util.c 17.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
#include <linux/mm.h>
3 4
#include <linux/slab.h>
#include <linux/string.h>
5
#include <linux/compiler.h>
6
#include <linux/export.h>
Davi Arnaut's avatar
Davi Arnaut committed
7
#include <linux/err.h>
8
#include <linux/sched.h>
9
#include <linux/sched/mm.h>
10
#include <linux/sched/task_stack.h>
Al Viro's avatar
Al Viro committed
11
#include <linux/security.h>
Shaohua Li's avatar
Shaohua Li committed
12
#include <linux/swap.h>
13
#include <linux/swapops.h>
14 15
#include <linux/mman.h>
#include <linux/hugetlb.h>
Al Viro's avatar
Al Viro committed
16
#include <linux/vmalloc.h>
17
#include <linux/userfaultfd_k.h>
18

19
#include <linux/uaccess.h>
20

21 22
#include "internal.h"

Andrzej Hajda's avatar
Andrzej Hajda committed
23 24 25 26 27 28 29 30 31 32 33 34 35
/**
 * kfree_const - conditionally free memory
 * @x: pointer to the memory
 *
 * Function calls kfree only if @x is not in .rodata section.
 */
void kfree_const(const void *x)
{
	if (!is_kernel_rodata((unsigned long)x))
		kfree(x);
}
EXPORT_SYMBOL(kfree_const);

36 37 38 39
/**
 * kstrdup - allocate space for and copy an existing string
 * @s: the string to duplicate
 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
40 41
 *
 * Return: newly allocated copy of @s or %NULL in case of error
42 43 44 45 46 47 48 49 50 51
 */
char *kstrdup(const char *s, gfp_t gfp)
{
	size_t len;
	char *buf;

	if (!s)
		return NULL;

	len = strlen(s) + 1;
52
	buf = kmalloc_track_caller(len, gfp);
53 54 55 56 57
	if (buf)
		memcpy(buf, s, len);
	return buf;
}
EXPORT_SYMBOL(kstrdup);
Davi Arnaut's avatar
Davi Arnaut committed
58

Andrzej Hajda's avatar
Andrzej Hajda committed
59 60 61 62 63
/**
 * kstrdup_const - conditionally duplicate an existing const string
 * @s: the string to duplicate
 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 *
64 65 66 67
 * Note: Strings allocated by kstrdup_const should be freed by kfree_const.
 *
 * Return: source string if it is in .rodata section otherwise
 * fallback to kstrdup.
Andrzej Hajda's avatar
Andrzej Hajda committed
68 69 70 71 72 73 74 75 76 77
 */
const char *kstrdup_const(const char *s, gfp_t gfp)
{
	if (is_kernel_rodata((unsigned long)s))
		return s;

	return kstrdup(s, gfp);
}
EXPORT_SYMBOL(kstrdup_const);

Jeremy Fitzhardinge's avatar
Jeremy Fitzhardinge committed
78 79 80 81 82
/**
 * kstrndup - allocate space for and copy an existing string
 * @s: the string to duplicate
 * @max: read at most @max chars from @s
 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
83 84
 *
 * Note: Use kmemdup_nul() instead if the size is known exactly.
85 86
 *
 * Return: newly allocated copy of @s or %NULL in case of error
Jeremy Fitzhardinge's avatar
Jeremy Fitzhardinge committed
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
 */
char *kstrndup(const char *s, size_t max, gfp_t gfp)
{
	size_t len;
	char *buf;

	if (!s)
		return NULL;

	len = strnlen(s, max);
	buf = kmalloc_track_caller(len+1, gfp);
	if (buf) {
		memcpy(buf, s, len);
		buf[len] = '\0';
	}
	return buf;
}
EXPORT_SYMBOL(kstrndup);

Alexey Dobriyan's avatar
Alexey Dobriyan committed
106 107 108 109 110 111
/**
 * kmemdup - duplicate region of memory
 *
 * @src: memory region to duplicate
 * @len: memory region length
 * @gfp: GFP mask to use
112 113
 *
 * Return: newly allocated copy of @src or %NULL in case of error
Alexey Dobriyan's avatar
Alexey Dobriyan committed
114 115 116 117 118
 */
void *kmemdup(const void *src, size_t len, gfp_t gfp)
{
	void *p;

119
	p = kmalloc_track_caller(len, gfp);
Alexey Dobriyan's avatar
Alexey Dobriyan committed
120 121 122 123 124 125
	if (p)
		memcpy(p, src, len);
	return p;
}
EXPORT_SYMBOL(kmemdup);

