc_table_length;
  resampler_basic_func resampler_ptr;

  int in_stride;
  int out_stride;
};

static double kaiser12_table[68] = {
  0.99859849, 1.00000000, 0.99859849, 0.99440475, 0.98745105, 0.97779076,
  0.96549770, 0.95066529, 0.93340547, 0.91384741, 0.89213598, 0.86843014,
  0.84290116, 0.81573067, 0.78710866, 0.75723148, 0.72629970, 0.69451601,
  0.66208321, 0.62920216, 0.59606986, 0.56287762, 0.52980938, 0.49704014,
  0.46473455, 0.43304576, 0.40211431, 0.37206735, 0.34301800, 0.31506490,
  0.28829195, 0.26276832, 0.23854851, 0.21567274, 0.19416736, 0.17404546,
  0.15530766, 0.13794294, 0.12192957, 0.10723616, 0.09382272, 0.08164178,
  0.07063950, 0.06075685, 0.05193064, 0.04409466, 0.03718069, 0.03111947,
  0.02584161, 0.02127838, 0.01736250, 0.01402878, 0.01121463, 0.00886058,
  0.00691064, 0.00531256, 0.00401805, 0.00298291, 0.00216702, 0.00153438,
  0.00105297, 0.00069463, 0.00043489, 0.00025272, 0.00013031, 0.0000527734,
  0.00001000, 0.00000000
};

/*
static double kaiser12_table[36] = {
   0.99440475, 1.00000000, 0.99440475, 0.97779076, 0.95066529, 0.91384741,
   0.86843014, 0.81573067, 0.75723148, 0.69451601, 0.62920216, 0.56287762,
   0.49704014, 0.43304576, 0.37206735, 0.31506490, 0.26276832, 0.21567274,
   0.17404546, 0.13794294, 0.10723616, 0.08164178, 0.06075685, 0.04409466,
   0.03111947, 0.02127838, 0.01402878, 0.00886058, 0.00531256, 0.00298291,
   0.00153438, 0.00069463, 0.00025272, 0.0000527734, 0.00000500, 0.00000000};
*/
static double kaiser10_table[36] = {
  0.99537781, 1.00000000, 0.99537781, 0.98162644, 0.95908712, 0.92831446,
  0.89005583, 0.84522401, 0.79486424, 0.74011713, 0.68217934, 0.62226347,
  0.56155915, 0.50119680, 0.44221549, 0.38553619, 0.33194107, 0.28205962,
  0.23636152, 0.19515633, 0.15859932, 0.12670280, 0.09935205, 0.07632451,
  0.05731132, 0.04193980, 0.02979584, 0.02044510, 0.01345224, 0.00839739,
  0.00488951, 0.00257636, 0.00115101, 0.00035515, 0.00000000, 0.00000000
};

static double kaiser8_table[36] = {
  0.99635258, 1.00000000, 0.99635258, 0.98548012, 0.96759014, 0.94302200,
  0.91223751, 0.87580811, 0.83439927, 0.78875245, 0.73966538, 0.68797126,
  0.63451750, 0.58014482, 0.52566725, 0.47185369, 0.41941150, 0.36897272,
  0.32108304, 0.27619388, 0.23465776, 0.19672670, 0.16255380, 0.13219758,
  0.10562887, 0.08273982, 0.06335451, 0.04724088, 0.03412321, 0.02369490,
  0.01563093, 0.00959968, 0.00527363, 0.00233883, 0.00050000, 0.00000000
};

static double kaiser6_table[36] = {
  0.99733006, 1.00000000, 0.99733006, 0.98935595, 0.97618418, 0.95799003,
  0.93501423, 0.90755855, 0.87598009, 0.84068475, 0.80211977, 0.76076565,
  0.71712752, 0.67172623, 0.62508937, 0.57774224, 0.53019925, 0.48295561,
  0.43647969, 0.39120616, 0.34752997, 0.30580127, 0.26632152, 0.22934058,
  0.19505503, 0.16360756, 0.13508755, 0.10953262, 0.08693120, 0.06722600,
  0.05031820, 0.03607231, 0.02432151, 0.01487334, 0.00752000, 0.00000000
};

struct FuncDef
{
  double *table;
  int oversample;
};

static struct FuncDef _KAISER12 = { kaiser12_table, 64 };

#define KAISER12 (&_KAISER12)
/*static struct FuncDef _KAISER12 = {kaiser12_table, 32};
#define KAISER12 (&_KAISER12)*/
static struct FuncDef _KAISER10 = { kaiser10_table, 32 };

#define KAISER10 (&_KAISER10)
static struct FuncDef _KAISER8 = { kaiser8_table, 32 };

#define KAISER8 (&_KAISER8)
static struct FuncDef _KAISER6 = { kaiser6_table, 32 };

#define KAISER6 (&_KAISER6)

struct QualityMapping
{
  int base_length;
  int oversample;
  float downsample_bandwidth;
  float upsample_bandwidth;
  struct FuncDef *window_func;
};


/* This table maps conversion quality to internal parameters. There are two
   reasons that explain why the up-sampling bandwidth is larger than the 
   down-sampling bandwidth:
   1) When up-sampling, we can assume that the spectrum is already attenuated
      close to the Nyquist rate (from an A/D or a previous resampling filter)
   2) Any aliasing that occurs very close to the Nyquist rate will be masked
      by the sinusoids/noise just below the Nyquist rate (guaranteed only for
      up-sampling).
*/
static const struct QualityMapping quality_map[11] = {
  {8, 4, 0.830f, 0.860f, KAISER6},      /* Q0 */
  {16, 4, 0.850f, 0.880f, KAISER6},     /* Q1 */
  {32, 4, 0.882f, 0.910f, KAISER6},     /* Q2 *//* 82.3% cutoff ( ~60 dB stop) 6  */
  {48, 8, 0.895f, 0.917f, KAISER8},     /* Q3 *//* 84.9% cutoff ( ~80 dB stop) 8  */
  {64, 8, 0.921f, 0.940f, KAISER8},     /* Q4 *//* 88.7% cutoff ( ~80 dB stop) 8  */
  {80, 16, 0.922f, 0.940f, KAISER10},   /* Q5 *//* 89.1% cutoff (~100 dB stop) 10 */
  {96, 16, 0.940f, 0.945f, KAISER10},   /* Q6 *//* 91.5% cutoff (~100 dB stop) 10 */
  {128, 16, 0.950f, 0.950f, KAISER10},  /* Q7 *//* 93.1% cutoff (~100 dB stop) 10 */
  {160, 16, 0.960f, 0.960f, KAISER10},  /* Q8 *//* 94.5% cutoff (~100 dB stop) 10 */
  {192, 32, 0.968f, 0.968f, KAISER12},  /* Q9 *//* 95.5% cutoff (~100 dB stop) 10 */
  {256, 32, 0.975f, 0.975f, KAISER12},  /* Q10 *//* 96.6% cutoff (~100 dB stop) 10 */
};

