memory.c 19.7 KB
Newer Older
1
/*
2
 * Memory subsystem support
3
4
5
6
7
8
9
10
11
12
13
14
15
 *
 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
 *            Dave Hansen <haveblue@us.ibm.com>
 *
 * This file provides the necessary infrastructure to represent
 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
 * All arch-independent code that assumes MEMORY_HOTPLUG requires
 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/topology.h>
16
#include <linux/capability.h>
17
18
19
20
#include <linux/device.h>
#include <linux/memory.h>
#include <linux/memory_hotplug.h>
#include <linux/mm.h>
21
#include <linux/mutex.h>
22
#include <linux/stat.h>
23
#include <linux/slab.h>
24

Arun Sharma's avatar
Arun Sharma committed
25
#include <linux/atomic.h>
26
27
#include <asm/uaccess.h>

28
29
static DEFINE_MUTEX(mem_sysfs_mutex);

30
#define MEMORY_CLASS_NAME	"memory"
31

32
33
#define to_memory_block(dev) container_of(dev, struct memory_block, dev)

34
35
36
37
38
39
static int sections_per_block;

static inline int base_memory_block_id(int section_nr)
{
	return section_nr / sections_per_block;
}
40

41
42
43
static int memory_subsys_online(struct device *dev);
static int memory_subsys_offline(struct device *dev);

44
static struct bus_type memory_subsys = {
45
	.name = MEMORY_CLASS_NAME,
46
	.dev_name = MEMORY_CLASS_NAME,
47
48
	.online = memory_subsys_online,
	.offline = memory_subsys_offline,
49
50
};

51
static BLOCKING_NOTIFIER_HEAD(memory_chain);
52

53
int register_memory_notifier(struct notifier_block *nb)
54
{
55
	return blocking_notifier_chain_register(&memory_chain, nb);
56
}
57
EXPORT_SYMBOL(register_memory_notifier);
58

59
void unregister_memory_notifier(struct notifier_block *nb)
60
{
61
	blocking_notifier_chain_unregister(&memory_chain, nb);
62
}
63
EXPORT_SYMBOL(unregister_memory_notifier);
64

65
66
67
68
69
70
71
72
73
74
75
76
77
78
static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);

int register_memory_isolate_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(register_memory_isolate_notifier);

void unregister_memory_isolate_notifier(struct notifier_block *nb)
{
	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(unregister_memory_isolate_notifier);

79
80
static void memory_block_release(struct device *dev)
{
81
	struct memory_block *mem = to_memory_block(dev);
82
83
84
85

	kfree(mem);
}

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
unsigned long __weak memory_block_size_bytes(void)
{
	return MIN_MEMORY_BLOCK_SIZE;
}

static unsigned long get_memory_block_size(void)
{
	unsigned long block_sz;

	block_sz = memory_block_size_bytes();

	/* Validate blk_sz is a power of 2 and not less than section size */
	if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
		WARN_ON(1);
		block_sz = MIN_MEMORY_BLOCK_SIZE;
	}

	return block_sz;
}

106
107
108
109
110
/*
 * use this as the physical section index that this memsection
 * uses.
 */

111
112
static ssize_t show_mem_start_phys_index(struct device *dev,
			struct device_attribute *attr, char *buf)
113
{
114
	struct memory_block *mem = to_memory_block(dev);
115
116
117
118
119
120
	unsigned long phys_index;

	phys_index = mem->start_section_nr / sections_per_block;
	return sprintf(buf, "%08lx\n", phys_index);
}

121
122
123
/*
 * Show whether the section of memory is likely to be hot-removable
 */
124
125
static ssize_t show_mem_removable(struct device *dev,
			struct device_attribute *attr, char *buf)
126
{
127
128
	unsigned long i, pfn;
	int ret = 1;
129
	struct memory_block *mem = to_memory_block(dev);
130

131
	for (i = 0; i < sections_per_block; i++) {
132
133
		if (!present_section_nr(mem->start_section_nr + i))
			continue;
134
		pfn = section_nr_to_pfn(mem->start_section_nr + i);
135
136
137
		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
	}