126 127 128 129 130
/**
 * kmemdup_nul - Create a NUL-terminated string from unterminated data
 * @s: The data to stringify
 * @len: The size of the data
 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
131 132 133
 *
 * Return: newly allocated copy of @s with NUL-termination or %NULL in
 * case of error
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
 */
char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
{
	char *buf;

	if (!s)
		return NULL;

	buf = kmalloc_track_caller(len + 1, gfp);
	if (buf) {
		memcpy(buf, s, len);
		buf[len] = '\0';
	}
	return buf;
}
EXPORT_SYMBOL(kmemdup_nul);

Li Zefan's avatar
Li Zefan committed
151 152 153 154 155 156
/**
 * memdup_user - duplicate memory region from user space
 *
 * @src: source address in user space
 * @len: number of bytes to copy
 *
157
 * Return: an ERR_PTR() on failure.  Result is physically
Al Viro's avatar
Al Viro committed
158
 * contiguous, to be freed by kfree().
Li Zefan's avatar
Li Zefan committed
159 160 161 162 163
 */
void *memdup_user(const void __user *src, size_t len)
{
	void *p;

164
	p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
Li Zefan's avatar
Li Zefan committed
165 166 167 168 169 170 171 172 173 174 175 176
	if (!p)
		return ERR_PTR(-ENOMEM);

	if (copy_from_user(p, src, len)) {
		kfree(p);
		return ERR_PTR(-EFAULT);
	}

	return p;
}
EXPORT_SYMBOL(memdup_user);

Al Viro's avatar
Al Viro committed
177 178 179 180 181 182
/**
 * vmemdup_user - duplicate memory region from user space
 *
 * @src: source address in user space
 * @len: number of bytes to copy
 *
183
 * Return: an ERR_PTR() on failure.  Result may be not
Al Viro's avatar
Al Viro committed
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
 * physically contiguous.  Use kvfree() to free.
 */
void *vmemdup_user(const void __user *src, size_t len)
{
	void *p;

	p = kvmalloc(len, GFP_USER);
	if (!p)
		return ERR_PTR(-ENOMEM);

	if (copy_from_user(p, src, len)) {
		kvfree(p);
		return ERR_PTR(-EFAULT);
	}

	return p;
}
EXPORT_SYMBOL(vmemdup_user);

203
/**
Davi Arnaut's avatar
Davi Arnaut committed
204 205 206
 * strndup_user - duplicate an existing string from user space
 * @s: The string to duplicate
 * @n: Maximum number of bytes to copy, including the trailing NUL.
207
 *
208
 * Return: newly allocated copy of @s or an ERR_PTR() in case of error
Davi Arnaut's avatar
Davi Arnaut committed
209 210 211 212 213 214 215 216 217 218 219 220 221 222
 */
char *strndup_user(const char __user *s, long n)
{
	char *p;
	long length;

	length = strnlen_user(s, n);

	if (!length)
		return ERR_PTR(-EFAULT);

	if (length > n)
		return ERR_PTR(-EINVAL);

Julia Lawall's avatar
Julia Lawall committed
223
	p = memdup_user(s, length);
Davi Arnaut's avatar
Davi Arnaut committed
224

Julia Lawall's avatar
Julia Lawall committed
225 226
	if (IS_ERR(p))
		return p;
Davi Arnaut's avatar
Davi Arnaut committed
227 228 229 230 231 232

	p[length - 1] = '\0';

	return p;
}
EXPORT_SYMBOL(strndup_user);
233

Al Viro's avatar
Al Viro committed
234 235 236 237 238 239
/**
 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
 *
 * @src: source address in user space
 * @len: number of bytes to copy
 *
240
 * Return: an ERR_PTR() on failure.
Al Viro's avatar
Al Viro committed
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
 */
void *memdup_user_nul(const void __user *src, size_t len)
{
	char *p;

	/*
	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
	 * cause pagefault, which makes it pointless to use GFP_NOFS
	 * or GFP_ATOMIC.
	 */
	p = kmalloc_track_caller(len + 1, GFP_KERNEL);
	if (!p)
		return ERR_PTR(-ENOMEM);

	if (copy_from_user(p, src, len)) {
		kfree(p);
		return ERR_PTR(-EFAULT);
	}
	p[len] = '\0';

	return p;
}
EXPORT_SYMBOL(memdup_user_nul);

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
		struct vm_area_struct *prev, struct rb_node *rb_parent)
{
	struct vm_area_struct *next;

	vma->vm_prev = prev;
	if (prev) {
		next = prev->vm_next;
		prev->vm_next = vma;
	} else {
		mm->mmap = vma;
		if (rb_parent)
			next = rb_entry(rb_parent,
					struct vm_area_struct, vm_rb);
		else
			next = NULL;
	}
	vma->vm_next = next;
	if (next)
		next->vm_prev = vma;
}