/*8,24,40,56,80,104,128,160,200,256,320*/
static double
compute_func (float x, struct FuncDef *func)
{
  float y, frac;
  double interp[4];
  int ind;

  y = x * func->oversample;
  ind = (int) floor (y);
  frac = (y - ind);
  /* CSE with handle the repeated powers */
  interp[3] = -0.1666666667 * frac + 0.1666666667 * (frac * frac * frac);
  interp[2] = frac + 0.5 * (frac * frac) - 0.5 * (frac * frac * frac);
  /*interp[2] = 1.f - 0.5f*frac - frac*frac + 0.5f*frac*frac*frac; */
  interp[0] =
      -0.3333333333 * frac + 0.5 * (frac * frac) -
      0.1666666667 * (frac * frac * frac);
  /* Just to make sure we don't have rounding problems */
  interp[1] = 1.f - interp[3] - interp[2] - interp[0];

  /*sum = frac*accum[1] + (1-frac)*accum[2]; */
  return interp[0] * func->table[ind] + interp[1] * func->table[ind + 1] +
      interp[2] * func->table[ind + 2] + interp[3] * func->table[ind + 3];
}

#if 0
#include <stdio.h>
int
main (int argc, char **argv)
{
  int i;

  for (i = 0; i < 256; i++) {
    printf ("%f\n", compute_func (i / 256., KAISER12));
  }
  return 0;
}
#endif

#ifdef FIXED_POINT
/* The slow way of computing a sinc for the table. Should improve that some day */
static spx_word16_t
sinc (float cutoff, float x, int N, struct FuncDef *window_func)
{
  /*fprintf (stderr, "%f ", x); */
  float xx = x * cutoff;

  if (fabs (x) < 1e-6f)
    return WORD2INT (32768. * cutoff);
  else if (fabs (x) > .5f * N)
    return 0;
  /*FIXME: Can it really be any slower than this? */
  return WORD2INT (32768. * cutoff * sin (M_PI * xx) / (M_PI * xx) *
      compute_func (fabs (2. * x / N), window_func));
}
#else
/* The slow way of computing a sinc for the table. Should improve that some day */
static spx_word16_t
sinc (float cutoff, float x, int N, struct FuncDef *window_func)
{
  /*fprintf (stderr, "%f ", x); */
  float xx = x * cutoff;

  if (fabs (x) < 1e-6)
    return cutoff;
  else if (fabs (x) > .5 * N)
    return 0;
  /*FIXME: Can it really be any slower than this? */
  return cutoff * sin (M_PI * xx) / (M_PI * xx) * compute_func (fabs (2. * x /
          N), window_func);
}
#endif

#ifdef FIXED_POINT
static void
cubic_coef (spx_word16_t x, spx_word16_t interp[4])
{
  /* Compute interpolation coefficients. I'm not sure whether this corresponds to cubic interpolation
     but I know it's MMSE-optimal on a sinc */
  spx_word16_t x2, x3;

  x2 = MULT16_16_P15 (x, x);
  x3 = MULT16_16_P15 (x, x2);
  interp[0] =
      PSHR32 (MULT16_16 (QCONST16 (-0.16667f, 15),
          x) + MULT16_16 (QCONST16 (0.16667f, 15), x3), 15);
  interp[1] =
      EXTRACT16 (EXTEND32 (x) + SHR32 (SUB32 (EXTEND32 (x2), EXTEND32 (x3)),
          1));
  interp[3] =
      PSHR32 (MULT16_16 (QCONST16 (-0.33333f, 15),
          x) + MULT16_16 (QCONST16 (.5f, 15),
          x2) - MULT16_16 (QCONST16 (0.16667f, 15), x3), 15);
  /* Just to make sure we don't have rounding problems */
  interp[2] = Q15_ONE - interp[0] - interp[1] - interp[3];
  if (interp[2] < 32767)
    interp[2] += 1;
}
#else
static void
cubic_coef (spx_word16_t frac, spx_word16_t interp[4])
{
  /* Compute interpolation coefficients. I'm not sure whether this corresponds to cubic interpolation
     but I know it's MMSE-optimal on a sinc */
  interp[0] = -0.16667f * frac + 0.16667f * frac * frac * frac;
  interp[1] = frac + 0.5f * frac * frac - 0.5f * frac * frac * frac;
  /*interp[2] = 1.f - 0.5f*frac - frac*frac + 0.5f*frac*frac*frac; */
  interp[3] =
      -0.33333f * frac + 0.5f * frac * frac - 0.16667f * frac * frac * frac;
  /* Just to make sure we don't have rounding problems */
  interp[2] = 1. - interp[0] - interp[1] - interp[3];
}
#endif

static int
resampler_basic_direct_single (SpeexResamplerState * st,
    spx_uint32_t channel_index, const spx_word16_t * in, spx_uint32_t * in_len,
    spx_word16_t * out, spx_uint32_t * out_len)
{
  int N = st->filt_len;
  int out_sample = 0;
  spx_word16_t *mem;
  int last_sample = st->last_sample[channel_index];
  spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index];

  mem = st->mem + channel_index * st->mem_alloc_size;
  while (!(last_sample >= (spx_int32_t) * in_len
          || out_sample >= (spx_int32_t) * out_len)) {
    int j;
    spx_word32_t sum = 0;

    /* We already have all the filter coefficients pre-computed in the table */
    const spx_word16_t *ptr;

    /* Do the memory part */
    for (j = 0; last_sample - N + 1 + j < 0; j++) {
      sum +=
          MULT16_16 (mem[last_sample + j],
          st->sinc_table[samp_frac_num * st->filt_len + j]);
    }