138
139
140
	return sprintf(buf, "%d\n", ret);
}

141
142
143
/*
 * online, offline, going offline, etc.
 */
144
145
static ssize_t show_mem_state(struct device *dev,
			struct device_attribute *attr, char *buf)
146
{
147
	struct memory_block *mem = to_memory_block(dev);
148
149
150
151
152
153
154
	ssize_t len = 0;

	/*
	 * We can probably put these states in a nice little array
	 * so that they're not open-coded
	 */
	switch (mem->state) {
155
156
157
158
159
160
161
162
163
164
165
166
167
168
	case MEM_ONLINE:
		len = sprintf(buf, "online\n");
		break;
	case MEM_OFFLINE:
		len = sprintf(buf, "offline\n");
		break;
	case MEM_GOING_OFFLINE:
		len = sprintf(buf, "going-offline\n");
		break;
	default:
		len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
				mem->state);
		WARN_ON(1);
		break;
169
170
171
172
173
	}

	return len;
}

174
int memory_notify(unsigned long val, void *v)
175
{
176
	return blocking_notifier_call_chain(&memory_chain, val, v);
177
178
}

179
180
181
182
183
int memory_isolate_notify(unsigned long val, void *v)
{
	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
}

184
185
186
187
/*
 * The probe routines leave the pages reserved, just as the bootmem code does.
 * Make sure they're still that way.
 */
188
static bool pages_correctly_reserved(unsigned long start_pfn)
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
{
	int i, j;
	struct page *page;
	unsigned long pfn = start_pfn;

	/*
	 * memmap between sections is not contiguous except with
	 * SPARSEMEM_VMEMMAP. We lookup the page once per section
	 * and assume memmap is contiguous within each section
	 */
	for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
		if (WARN_ON_ONCE(!pfn_valid(pfn)))
			return false;
		page = pfn_to_page(pfn);

		for (j = 0; j < PAGES_PER_SECTION; j++) {
			if (PageReserved(page + j))
				continue;

			printk(KERN_WARNING "section number %ld page number %d "
				"not reserved, was it already online?\n",
				pfn_to_section_nr(pfn), j);

			return false;
		}
	}

	return true;
}

219
220
221
/*
 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
 * OK to have direct references to sparsemem variables in here.
222
 * Must already be protected by mem_hotplug_begin().
223
224
 */
static int
225
memory_block_action(unsigned long phys_index, unsigned long action, int online_type)
226
{
227
	unsigned long start_pfn;
228
	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
229
	struct page *first_page;
230
231
	int ret;

232
	start_pfn = section_nr_to_pfn(phys_index);
233
	first_page = pfn_to_page(start_pfn);
234

235
	switch (action) {
236
237
238
239
240
241
242
243
244
245
246
247
248
	case MEM_ONLINE:
		if (!pages_correctly_reserved(start_pfn))
			return -EBUSY;

		ret = online_pages(start_pfn, nr_pages, online_type);
		break;
	case MEM_OFFLINE:
		ret = offline_pages(start_pfn, nr_pages);
		break;
	default:
		WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
		     "%ld\n", __func__, phys_index, action, action);
		ret = -EINVAL;
249
250
251
252
253
	}

	return ret;
}

254
int memory_block_change_state(struct memory_block *mem,
255
		unsigned long to_state, unsigned long from_state_req)
256
{
257
	int ret = 0;
258

259
260
	if (mem->state != from_state_req)
		return -EINVAL;
261

262
263
264
	if (to_state == MEM_OFFLINE)
		mem->state = MEM_GOING_OFFLINE;

265
266
267
	ret = memory_block_action(mem->start_section_nr, to_state,
				mem->online_type);

268
	mem->state = ret ? from_state_req : to_state;
269

270
271
	return ret;
}
272

273
/* The device lock serializes operations on memory_subsys_[online|offline] */
274
275
static int memory_subsys_online(struct device *dev)
{
276
	struct memory_block *mem = to_memory_block(dev);
277
	int ret;
278

279
280
	if (mem->state == MEM_ONLINE)
		return 0;
281

282
283
284
285
286
287
	/*
	 * If we are called from store_mem_state(), online_type will be
	 * set >= 0 Otherwise we were called from the device online
	 * attribute and need to set the online_type.
	 */
	if (mem->online_type < 0)
288
		mem->online_type = MMOP_ONLINE_KEEP;
289