287
/* Check if the vma is being used as a stack by this task */
288
int vma_is_stack_for_current(struct vm_area_struct *vma)
289
{
290 291
	struct task_struct * __maybe_unused t = current;

292 293 294
	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
}

295
#if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
296
void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
297 298 299 300 301
{
	mm->mmap_base = TASK_UNMAPPED_BASE;
	mm->get_unmapped_area = arch_get_unmapped_area;
}
#endif
302

Al Viro's avatar
Al Viro committed
303 304
unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
	unsigned long len, unsigned long prot,
Michal Hocko's avatar
Michal Hocko committed
305
	unsigned long flag, unsigned long pgoff)
Al Viro's avatar
Al Viro committed
306 307 308
{
	unsigned long ret;
	struct mm_struct *mm = current->mm;
309
	unsigned long populate;
310
	LIST_HEAD(uf);
Al Viro's avatar
Al Viro committed
311 312 313

	ret = security_mmap_file(file, prot, flag);
	if (!ret) {
Michal Hocko's avatar
Michal Hocko committed
314 315
		if (down_write_killable(&mm->mmap_sem))
			return -EINTR;
316
		ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
317
				    &populate, &uf);
Al Viro's avatar
Al Viro committed
318
		up_write(&mm->mmap_sem);
319
		userfaultfd_unmap_complete(mm, &uf);
320 321
		if (populate)
			mm_populate(ret, populate);
Al Viro's avatar
Al Viro committed
322 323 324 325 326 327 328 329 330 331
	}
	return ret;
}

unsigned long vm_mmap(struct file *file, unsigned long addr,
	unsigned long len, unsigned long prot,
	unsigned long flag, unsigned long offset)
{
	if (unlikely(offset + PAGE_ALIGN(len) < offset))
		return -EINVAL;
332
	if (unlikely(offset_in_page(offset)))
Al Viro's avatar
Al Viro committed
333 334
		return -EINVAL;

Michal Hocko's avatar
Michal Hocko committed
335
	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
Al Viro's avatar
Al Viro committed
336 337 338
}
EXPORT_SYMBOL(vm_mmap);

339 340 341 342 343 344 345 346 347 348
/**
 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
 * failure, fall back to non-contiguous (vmalloc) allocation.
 * @size: size of the request.
 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
 * @node: numa node to allocate from
 *
 * Uses kmalloc to get the memory but if the allocation fails then falls back
 * to the vmalloc allocator. Use kvfree for freeing the memory.
 *
349 350 351
 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
 * preferable to the vmalloc fallback, due to visible performance drawbacks.
352
 *
353 354
 * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not
 * fall back to vmalloc.
355 356
 *
 * Return: pointer to the allocated memory of %NULL in case of failure
357 358 359 360 361 362 363 364 365 366
 */
void *kvmalloc_node(size_t size, gfp_t flags, int node)
{
	gfp_t kmalloc_flags = flags;
	void *ret;

	/*
	 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
	 * so the given set of flags has to be compatible.
	 */
367 368
	if ((flags & GFP_KERNEL) != GFP_KERNEL)
		return kmalloc_node(size, flags, node);
369 370

	/*
371 372 373 374 375
	 * We want to attempt a large physically contiguous block first because
	 * it is less likely to fragment multiple larger blocks and therefore
	 * contribute to a long term fragmentation less than vmalloc fallback.
	 * However make sure that larger requests are not too disruptive - no
	 * OOM killer and no allocation failure warnings as we have a fallback.
376
	 */
377 378 379
	if (size > PAGE_SIZE) {
		kmalloc_flags |= __GFP_NOWARN;

380
		if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
381 382
			kmalloc_flags |= __GFP_NORETRY;
	}
383 384 385 386 387 388 389 390 391 392

	ret = kmalloc_node(size, kmalloc_flags, node);

	/*
	 * It doesn't really make sense to fallback to vmalloc for sub page
	 * requests
	 */
	if (ret || size <= PAGE_SIZE)
		return ret;

393 394
	return __vmalloc_node_flags_caller(size, node, flags,
			__builtin_return_address(0));
395 396 397
}
EXPORT_SYMBOL(kvmalloc_node);