    /* Do the new part */
    ptr = in + st->in_stride * (last_sample - N + 1 + j);
    for (; j < N; j++) {
      sum += MULT16_16 (*ptr, st->sinc_table[samp_frac_num * st->filt_len + j]);
      ptr += st->in_stride;
    }

    *out = PSHR32 (sum, 15);
    out += st->out_stride;
    out_sample++;
    last_sample += st->int_advance;
    samp_frac_num += st->frac_advance;
    if (samp_frac_num >= st->den_rate) {
      samp_frac_num -= st->den_rate;
      last_sample++;
    }
  }
  st->last_sample[channel_index] = last_sample;
  st->samp_frac_num[channel_index] = samp_frac_num;
  return out_sample;
}

#ifdef FIXED_POINT
#else
/* This is the same as the previous function, except with a double-precision accumulator */
static int
resampler_basic_direct_double (SpeexResamplerState * st,
    spx_uint32_t channel_index, const spx_word16_t * in, spx_uint32_t * in_len,
    spx_word16_t * out, spx_uint32_t * out_len)
{
  int N = st->filt_len;
  int out_sample = 0;
  spx_word16_t *mem;
  int last_sample = st->last_sample[channel_index];
  spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index];

  mem = st->mem + channel_index * st->mem_alloc_size;
  while (!(last_sample >= (spx_int32_t) * in_len
          || out_sample >= (spx_int32_t) * out_len)) {
    int j;
    double sum = 0;

    /* We already have all the filter coefficients pre-computed in the table */
    const spx_word16_t *ptr;

    /* Do the memory part */
    for (j = 0; last_sample - N + 1 + j < 0; j++) {
      sum +=
          MULT16_16 (mem[last_sample + j],
          (double) st->sinc_table[samp_frac_num * st->filt_len + j]);
    }

    /* Do the new part */
    ptr = in + st->in_stride * (last_sample - N + 1 + j);
    for (; j < N; j++) {
      sum +=
          MULT16_16 (*ptr,
          (double) st->sinc_table[samp_frac_num * st->filt_len + j]);
      ptr += st->in_stride;
    }

    *out = sum;
    out += st->out_stride;
    out_sample++;
    last_sample += st->int_advance;
    samp_frac_num += st->frac_advance;
    if (samp_frac_num >= st->den_rate) {
      samp_frac_num -= st->den_rate;
      last_sample++;
    }
  }
  st->last_sample[channel_index] = last_sample;
  st->samp_frac_num[channel_index] = samp_frac_num;
  return out_sample;
}
#endif

static int
resampler_basic_interpolate_single (SpeexResamplerState * st,
    spx_uint32_t channel_index, const spx_word16_t * in, spx_uint32_t * in_len,
    spx_word16_t * out, spx_uint32_t * out_len)
{
  int N = st->filt_len;
  int out_sample = 0;
  spx_word16_t *mem;
  int last_sample = st->last_sample[channel_index];
  spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index];

  mem = st->mem + channel_index * st->mem_alloc_size;
  while (!(last_sample >= (spx_int32_t) * in_len
          || out_sample >= (spx_int32_t) * out_len)) {
    int j;
    spx_word32_t sum = 0;

    /* We need to interpolate the sinc filter */
    spx_word32_t accum[4] = { 0.f, 0.f, 0.f, 0.f };
    spx_word16_t interp[4];
    const spx_word16_t *ptr;
    int offset;
    spx_word16_t frac;

    offset = samp_frac_num * st->oversample / st->den_rate;
#ifdef FIXED_POINT
    frac =
        PDIV32 (SHL32 ((samp_frac_num * st->oversample) % st->den_rate, 15),
        st->den_rate);
#else
    frac =
        ((float) ((samp_frac_num * st->oversample) % st->den_rate)) /
        st->den_rate;
#endif
    /* This code is written like this to make it easy to optimise with SIMD.
       For most DSPs, it would be best to split the loops in two because most DSPs 
       have only two accumulators */
    for (j = 0; last_sample - N + 1 + j < 0; j++) {
      spx_word16_t curr_mem = mem[last_sample + j];

      accum[0] +=
          MULT16_16 (curr_mem,
          st->sinc_table[4 + (j + 1) * st->oversample - offset - 2]);
      accum[1] +=
          MULT16_16 (curr_mem,
          st->sinc_table[4 + (j + 1) * st->oversample - offset - 1]);
      accum[2] +=
          MULT16_16 (curr_mem,
          st->sinc_table[4 + (j + 1) * st->oversample - offset]);
      accum[3] +=
          MULT16_16 (curr_mem,
          st->sinc_table[4 + (j + 1) * st->oversample - offset + 1]);
    }
    ptr = in + st->in_stride * (last_sample - N + 1 + j);
    /* Do the new part */
    for (; j < N; j++) {
      spx_word16_t curr_in = *ptr;

      ptr += st->in_stride;
      accum[0] +=
          MULT16_16 (curr_in,
          st->sinc_table[4 + (j + 1) * st->oversample - offset - 2]);
      accum[1] +=
          MULT16_16 (curr_in,
          st->sinc_table[4 + (j + 1) * st->oversample - offset - 1]);
      accum[2] +=
          MULT16_16 (curr_in,
          st->sinc_table[4 + (j + 1) * st->oversample - offset]);
      accum[3] +=
          MULT16_16 (curr_in,
          st->sinc_table[4 + (j + 1) * st->oversample - offset + 1]);
    }
    cubic_coef (frac, interp);
    sum =
        MULT16_32_Q15 (interp[0], accum[0]) + MULT16_32_Q15 (interp[1],
        accum[1]) + MULT16_32_Q15 (interp[2],
        accum[2]) + MULT16_32_Q15 (interp[3], accum[3]);

    *out = PSHR32 (sum, 15);
    out += st->out_stride;
    out_sample++;
    last_sample += st->int_advance;
    samp_frac_num += st->frac_advance;
    if (samp_frac_num >= st->den_rate) {
      samp_frac_num -= st->den_rate;
      last_sample++;
    }
  }
  st->last_sample[channel_index] = last_sample;
  st->samp_frac_num[channel_index] = samp_frac_num;
  return out_sample;
}