290
	/* Already under protection of mem_hotplug_begin() */
291
	ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
292

293
294
	/* clear online_type */
	mem->online_type = -1;
295
296
297
298
299

	return ret;
}

static int memory_subsys_offline(struct device *dev)
300
{
301
	struct memory_block *mem = to_memory_block(dev);
302

303
304
	if (mem->state == MEM_OFFLINE)
		return 0;
305

306
307
308
309
	/* Can't offline block with non-present sections */
	if (mem->section_count != sections_per_block)
		return -EINVAL;

310
	return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
311
}
312

313
static ssize_t
314
315
store_mem_state(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t count)
316
{
317
	struct memory_block *mem = to_memory_block(dev);
318
	int ret, online_type;
319

320
321
322
	ret = lock_device_hotplug_sysfs();
	if (ret)
		return ret;
323

324
	if (sysfs_streq(buf, "online_kernel"))
325
		online_type = MMOP_ONLINE_KERNEL;
326
	else if (sysfs_streq(buf, "online_movable"))
327
		online_type = MMOP_ONLINE_MOVABLE;
328
	else if (sysfs_streq(buf, "online"))
329
		online_type = MMOP_ONLINE_KEEP;
330
	else if (sysfs_streq(buf, "offline"))
331
		online_type = MMOP_OFFLINE;
332
333
334
335
	else {
		ret = -EINVAL;
		goto err;
	}
336

337
338
339
340
341
342
343
344
345
	/*
	 * Memory hotplug needs to hold mem_hotplug_begin() for probe to find
	 * the correct memory block to online before doing device_online(dev),
	 * which will take dev->mutex.  Take the lock early to prevent an
	 * inversion, memory_subsys_online() callbacks will be implemented by
	 * assuming it's already protected.
	 */
	mem_hotplug_begin();

346
	switch (online_type) {
347
348
349
	case MMOP_ONLINE_KERNEL:
	case MMOP_ONLINE_MOVABLE:
	case MMOP_ONLINE_KEEP:
350
351
352
		mem->online_type = online_type;
		ret = device_online(&mem->dev);
		break;
353
	case MMOP_OFFLINE:
354
355
356
357
		ret = device_offline(&mem->dev);
		break;
	default:
		ret = -EINVAL; /* should never happen */
358
359
	}

360
	mem_hotplug_done();
361
err:
362
	unlock_device_hotplug();
363

364
365
366
367
368
369
370
371
372
373
374
375
376
377
	if (ret)
		return ret;
	return count;
}

/*
 * phys_device is a bad name for this.  What I really want
 * is a way to differentiate between memory ranges that
 * are part of physical devices that constitute
 * a complete removable unit or fru.
 * i.e. do these ranges belong to the same physical device,
 * s.t. if I offline all of these sections I can then
 * remove the physical device?
 */
378
379
static ssize_t show_phys_device(struct device *dev,
				struct device_attribute *attr, char *buf)
380
{
381
	struct memory_block *mem = to_memory_block(dev);
382
383
384
	return sprintf(buf, "%d\n", mem->phys_device);
}

385
386
387
388
389
390
391
392
393
#ifdef CONFIG_MEMORY_HOTREMOVE
static ssize_t show_valid_zones(struct device *dev,
				struct device_attribute *attr, char *buf)
{
	struct memory_block *mem = to_memory_block(dev);
	unsigned long start_pfn, end_pfn;
	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
	struct page *first_page;
	struct zone *zone;
394
	int zone_shift = 0;
395
396
397
398
399
400
401
402
403
404
405

	start_pfn = section_nr_to_pfn(mem->start_section_nr);
	end_pfn = start_pfn + nr_pages;
	first_page = pfn_to_page(start_pfn);

	/* The block contains more than one zone can not be offlined. */
	if (!test_pages_in_a_zone(start_pfn, end_pfn))
		return sprintf(buf, "none\n");

	zone = page_zone(first_page);

406
407
408
409
410
411
412
413
	/* MMOP_ONLINE_KEEP */
	sprintf(buf, "%s", zone->name);