398
/**
399 400
 * kvfree() - Free memory.
 * @addr: Pointer to allocated memory.
401
 *
402 403 404 405
 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
 * It is slightly more efficient to use kfree() or vfree() if you are certain
 * that you know which one to use.
 *
406
 * Context: Either preemptible task context or not-NMI interrupt.
407
 */
Al Viro's avatar
Al Viro committed
408 409 410 411 412 413 414 415 416
void kvfree(const void *addr)
{
	if (is_vmalloc_addr(addr))
		vfree(addr);
	else
		kfree(addr);
}
EXPORT_SYMBOL(kvfree);

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
static inline void *__page_rmapping(struct page *page)
{
	unsigned long mapping;

	mapping = (unsigned long)page->mapping;
	mapping &= ~PAGE_MAPPING_FLAGS;

	return (void *)mapping;
}

/* Neutral page->mapping pointer to address_space or anon_vma or other */
void *page_rmapping(struct page *page)
{
	page = compound_head(page);
	return __page_rmapping(page);
}

Andrew Morton's avatar
Andrew Morton committed
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
/*
 * Return true if this page is mapped into pagetables.
 * For compound page it returns true if any subpage of compound page is mapped.
 */
bool page_mapped(struct page *page)
{
	int i;

	if (likely(!PageCompound(page)))
		return atomic_read(&page->_mapcount) >= 0;
	page = compound_head(page);
	if (atomic_read(compound_mapcount_ptr(page)) >= 0)
		return true;
	if (PageHuge(page))
		return false;
449
	for (i = 0; i < (1 << compound_order(page)); i++) {
Andrew Morton's avatar
Andrew Morton committed
450 451 452 453 454 455 456
		if (atomic_read(&page[i]._mapcount) >= 0)
			return true;
	}
	return false;
}
EXPORT_SYMBOL(page_mapped);

457 458 459 460 461 462 463 464 465 466 467
struct anon_vma *page_anon_vma(struct page *page)
{
	unsigned long mapping;

	page = compound_head(page);
	mapping = (unsigned long)page->mapping;
	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
		return NULL;
	return __page_rmapping(page);
}

Shaohua Li's avatar
Shaohua Li committed
468 469
struct address_space *page_mapping(struct page *page)
{
470 471 472
	struct address_space *mapping;

	page = compound_head(page);
Shaohua Li's avatar
Shaohua Li committed
473

474 475 476 477
	/* This happens if someone calls flush_dcache_page on slab page */
	if (unlikely(PageSlab(page)))
		return NULL;

478 479 480 481
	if (unlikely(PageSwapCache(page))) {
		swp_entry_t entry;

		entry.val = page_private(page);
482 483 484
		return swap_address_space(entry);
	}

485
	mapping = page->mapping;
486
	if ((unsigned long)mapping & PAGE_MAPPING_ANON)
487
		return NULL;
488 489

	return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
Shaohua Li's avatar
Shaohua Li committed
490
}
491
EXPORT_SYMBOL(page_mapping);
Shaohua Li's avatar
Shaohua Li committed
492

493 494 495 496 497 498 499 500 501 502
/*
 * For file cache pages, return the address_space, otherwise return NULL
 */
struct address_space *page_mapping_file(struct page *page)
{
	if (unlikely(PageSwapCache(page)))
		return NULL;
	return page_mapping(page);
}

503 504 505 506 507 508
/* Slow path of page_mapcount() for compound pages */
int __page_mapcount(struct page *page)
{
	int ret;

	ret = atomic_read(&page->_mapcount) + 1;
Kirill A. Shutemov's avatar
Kirill A. Shutemov committed
509 510 511 512 513 514
	/*
	 * For file THP page->_mapcount contains total number of mapping
	 * of the page: no need to look into compound_mapcount.
	 */
	if (!PageAnon(page) && !PageHuge(page))
		return ret;
515 516 517 518 519 520 521 522
	page = compound_head(page);
	ret += atomic_read(compound_mapcount_ptr(page)) + 1;
	if (PageDoubleMap(page))
		ret--;
	return ret;
}
EXPORT_SYMBOL_GPL(__page_mapcount);

523 524 525 526 527 528 529
int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
int sysctl_overcommit_ratio __read_mostly = 50;
unsigned long sysctl_overcommit_kbytes __read_mostly;
int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
int overcommit_ratio_handler(struct ctl_table *table, int write,
			     void __user *buffer, size_t *lenp,
			     loff_t *ppos)
{
	int ret;

	ret = proc_dointvec(table, write, buffer, lenp, ppos);
	if (ret == 0 && write)
		sysctl_overcommit_kbytes = 0;
	return ret;
}

int overcommit_kbytes_handler(struct ctl_table *table, int write,
			     void __user *buffer, size_t *lenp,
			     loff_t *ppos)
{
	int ret;