#ifdef FIXED_POINT
#else
/* This is the same as the previous function, except with a double-precision accumulator */
static int
resampler_basic_interpolate_double (SpeexResamplerState * st,
    spx_uint32_t channel_index, const spx_word16_t * in, spx_uint32_t * in_len,
    spx_word16_t * out, spx_uint32_t * out_len)
{
  int N = st->filt_len;
  int out_sample = 0;
  spx_word16_t *mem;
  int last_sample = st->last_sample[channel_index];
  spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index];

  mem = st->mem + channel_index * st->mem_alloc_size;
  while (!(last_sample >= (spx_int32_t) * in_len
          || out_sample >= (spx_int32_t) * out_len)) {
    int j;
    spx_word32_t sum = 0;

    /* We need to interpolate the sinc filter */
    double accum[4] = { 0.f, 0.f, 0.f, 0.f };
    float interp[4];
    const spx_word16_t *ptr;
    float alpha = ((float) samp_frac_num) / st->den_rate;
    int offset = samp_frac_num * st->oversample / st->den_rate;
    float frac = alpha * st->oversample - offset;

    /* This code is written like this to make it easy to optimise with SIMD.
       For most DSPs, it would be best to split the loops in two because most DSPs 
       have only two accumulators */
    for (j = 0; last_sample - N + 1 + j < 0; j++) {
      double curr_mem = mem[last_sample + j];

      accum[0] +=
          MULT16_16 (curr_mem,
          st->sinc_table[4 + (j + 1) * st->oversample - offset - 2]);
      accum[1] +=
          MULT16_16 (curr_mem,
          st->sinc_table[4 + (j + 1) * st->oversample - offset - 1]);
      accum[2] +=
          MULT16_16 (curr_mem,
          st->sinc_table[4 + (j + 1) * st->oversample - offset]);
      accum[3] +=
          MULT16_16 (curr_mem,
          st->sinc_table[4 + (j + 1) * st->oversample - offset + 1]);
    }
    ptr = in + st->in_stride * (last_sample - N + 1 + j);
    /* Do the new part */
    for (; j < N; j++) {
      double curr_in = *ptr;

      ptr += st->in_stride;
      accum[0] +=
          MULT16_16 (curr_in,
          st->sinc_table[4 + (j + 1) * st->oversample - offset - 2]);
      accum[1] +=
          MULT16_16 (curr_in,
          st->sinc_table[4 + (j + 1) * st->oversample - offset - 1]);
      accum[2] +=
          MULT16_16 (curr_in,
          st->sinc_table[4 + (j + 1) * st->oversample - offset]);
      accum[3] +=
          MULT16_16 (curr_in,
          st->sinc_table[4 + (j + 1) * st->oversample - offset + 1]);
    }
    cubic_coef (frac, interp);
    sum =
        interp[0] * accum[0] + interp[1] * accum[1] + interp[2] * accum[2] +
        interp[3] * accum[3];

    *out = PSHR32 (sum, 15);
    out += st->out_stride;
    out_sample++;
    last_sample += st->int_advance;
    samp_frac_num += st->frac_advance;
    if (samp_frac_num >= st->den_rate) {
      samp_frac_num -= st->den_rate;
      last_sample++;
    }
  }
  st->last_sample[channel_index] = last_sample;
  st->samp_frac_num[channel_index] = samp_frac_num;
  return out_sample;
}
#endif

static void
update_filter (SpeexResamplerState * st)
{
  spx_uint32_t old_length;

  old_length = st->filt_len;
  st->oversample = quality_map[st->quality].oversample;
  st->filt_len = quality_map[st->quality].base_length;

  if (st->num_rate > st->den_rate) {
    /* down-sampling */
    st->cutoff =
        quality_map[st->quality].downsample_bandwidth * st->den_rate /
        st->num_rate;
    /* FIXME: divide the numerator and denominator by a certain amount if they're too large */
    st->filt_len = st->filt_len * st->num_rate / st->den_rate;
    /* Round down to make sure we have a multiple of 4 */
    st->filt_len &= (~0x3);
    if (2 * st->den_rate < st->num_rate)
      st->oversample >>= 1;
    if (4 * st->den_rate < st->num_rate)
      st->oversample >>= 1;
    if (8 * st->den_rate < st->num_rate)
      st->oversample >>= 1;
    if (16 * st->den_rate < st->num_rate)
      st->oversample >>= 1;
    if (st->oversample < 1)
      st->oversample = 1;
  } else {
    /* up-sampling */
    st->cutoff = quality_map[st->quality].upsample_bandwidth;
  }

  /* Choose the resampling type that requires the least amount of memory */
  if (st->den_rate <= st->oversample) {
    spx_uint32_t i;

    if (!st->sinc_table)
      st->sinc_table =
          (spx_word16_t *) speex_alloc (st->filt_len * st->den_rate *
          sizeof (spx_word16_t));
    else if (st->sinc_table_length < st->filt_len * st->den_rate) {
      st->sinc_table =
          (spx_word16_t *) speex_realloc (st->sinc_table,
          st->filt_len * st->den_rate * sizeof (spx_word16_t));
      st->sinc_table_length = st->filt_len * st->den_rate;
    }
    for (i = 0; i < st->den_rate; i++) {
      spx_int32_t j;

      for (j = 0; j < st->filt_len; j++) {
        st->sinc_table[i * st->filt_len + j] =
            sinc (st->cutoff,
            ((j - (spx_int32_t) st->filt_len / 2 + 1) -
                ((float) i) / st->den_rate), st->filt_len,
            quality_map[st->quality].window_func);
      }
    }
#ifdef FIXED_POINT
    st->resampler_ptr = resampler_basic_direct_single;
#else
    if (st->quality > 8)
      st->resampler_ptr = resampler_basic_direct_double;
    else
      st->resampler_ptr = resampler_basic_direct_single;
#endif
    /*fprintf (stderr, "resampler uses direct sinc table and normalised cutoff %f\n", cutoff); */
  } else {
    spx_int32_t i;