	/* MMOP_ONLINE_KERNEL */
	zone_shift = zone_can_shift(start_pfn, nr_pages, ZONE_NORMAL);
	if (zone_shift) {
		strcat(buf, " ");
		strcat(buf, (zone + zone_shift)->name);
414
415
	}

416
417
418
419
420
	/* MMOP_ONLINE_MOVABLE */
	zone_shift = zone_can_shift(start_pfn, nr_pages, ZONE_MOVABLE);
	if (zone_shift) {
		strcat(buf, " ");
		strcat(buf, (zone + zone_shift)->name);
421
422
	}

423
424
425
	strcat(buf, "\n");

	return strlen(buf);
426
427
428
429
}
static DEVICE_ATTR(valid_zones, 0444, show_valid_zones, NULL);
#endif

430
431
432
433
static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
434
435
436
437
438

/*
 * Block size attribute stuff
 */
static ssize_t
439
print_block_size(struct device *dev, struct device_attribute *attr,
440
		 char *buf)
441
{
442
	return sprintf(buf, "%lx\n", get_memory_block_size());
443
444
}

445
static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
446

447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
/*
 * Memory auto online policy.
 */

static ssize_t
show_auto_online_blocks(struct device *dev, struct device_attribute *attr,
			char *buf)
{
	if (memhp_auto_online)
		return sprintf(buf, "online\n");
	else
		return sprintf(buf, "offline\n");
}

static ssize_t
store_auto_online_blocks(struct device *dev, struct device_attribute *attr,
			 const char *buf, size_t count)
{
	if (sysfs_streq(buf, "online"))
		memhp_auto_online = true;
	else if (sysfs_streq(buf, "offline"))
		memhp_auto_online = false;
	else
		return -EINVAL;

	return count;
}

static DEVICE_ATTR(auto_online_blocks, 0644, show_auto_online_blocks,
		   store_auto_online_blocks);

478
479
480
481
482
483
484
485
/*
 * Some architectures will have custom drivers to do this, and
 * will not need to do it from userspace.  The fake hot-add code
 * as well as ppc64 will do all of their discovery in userspace
 * and will require this interface.
 */
#ifdef CONFIG_ARCH_MEMORY_PROBE
static ssize_t
486
memory_probe_store(struct device *dev, struct device_attribute *attr,
487
		   const char *buf, size_t count)
488
489
{
	u64 phys_addr;
490
	int nid, ret;
491
	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
492

493
494
495
	ret = kstrtoull(buf, 0, &phys_addr);
	if (ret)
		return ret;
496

497
498
499
	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
		return -EINVAL;

500
501
502
	nid = memory_add_physaddr_to_nid(phys_addr);
	ret = add_memory(nid, phys_addr,
			 MIN_MEMORY_BLOCK_SIZE * sections_per_block);
503

504
505
	if (ret)
		goto out;
506

507
508
509
	ret = count;
out:
	return ret;
510
511
}

512
static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
513
514
#endif

515
516
517
518
519
520
521
#ifdef CONFIG_MEMORY_FAILURE
/*
 * Support for offlining pages of memory
 */

/* Soft offline a page */
static ssize_t
522
523
store_soft_offline_page(struct device *dev,
			struct device_attribute *attr,
524
			const char *buf, size_t count)
525
526
527
528
529
{
	int ret;
	u64 pfn;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
530
	if (kstrtoull(buf, 0, &pfn) < 0)
531
532
533
534
535
536
537
538
539
540
		return -EINVAL;
	pfn >>= PAGE_SHIFT;
	if (!pfn_valid(pfn))
		return -ENXIO;
	ret = soft_offline_page(pfn_to_page(pfn), 0);
	return ret == 0 ? count : ret;
}

/* Forcibly offline a page, including killing processes. */
static ssize_t
541
542
store_hard_offline_page(struct device *dev,
			struct device_attribute *attr,
543
			const char *buf, size_t count)
544
545
546
547
548
{
	int ret;
	u64 pfn;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
549
	if (kstrtoull(buf, 0, &pfn) < 0)
550
551
		return -EINVAL;
	pfn >>= PAGE_SHIFT;
552
	ret = memory_failure(pfn, 0, 0);
553
554
555
	return ret ? ret : count;
}