	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
	if (ret == 0 && write)
		sysctl_overcommit_ratio = 0;
	return ret;
}

554 555 556 557 558
/*
 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
 */
unsigned long vm_commit_limit(void)
{
559 560 561 562 563
	unsigned long allowed;

	if (sysctl_overcommit_kbytes)
		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
	else
564
		allowed = ((totalram_pages() - hugetlb_total_pages())
565 566 567 568
			   * sysctl_overcommit_ratio / 100);
	allowed += total_swap_pages;

	return allowed;
569 570
}

571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
/*
 * Make sure vm_committed_as in one cacheline and not cacheline shared with
 * other variables. It can be updated by several CPUs frequently.
 */
struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;

/*
 * The global memory commitment made in the system can be a metric
 * that can be used to drive ballooning decisions when Linux is hosted
 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
 * balancing memory across competing virtual machines that are hosted.
 * Several metrics drive this policy engine including the guest reported
 * memory commitment.
 */
unsigned long vm_memory_committed(void)
{
	return percpu_counter_read_positive(&vm_committed_as);
}
EXPORT_SYMBOL_GPL(vm_memory_committed);

/*
 * Check that a process has enough memory to allocate a new virtual
 * mapping. 0 means there is enough memory for the allocation to
 * succeed and -ENOMEM implies there is not.
 *
 * We currently support three overcommit policies, which are set via the
597
 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting.rst
598 599 600 601 602 603 604 605 606 607 608
 *
 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
 * Additional code 2002 Jul 20 by Robert Love.
 *
 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
 *
 * Note this is a helper function intended to be used by LSMs which
 * wish to use this logic.
 */
int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
{
609
	long allowed;
610 611 612 613 614 615 616 617 618 619 620 621 622 623

	VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
			-(s64)vm_committed_as_batch * num_online_cpus(),
			"memory commitment underflow");

	vm_acct_memory(pages);

	/*
	 * Sometimes we want to use more memory than we have
	 */
	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
		return 0;

	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
624
		if (pages > totalram_pages() + total_swap_pages)
625
			goto error;
626
		return 0;
627 628 629 630 631 632 633 634 635 636 637 638 639
	}

	allowed = vm_commit_limit();
	/*
	 * Reserve some for root
	 */
	if (!cap_sys_admin)
		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);

	/*
	 * Don't let a single process grow so big a user can't recover
	 */
	if (mm) {
640 641
		long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);

642 643 644 645 646 647 648 649 650 651 652
		allowed -= min_t(long, mm->total_vm / 32, reserve);
	}

	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
		return 0;
error:
	vm_unacct_memory(pages);

	return -ENOMEM;
}

653 654 655 656 657 658
/**
 * get_cmdline() - copy the cmdline value to a buffer.
 * @task:     the task whose cmdline value to copy.
 * @buffer:   the buffer to copy to.
 * @buflen:   the length of the buffer. Larger cmdline values are truncated
 *            to this length.
659 660
 *
 * Return: the size of the cmdline field copied. Note that the copy does
661 662 663 664 665 666 667
 * not guarantee an ending NULL byte.
 */
int get_cmdline(struct task_struct *task, char *buffer, int buflen)
{
	int res = 0;
	unsigned int len;
	struct mm_struct *mm = get_task_mm(task);
668
	unsigned long arg_start, arg_end, env_start, env_end;
669 670 671 672 673
	if (!mm)
		goto out;
	if (!mm->arg_end)
		goto out_mm;	/* Shh! No looking before we're done */

674
	spin_lock(&mm->arg_lock);
675 676 677 678
	arg_start = mm->arg_start;
	arg_end = mm->arg_end;
	env_start = mm->env_start;
	env_end = mm->env_end;
679
	spin_unlock(&mm->arg_lock);
680 681

	len = arg_end - arg_start;
682 683 684 685

	if (len > buflen)
		len = buflen;

686
	res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
687 688 689 690 691 692 693 694 695 696

	/*
	 * If the nul at the end of args has been overwritten, then
	 * assume application is using setproctitle(3).
	 */
	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
		len = strnlen(buffer, res);
		if (len < res) {
			res = len;
		} else {
697
			len = env_end - env_start;
698 699
			if (len > buflen - res)
				len = buflen - res;
700
			res += access_process_vm(task, env_start,
701 702
						 buffer+res, len,
						 FOLL_FORCE);
703 704 705 706 707 708 709 710
			res = strnlen(buffer, res);
		}
	}
out_mm:
	mmput(mm);
out:
	return res;
}