    if (!st->sinc_table)
      st->sinc_table =
          (spx_word16_t *) speex_alloc ((st->filt_len * st->oversample +
              8) * sizeof (spx_word16_t));
    else if (st->sinc_table_length < st->filt_len * st->oversample + 8) {
      st->sinc_table =
          (spx_word16_t *) speex_realloc (st->sinc_table,
          (st->filt_len * st->oversample + 8) * sizeof (spx_word16_t));
      st->sinc_table_length = st->filt_len * st->oversample + 8;
    }
    for (i = -4; i < (spx_int32_t) (st->oversample * st->filt_len + 4); i++)
      st->sinc_table[i + 4] =
          sinc (st->cutoff, (i / (float) st->oversample - st->filt_len / 2),
          st->filt_len, quality_map[st->quality].window_func);
#ifdef FIXED_POINT
    st->resampler_ptr = resampler_basic_interpolate_single;
#else
    if (st->quality > 8)
      st->resampler_ptr = resampler_basic_interpolate_double;
    else
      st->resampler_ptr = resampler_basic_interpolate_single;
#endif
    /*fprintf (stderr, "resampler uses interpolated sinc table and normalised cutoff %f\n", cutoff); */
  }
  st->int_advance = st->num_rate / st->den_rate;
  st->frac_advance = st->num_rate % st->den_rate;


  /* Here's the place where we update the filter memory to take into account
     the change in filter length. It's probably the messiest part of the code
     due to handling of lots of corner cases. */
  if (!st->mem) {
    spx_uint32_t i;

    st->mem =
        (spx_word16_t *) speex_alloc (st->nb_channels * (st->filt_len -
            1) * sizeof (spx_word16_t));
    for (i = 0; i < st->nb_channels * (st->filt_len - 1); i++)
      st->mem[i] = 0;
    st->mem_alloc_size = st->filt_len - 1;
    /*speex_warning("init filter"); */
  } else if (!st->started) {
    spx_uint32_t i;

    st->mem =
        (spx_word16_t *) speex_realloc (st->mem,
        st->nb_channels * (st->filt_len - 1) * sizeof (spx_word16_t));
    for (i = 0; i < st->nb_channels * (st->filt_len - 1); i++)
      st->mem[i] = 0;
    st->mem_alloc_size = st->filt_len - 1;
    /*speex_warning("reinit filter"); */
  } else if (st->filt_len > old_length) {
    spx_int32_t i;

    /* Increase the filter length */
    /*speex_warning("increase filter size"); */
    int old_alloc_size = st->mem_alloc_size;

    if (st->filt_len - 1 > st->mem_alloc_size) {
      st->mem =
          (spx_word16_t *) speex_realloc (st->mem,
          st->nb_channels * (st->filt_len - 1) * sizeof (spx_word16_t));
      st->mem_alloc_size = st->filt_len - 1;
    }
    for (i = st->nb_channels - 1; i >= 0; i--) {
      spx_int32_t j;
      spx_uint32_t olen = old_length;

      /*if (st->magic_samples[i]) */
      {
        /* Try and remove the magic samples as if nothing had happened */

        /* FIXME: This is wrong but for now we need it to avoid going over the array bounds */
        olen = old_length + 2 * st->magic_samples[i];
        for (j = old_length - 2 + st->magic_samples[i]; j >= 0; j--)
          st->mem[i * st->mem_alloc_size + j + st->magic_samples[i]] =
              st->mem[i * old_alloc_size + j];
        for (j = 0; j < st->magic_samples[i]; j++)
          st->mem[i * st->mem_alloc_size + j] = 0;
        st->magic_samples[i] = 0;
      }
      if (st->filt_len > olen) {
        /* If the new filter length is still bigger than the "augmented" length */
        /* Copy data going backward */
        for (j = 0; j < olen - 1; j++)
          st->mem[i * st->mem_alloc_size + (st->filt_len - 2 - j)] =
              st->mem[i * st->mem_alloc_size + (olen - 2 - j)];
        /* Then put zeros for lack of anything better */
        for (; j < st->filt_len - 1; j++)
          st->mem[i * st->mem_alloc_size + (st->filt_len - 2 - j)] = 0;
        /* Adjust last_sample */
        st->last_sample[i] += (st->filt_len - olen) / 2;
      } else {
        /* Put back some of the magic! */
        st->magic_samples[i] = (olen - st->filt_len) / 2;
        for (j = 0; j < st->filt_len - 1 + st->magic_samples[i]; j++)
          st->mem[i * st->mem_alloc_size + j] =
              st->mem[i * st->mem_alloc_size + j + st->magic_samples[i]];
      }
    }
  } else if (st->filt_len < old_length) {
    spx_uint32_t i;

    /* Reduce filter length, this a bit tricky. We need to store some of the memory as "magic"
       samples so they can be used directly as input the next time(s) */
    for (i = 0; i < st->nb_channels; i++) {
      spx_uint32_t j;
      spx_uint32_t old_magic = st->magic_samples[i];

      st->magic_samples[i] = (old_length - st->filt_len) / 2;
      /* We must copy some of the memory that's no longer used */
      /* Copy data going backward */
      for (j = 0; j < st->filt_len - 1 + st->magic_samples[i] + old_magic; j++)
        st->mem[i * st->mem_alloc_size + j] =
            st->mem[i * st->mem_alloc_size + j + st->magic_samples[i]];
      st->magic_samples[i] += old_magic;
    }
  }

}

SpeexResamplerState *
speex_resampler_init (spx_uint32_t nb_channels, spx_uint32_t in_rate,
    spx_uint32_t out_rate, int quality, int *err)
{
  return speex_resampler_init_frac (nb_channels, in_rate, out_rate, in_rate,
      out_rate, quality, err);
}

SpeexResamplerState *
speex_resampler_init_frac (spx_uint32_t nb_channels, spx_uint32_t ratio_num,
    spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_uint32_t out_rate,
    int quality, int *err)
{
  spx_uint32_t i;
  SpeexResamplerState *st;

  if (quality > 10 || quality < 0) {
    if (err)
      *err = RESAMPLER_ERR_INVALID_ARG;
    return NULL;
  }
  st = (SpeexResamplerState *) speex_alloc (sizeof (SpeexResamplerState));
  st->initialised = 0;
  st->started = 0;
  st->in_rate = 0;
  st->out_rate = 0;
  st->num_rate = 0;
  st->den_rate = 0;
  st->quality = -1;
  st->sinc_table_length = 0;
  st->mem_alloc_size = 0;
  st->filt_len = 0;
  st->mem = 0;
  st->resampler_ptr = 0;

  st->cutoff = 1.f;
  st->nb_channels = nb_channels;
  st->in_stride = 1;
  st->out_stride = 1;