556
557
static DEVICE_ATTR(soft_offline_page, S_IWUSR, NULL, store_soft_offline_page);
static DEVICE_ATTR(hard_offline_page, S_IWUSR, NULL, store_hard_offline_page);
558
559
#endif

560
561
562
563
564
/*
 * Note that phys_device is optional.  It is here to allow for
 * differentiation between which *physical* devices each
 * section belongs to...
 */
565
566
567
568
int __weak arch_get_memory_phys_device(unsigned long start_pfn)
{
	return 0;
}
569

570
571
572
573
/*
 * A reference for the returned object is held and the reference for the
 * hinted object is released.
 */
574
575
struct memory_block *find_memory_block_hinted(struct mem_section *section,
					      struct memory_block *hint)
576
{
577
	int block_id = base_memory_block_id(__section_nr(section));
578
579
	struct device *hintdev = hint ? &hint->dev : NULL;
	struct device *dev;
580

581
582
583
584
	dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
	if (hint)
		put_device(&hint->dev);
	if (!dev)
585
		return NULL;
586
	return to_memory_block(dev);
587
588
}

589
590
591
592
593
594
/*
 * For now, we have a linear search to go find the appropriate
 * memory_block corresponding to a particular phys_index. If
 * this gets to be a real problem, we can always use a radix
 * tree or something here.
 *
595
 * This could be made generic for all device subsystems.
596
597
598
599
600
601
 */
struct memory_block *find_memory_block(struct mem_section *section)
{
	return find_memory_block_hinted(section, NULL);
}

602
603
604
605
606
static struct attribute *memory_memblk_attrs[] = {
	&dev_attr_phys_index.attr,
	&dev_attr_state.attr,
	&dev_attr_phys_device.attr,
	&dev_attr_removable.attr,
607
608
609
#ifdef CONFIG_MEMORY_HOTREMOVE
	&dev_attr_valid_zones.attr,
#endif
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
	NULL
};

static struct attribute_group memory_memblk_attr_group = {
	.attrs = memory_memblk_attrs,
};

static const struct attribute_group *memory_memblk_attr_groups[] = {
	&memory_memblk_attr_group,
	NULL,
};

/*
 * register_memory - Setup a sysfs device for a memory block
 */
static
int register_memory(struct memory_block *memory)
{
	memory->dev.bus = &memory_subsys;
	memory->dev.id = memory->start_section_nr / sections_per_block;
	memory->dev.release = memory_block_release;
	memory->dev.groups = memory_memblk_attr_groups;
632
	memory->dev.offline = memory->state == MEM_OFFLINE;
633

634
	return device_register(&memory->dev);
635
636
}

637
638
static int init_memory_block(struct memory_block **memory,
			     struct mem_section *section, unsigned long state)
639
{
640
	struct memory_block *mem;
641
	unsigned long start_pfn;
642
	int scn_nr;
643
644
	int ret = 0;

645
	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
646
647
648
	if (!mem)
		return -ENOMEM;

649
	scn_nr = __section_nr(section);
650
651
652
	mem->start_section_nr =
			base_memory_block_id(scn_nr) * sections_per_block;
	mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
653
	mem->state = state;
654
	start_pfn = section_nr_to_pfn(mem->start_section_nr);
655
656
	mem->phys_device = arch_get_memory_phys_device(start_pfn);

657
658
659
660
661
662
	ret = register_memory(mem);

	*memory = mem;
	return ret;
}

663
static int add_memory_block(int base_section_nr)
664
{
665
666
	struct memory_block *mem;
	int i, ret, section_count = 0, section_nr;
667

668
669
670
671
672
673
674
675
	for (i = base_section_nr;
	     (i < base_section_nr + sections_per_block) && i < NR_MEM_SECTIONS;
	     i++) {
		if (!present_section_nr(i))
			continue;
		if (section_count == 0)
			section_nr = i;
		section_count++;
676
677
	}

678
679
680
681
682
683
684
	if (section_count == 0)
		return 0;
	ret = init_memory_block(&mem, __nr_to_section(section_nr), MEM_ONLINE);
	if (ret)
		return ret;
	mem->section_count = section_count;
	return 0;
685
686
}

687
688
689
690
691
692
693
static bool is_zone_device_section(struct mem_section *ms)
{
	struct page *page;

	page = sparse_decode_mem_map(ms->section_mem_map, __section_nr(ms));
	return is_zone_device_page(page);
}
694