  /* Per channel data */
  st->last_sample = (spx_int32_t *) speex_alloc (nb_channels * sizeof (int));
  st->magic_samples = (spx_uint32_t *) speex_alloc (nb_channels * sizeof (int));
  st->samp_frac_num = (spx_uint32_t *) speex_alloc (nb_channels * sizeof (int));
  for (i = 0; i < nb_channels; i++) {
    st->last_sample[i] = 0;
    st->magic_samples[i] = 0;
    st->samp_frac_num[i] = 0;
  }

  speex_resampler_set_quality (st, quality);
  speex_resampler_set_rate_frac (st, ratio_num, ratio_den, in_rate, out_rate);


  update_filter (st);

  st->initialised = 1;
  if (err)
    *err = RESAMPLER_ERR_SUCCESS;

  return st;
}

void
speex_resampler_destroy (SpeexResamplerState * st)
{
  speex_free (st->mem);
  speex_free (st->sinc_table);
  speex_free (st->last_sample);
  speex_free (st->magic_samples);
  speex_free (st->samp_frac_num);
  speex_free (st);
}



static int
speex_resampler_process_native (SpeexResamplerState * st,
    spx_uint32_t channel_index, const spx_word16_t * in, spx_uint32_t * in_len,
    spx_word16_t * out, spx_uint32_t * out_len)
{
  int j = 0;
  int N = st->filt_len;
  int out_sample = 0;
  spx_word16_t *mem;
  spx_uint32_t tmp_out_len = 0;

  mem = st->mem + channel_index * st->mem_alloc_size;
  st->started = 1;

  /* Handle the case where we have samples left from a reduction in filter length */
  if (st->magic_samples[channel_index]) {
    int istride_save;
    spx_uint32_t tmp_in_len;
    spx_uint32_t tmp_magic;

    istride_save = st->in_stride;
    tmp_in_len = st->magic_samples[channel_index];
    tmp_out_len = *out_len;
    /* magic_samples needs to be set to zero to avoid infinite recursion */
    tmp_magic = st->magic_samples[channel_index];
    st->magic_samples[channel_index] = 0;
    st->in_stride = 1;
    speex_resampler_process_native (st, channel_index, mem + N - 1, &tmp_in_len,
        out, &tmp_out_len);
    st->in_stride = istride_save;
    /*speex_warning_int("extra samples:", tmp_out_len); */
    /* If we couldn't process all "magic" input samples, save the rest for next time */
    if (tmp_in_len < tmp_magic) {
      spx_uint32_t i;

      st->magic_samples[channel_index] = tmp_magic - tmp_in_len;
      for (i = 0; i < st->magic_samples[channel_index]; i++)
        mem[N - 1 + i] = mem[N - 1 + i + tmp_in_len];
    }
    out += tmp_out_len * st->out_stride;
    *out_len -= tmp_out_len;
  }

  /* Call the right resampler through the function ptr */
  out_sample = st->resampler_ptr (st, channel_index, in, in_len, out, out_len);

  if (st->last_sample[channel_index] < (spx_int32_t) * in_len)
    *in_len = st->last_sample[channel_index];
  *out_len = out_sample + tmp_out_len;
  st->last_sample[channel_index] -= *in_len;

  for (j = 0; j < N - 1 - (spx_int32_t) * in_len; j++)
    mem[j] = mem[j + *in_len];
  for (; j < N - 1; j++)
    mem[j] = in[st->in_stride * (j + *in_len - N + 1)];

  return RESAMPLER_ERR_SUCCESS;
}

#define FIXED_STACK_ALLOC 1024

#ifdef FIXED_POINT
int
speex_resampler_process_float (SpeexResamplerState * st,
    spx_uint32_t channel_index, const float *in, spx_uint32_t * in_len,
    float *out, spx_uint32_t * out_len)
{
  spx_uint32_t i;
  int istride_save, ostride_save;

#ifdef VAR_ARRAYS
  spx_word16_t x[*in_len];
  spx_word16_t y[*out_len];

  /*VARDECL(spx_word16_t *x);
     VARDECL(spx_word16_t *y);
     ALLOC(x, *in_len, spx_word16_t);
     ALLOC(y, *out_len, spx_word16_t); */
  istride_save = st->in_stride;
  ostride_save = st->out_stride;
  for (i = 0; i < *in_len; i++)
    x[i] = WORD2INT (in[i * st->in_stride]);
  st->in_stride = st->out_stride = 1;
  speex_resampler_process_native (st, channel_index, x, in_len, y, out_len);
  st->in_stride = istride_save;
  st->out_stride = ostride_save;
  for (i = 0; i < *out_len; i++)
    out[i * st->out_stride] = y[i];
#else
  spx_word16_t x[FIXED_STACK_ALLOC];
  spx_word16_t y[FIXED_STACK_ALLOC];
  spx_uint32_t ilen = *in_len, olen = *out_len;

  istride_save = st->in_stride;
  ostride_save = st->out_stride;
  while (ilen && olen) {
    spx_uint32_t ichunk, ochunk;

    ichunk = ilen;
    ochunk = olen;
    if (ichunk > FIXED_STACK_ALLOC)
      ichunk = FIXED_STACK_ALLOC;
    if (ochunk > FIXED_STACK_ALLOC)
      ochunk = FIXED_STACK_ALLOC;
    for (i = 0; i < ichunk; i++)
      x[i] = WORD2INT (in[i * st->in_stride]);
    st->in_stride = st->out_stride = 1;
    speex_resampler_process_native (st, channel_index, x, &ichunk, y, &ochunk);
    st->in_stride = istride_save;
    st->out_stride = ostride_save;
    for (i = 0; i < ochunk; i++)
      out[i * st->out_stride] = y[i];
    out += ochunk;
    in += ichunk;
    ilen -= ichunk;
    olen -= ochunk;
  }
  *in_len -= ilen;
  *out_len -= olen;
#endif
  return RESAMPLER_ERR_SUCCESS;
}

int
speex_resampler_process_int (SpeexResamplerState * st,
    spx_uint32_t channel_index, const spx_int16_t * in, spx_uint32_t * in_len,
    spx_int16_t * out, spx_uint32_t * out_len)
{
  return speex_resampler_process_native (st, channel_index, in, in_len, out,
      out_len);
}
#else
int
speex_resampler_process_float (SpeexResamplerState * st,
    spx_uint32_t channel_index, const float *in, spx_uint32_t * in_len,
    float *out, spx_uint32_t * out_len)
{
  return speex_resampler_process_native (st, channel_index, in, in_len, out,
      out_len);
}

int
speex_resampler_process_int (SpeexResamplerState * st,
    spx_uint32_t channel_index, const spx_int16_t * in, spx_uint32_t * in_len,
    spx_int16_t * out, spx_uint32_t * out_len)
{
  spx_uint32_t i;
  int istride_save, ostride_save;

#ifdef VAR_ARRAYS
  spx_word16_t x[*in_len];
  spx_word16_t y[*out_len];

  /*VARDECL(spx_word16_t *x);
     VARDECL(spx_word16_t *y);
     ALLOC(x, *in_len, spx_word16_t);
     ALLOC(y, *out_len, spx_word16_t); */
  istride_save = st->in_stride;
  ostride_save = st->out_stride;
  for (i = 0; i < *in_len; i++)
    x[i] = in[i * st->in_stride];
  st->in_stride = st->out_stride = 1;
  speex_resampler_process_native (st, channel_index, x, in_len, y, out_len);
  st->in_stride = istride_save;
  st->out_stride = ostride_save;
  for (i = 0; i < *out_len; i++)
    out[i * st->out_stride] = WORD2INT (y[i]);
#else
  spx_word16_t x[FIXED_STACK_ALLOC];
  spx_word16_t y[FIXED_STACK_ALLOC];
  spx_uint32_t ilen = *in_len, olen = *out_len;

  istride_save = st->in_stride;
  ostride_save = st->out_stride;
  while (ilen && olen) {
    spx_uint32_t ichunk, ochunk;

    ichunk = ilen;
    ochunk = olen;
    if (ichunk > FIXED_STACK_ALLOC)
      ichunk = FIXED_STACK_ALLOC;
    if (ochunk > FIXED_STACK_ALLOC)
      ochunk = FIXED_STACK_ALLOC;
    for (i = 0; i < ichunk; i++)
      x[i] = in[i * st->in_stride];
    st->in_stride = st->out_stride = 1;
    speex_resampler_process_native (st, channel_index, x, &ichunk, y, &ochunk);
    st->in_stride = istride_save;
    st->out_stride = ostride_save;
    for (i = 0; i < ochunk; i++)
      out[i * st->out_stride] = WORD2INT (y[i]);
    out += ochunk;
    in += ichunk;
    ilen -= ichunk;
    olen -= ochunk;
  }
  *in_len -= ilen;
  *out_len -= olen;
#endif
  return RESAMPLER_ERR_SUCCESS;
}
#endif

int
speex_resampler_process_interleaved_float (SpeexResamplerState * st,
    const float *in, spx_uint32_t * in_len, float *out, spx_uint32_t * out_len)
{
  spx_uint32_t i;
  int istride_save, ostride_save;
  spx_uint32_t bak_len = *out_len;

  istride_save = st->in_stride;
  ostride_save = st->out_stride;
  st->in_stride = st->out_stride = st->nb_channels;
  for (i = 0; i < st->nb_channels; i++) {
    *out_len = bak_len;
    speex_resampler_process_float (st, i, in + i, in_len, out + i, out_len);
  }
  st->in_stride = istride_save;
  st->out_stride = ostride_save;
  return RESAMPLER_ERR_SUCCESS;
}


int
speex_resampler_process_interleaved_int (SpeexResamplerState * st,
    const spx_int16_t * in, spx_uint32_t * in_len, spx_int16_t * out,
    spx_uint32_t * out_len)
{
  spx_uint32_t i;
  int istride_save, ostride_save;
  spx_uint32_t bak_len = *out_len;

  istride_save = st->in_stride;
  ostride_save = st->out_stride;
  st->in_stride = st->out_stride = st->nb_channels;
  for (i = 0; i < st->nb_channels; i++) {
    *out_len = bak_len;
    speex_resampler_process_int (st, i, in + i, in_len, out + i, out_len);
  }
  st->in_stride = istride_save;
  st->out_stride = ostride_save;
  return RESAMPLER_ERR_SUCCESS;
}

int
speex_resampler_set_rate (SpeexResamplerState * st, spx_uint32_t in_rate,
    spx_uint32_t out_rate)
{
  return speex_resampler_set_rate_frac (st, in_rate, out_rate, in_rate,
      out_rate);
}

void
speex_resampler_get_rate (SpeexResamplerState * st, spx_uint32_t * in_rate,
    spx_uint32_t * out_rate)
{
  *in_rate = st->in_rate;
  *out_rate = st->out_rate;
}

int
speex_resampler_set_rate_frac (SpeexResamplerState * st, spx_uint32_t ratio_num,
    spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_uint32_t out_rate)
{
  spx_uint32_t fact;
  spx_uint32_t old_den;
  spx_uint32_t i;

  if (st->in_rate == in_rate && st->out_rate == out_rate
      && st->num_rate == ratio_num && st->den_rate == ratio_den)
    return RESAMPLER_ERR_SUCCESS;

  old_den = st->den_rate;
  st->in_rate = in_rate;
  st->out_rate = out_rate;
  st->num_rate = ratio_num;
  st->den_rate = ratio_den;
  /* FIXME: This is terribly inefficient, but who cares (at least for now)? */
  for (fact = 2; fact <= IMIN (st->num_rate, st->den_rate); fact++) {
    while ((st->num_rate % fact == 0) && (st->den_rate % fact == 0)) {
      st->num_rate /= fact;
      st->den_rate /= fact;
    }
  }

  if (old_den > 0) {
    for (i = 0; i < st->nb_channels; i++) {
      st->samp_frac_num[i] = st->samp_frac_num[i] * st->den_rate / old_den;
      /* Safety net */
      if (st->samp_frac_num[i] >= st->den_rate)
        st->samp_frac_num[i] = st->den_rate - 1;
    }
  }