695
696
697
698
699
700
/*
 * need an interface for the VM to add new memory regions,
 * but without onlining it.
 */
int register_new_memory(int nid, struct mem_section *section)
{
701
702
	int ret = 0;
	struct memory_block *mem;
703

704
705
706
	if (is_zone_device_section(section))
		return 0;

707
708
	mutex_lock(&mem_sysfs_mutex);

709
710
711
712
713
714
715
716
	mem = find_memory_block(section);
	if (mem) {
		mem->section_count++;
		put_device(&mem->dev);
	} else {
		ret = init_memory_block(&mem, section, MEM_OFFLINE);
		if (ret)
			goto out;
717
		mem->section_count++;
718
719
720
721
722
723
	}

	if (mem->section_count == sections_per_block)
		ret = register_mem_sect_under_node(mem, nid);
out:
	mutex_unlock(&mem_sysfs_mutex);
724
	return ret;
725
726
727
728
729
730
731
732
733
}

#ifdef CONFIG_MEMORY_HOTREMOVE
static void
unregister_memory(struct memory_block *memory)
{
	BUG_ON(memory->dev.bus != &memory_subsys);

	/* drop the ref. we got in remove_memory_block() */
734
	put_device(&memory->dev);
735
736
737
	device_unregister(&memory->dev);
}

738
static int remove_memory_section(unsigned long node_id,
739
			       struct mem_section *section, int phys_device)
740
741
742
{
	struct memory_block *mem;

743
744
745
	if (is_zone_device_section(section))
		return 0;

746
	mutex_lock(&mem_sysfs_mutex);
747
	mem = find_memory_block(section);
748
	unregister_mem_sect_under_nodes(mem, __section_nr(section));
749
750

	mem->section_count--;
751
	if (mem->section_count == 0)
752
		unregister_memory(mem);
753
	else
754
		put_device(&mem->dev);
755

756
	mutex_unlock(&mem_sysfs_mutex);
757
758
759
760
761
	return 0;
}

int unregister_memory_section(struct mem_section *section)
{
762
	if (!present_section(section))
763
764
		return -EINVAL;

765
	return remove_memory_section(0, section, 0);
766
}
767
#endif /* CONFIG_MEMORY_HOTREMOVE */
768

769
770
771
772
773
774
/* return true if the memory block is offlined, otherwise, return false */
bool is_memblock_offlined(struct memory_block *mem)
{
	return mem->state == MEM_OFFLINE;
}

775
776
777
778
779
780
781
782
783
784
785
static struct attribute *memory_root_attrs[] = {
#ifdef CONFIG_ARCH_MEMORY_PROBE
	&dev_attr_probe.attr,
#endif

#ifdef CONFIG_MEMORY_FAILURE
	&dev_attr_soft_offline_page.attr,
	&dev_attr_hard_offline_page.attr,
#endif

	&dev_attr_block_size_bytes.attr,
786
	&dev_attr_auto_online_blocks.attr,
787
788
789
790
791
792
793
794
795
796
797
798
	NULL
};

static struct attribute_group memory_root_attr_group = {
	.attrs = memory_root_attrs,
};

static const struct attribute_group *memory_root_attr_groups[] = {
	&memory_root_attr_group,
	NULL,
};

799
800
801
802
803
804
805
/*
 * Initialize the sysfs support for memory devices...
 */
int __init memory_dev_init(void)
{
	unsigned int i;
	int ret;
806
	int err;
807
	unsigned long block_sz;
808

809
	ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
810
811
	if (ret)
		goto out;
812

813
814
815
	block_sz = get_memory_block_size();
	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;

816
817
818
819
	/*
	 * Create entries for memory sections that were found
	 * during boot and have been initialized
	 */
820
	mutex_lock(&mem_sysfs_mutex);
821
822
	for (i = 0; i < NR_MEM_SECTIONS; i += sections_per_block) {
		err = add_memory_block(i);
823
824
		if (!ret)
			ret = err;
825
	}
826
	mutex_unlock(&mem_sysfs_mutex);
827

828
829
out:
	if (ret)
830
		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
831
832
	return ret;
}