  if (st->initialised)
    update_filter (st);
  return RESAMPLER_ERR_SUCCESS;
}

void
speex_resampler_get_ratio (SpeexResamplerState * st, spx_uint32_t * ratio_num,
    spx_uint32_t * ratio_den)
{
  *ratio_num = st->num_rate;
  *ratio_den = st->den_rate;
}

int
speex_resampler_set_quality (SpeexResamplerState * st, int quality)
{
  if (quality > 10 || quality < 0)
    return RESAMPLER_ERR_INVALID_ARG;
  if (st->quality == quality)
    return RESAMPLER_ERR_SUCCESS;
  st->quality = quality;
  if (st->initialised)
    update_filter (st);
  return RESAMPLER_ERR_SUCCESS;
}

void
speex_resampler_get_quality (SpeexResamplerState * st, int *quality)
{
  *quality = st->quality;
}

void
speex_resampler_set_input_stride (SpeexResamplerState * st, spx_uint32_t stride)
{
  st->in_stride = stride;
}

void
speex_resampler_get_input_stride (SpeexResamplerState * st,
    spx_uint32_t * stride)
{
  *stride = st->in_stride;
}

void
speex_resampler_set_output_stride (SpeexResamplerState * st,
    spx_uint32_t stride)
{
  st->out_stride = stride;
}

void
speex_resampler_get_output_stride (SpeexResamplerState * st,
    spx_uint32_t * stride)
{
  *stride = st->out_stride;
}

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
int
speex_resampler_get_latency (SpeexResamplerState * st)
{
  return st->filt_len / 2;
}

int
speex_resampler_drain_float (SpeexResamplerState * st,
    spx_uint32_t channel_index, float *out, spx_uint32_t * out_len)
{
  spx_uint32_t in_len;
  int ret;
  float *in;

  in_len = speex_resampler_get_latency (st);

  in = speex_alloc (sizeof (float) * in_len);
  *out_len =
      MIN (in_len * st->den_rate + (st->num_rate >> 1) / st->num_rate,
      *out_len);

  ret =
      speex_resampler_process_float (st, channel_index, in, &in_len, out,
      out_len);

  speex_free (in);

  speex_resampler_reset_mem (st);

  return ret;
}

int
speex_resampler_drain_int (SpeexResamplerState * st,
    spx_uint32_t channel_index, spx_int16_t * out, spx_uint32_t * out_len)
{
  spx_uint32_t in_len;
  int ret;
  spx_int16_t *in;

  in_len = speex_resampler_get_latency (st);

  in = speex_alloc (sizeof (spx_int16_t) * in_len);
  *out_len =
      MIN (in_len * st->den_rate + (st->num_rate >> 1) / st->num_rate,
      *out_len);

  ret =
      speex_resampler_process_int (st, channel_index, in, &in_len, out,
      out_len);

  speex_free (in);

  speex_resampler_reset_mem (st);

  return ret;
}

int
speex_resampler_drain_interleaved_float (SpeexResamplerState * st,
    float *out, spx_uint32_t * out_len)
{
  spx_uint32_t i;
  int istride_save, ostride_save;
  spx_uint32_t bak_len;
  spx_uint32_t in_len;
  float *in;

  in_len = speex_resampler_get_latency (st);

  in = speex_alloc (sizeof (float) * in_len);
  *out_len =
      MIN (in_len * st->den_rate + (st->num_rate >> 1) / st->num_rate,
      *out_len);
  bak_len = *out_len;

  istride_save = st->in_stride;
  ostride_save = st->out_stride;
  st->in_stride = 1;
  st->out_stride = st->nb_channels;
  for (i = 0; i < st->nb_channels; i++) {
    *out_len = bak_len;
    speex_resampler_process_float (st, i, in, &in_len, out + i, out_len);
  }
  st->in_stride = istride_save;
  st->out_stride = ostride_save;

  speex_free (in);

  speex_resampler_reset_mem (st);

  return RESAMPLER_ERR_SUCCESS;
}

int
speex_resampler_drain_interleaved_int (SpeexResamplerState * st,
    spx_int16_t * out, spx_uint32_t * out_len)
{
  spx_uint32_t i;
  int istride_save, ostride_save;
  spx_uint32_t bak_len;
  spx_uint32_t in_len;
  spx_int16_t *in;

  in_len = speex_resampler_get_latency (st);

  in = speex_alloc (sizeof (spx_int16_t) * in_len);
  *out_len =
      MIN (in_len * st->den_rate + (st->num_rate >> 1) / st->num_rate,
      *out_len);
  bak_len = *out_len;

  istride_save = st->in_stride;
  ostride_save = st->out_stride;
  st->in_stride = 1;
  st->out_stride = st->nb_channels;
  for (i = 0; i < st->nb_channels; i++) {
    *out_len = bak_len;
    speex_resampler_process_int (st, i, in, &in_len, out + i, out_len);
  }
  st->in_stride = istride_save;
  st->out_stride = ostride_save;

  speex_free (in);

  speex_resampler_reset_mem (st);

  return RESAMPLER_ERR_SUCCESS;
}

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
int
speex_resampler_skip_zeros (SpeexResamplerState * st)
{
  spx_uint32_t i;

  for (i = 0; i < st->nb_channels; i++)
    st->last_sample[i] = st->filt_len / 2;
  return RESAMPLER_ERR_SUCCESS;
}

int
speex_resampler_reset_mem (SpeexResamplerState * st)
{
  spx_uint32_t i;

  for (i = 0; i < st->nb_channels * (st->filt_len - 1); i++)
    st->mem[i] = 0;
  return RESAMPLER_ERR_SUCCESS;
}

const char *
speex_resampler_strerror (int err)
{
  switch (err) {
    case RESAMPLER_ERR_SUCCESS:
      return "Success.";
    case RESAMPLER_ERR_ALLOC_FAILED:
      return "Memory allocation failed.";
    case RESAMPLER_ERR_BAD_STATE:
      return "Bad resampler state.";
    case RESAMPLER_ERR_INVALID_ARG:
      return "Invalid argument.";
    case RESAMPLER_ERR_PTR_OVERLAP:
      return "Input and output buffers overlap.";
    default:
      return "Unknown error. Bad error code or strange version mismatch.";
  }
}