memory.c 17.7 KB
Newer Older
1
/*
2
 * Memory subsystem support
3 4 5 6 7 8 9 10 11 12 13 14 15
 *
 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
 *            Dave Hansen <haveblue@us.ibm.com>
 *
 * This file provides the necessary infrastructure to represent
 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
 * All arch-independent code that assumes MEMORY_HOTPLUG requires
 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/topology.h>
16
#include <linux/capability.h>
17 18 19 20
#include <linux/device.h>
#include <linux/memory.h>
#include <linux/memory_hotplug.h>
#include <linux/mm.h>
21
#include <linux/mutex.h>
22
#include <linux/stat.h>
23
#include <linux/slab.h>
24

Arun Sharma's avatar
Arun Sharma committed
25
#include <linux/atomic.h>
26 27
#include <asm/uaccess.h>

28 29
static DEFINE_MUTEX(mem_sysfs_mutex);

30
#define MEMORY_CLASS_NAME	"memory"
31

32 33
#define to_memory_block(dev) container_of(dev, struct memory_block, dev)

34 35 36 37 38 39
static int sections_per_block;

static inline int base_memory_block_id(int section_nr)
{
	return section_nr / sections_per_block;
}
40

41 42 43
static int memory_subsys_online(struct device *dev);
static int memory_subsys_offline(struct device *dev);

44
static struct bus_type memory_subsys = {
45
	.name = MEMORY_CLASS_NAME,
46
	.dev_name = MEMORY_CLASS_NAME,
47 48
	.online = memory_subsys_online,
	.offline = memory_subsys_offline,
49 50
};

51
static BLOCKING_NOTIFIER_HEAD(memory_chain);
52

53
int register_memory_notifier(struct notifier_block *nb)
54
{
55
        return blocking_notifier_chain_register(&memory_chain, nb);
56
}
57
EXPORT_SYMBOL(register_memory_notifier);
58

59
void unregister_memory_notifier(struct notifier_block *nb)
60
{
61
        blocking_notifier_chain_unregister(&memory_chain, nb);
62
}
63
EXPORT_SYMBOL(unregister_memory_notifier);
64

65 66 67 68 69 70 71 72 73 74 75 76 77 78
static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);

int register_memory_isolate_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(register_memory_isolate_notifier);

void unregister_memory_isolate_notifier(struct notifier_block *nb)
{
	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(unregister_memory_isolate_notifier);

79 80
static void memory_block_release(struct device *dev)
{
81
	struct memory_block *mem = to_memory_block(dev);
82 83 84 85

	kfree(mem);
}

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
unsigned long __weak memory_block_size_bytes(void)
{
	return MIN_MEMORY_BLOCK_SIZE;
}

static unsigned long get_memory_block_size(void)
{
	unsigned long block_sz;

	block_sz = memory_block_size_bytes();

	/* Validate blk_sz is a power of 2 and not less than section size */
	if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
		WARN_ON(1);
		block_sz = MIN_MEMORY_BLOCK_SIZE;
	}

	return block_sz;
}

106 107 108 109 110
/*
 * use this as the physical section index that this memsection
 * uses.
 */

111 112
static ssize_t show_mem_start_phys_index(struct device *dev,
			struct device_attribute *attr, char *buf)
113
{
114
	struct memory_block *mem = to_memory_block(dev);
115 116 117 118 119 120
	unsigned long phys_index;

	phys_index = mem->start_section_nr / sections_per_block;
	return sprintf(buf, "%08lx\n", phys_index);
}

121 122
static ssize_t show_mem_end_phys_index(struct device *dev,
			struct device_attribute *attr, char *buf)
123
{
124
	struct memory_block *mem = to_memory_block(dev);
125 126 127 128
	unsigned long phys_index;

	phys_index = mem->end_section_nr / sections_per_block;
	return sprintf(buf, "%08lx\n", phys_index);
129 130
}

131 132 133
/*
 * Show whether the section of memory is likely to be hot-removable
 */
134 135
static ssize_t show_mem_removable(struct device *dev,
			struct device_attribute *attr, char *buf)
136
{
137 138
	unsigned long i, pfn;
	int ret = 1;
139
	struct memory_block *mem = to_memory_block(dev);
140

141
	for (i = 0; i < sections_per_block; i++) {
142 143
		if (!present_section_nr(mem->start_section_nr + i))
			continue;
144
		pfn = section_nr_to_pfn(mem->start_section_nr + i);
145 146 147
		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
	}

148 149 150
	return sprintf(buf, "%d\n", ret);
}

151 152 153
/*
 * online, offline, going offline, etc.
 */
154 155
static ssize_t show_mem_state(struct device *dev,
			struct device_attribute *attr, char *buf)
156
{
157
	struct memory_block *mem = to_memory_block(dev);
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
	ssize_t len = 0;

	/*
	 * We can probably put these states in a nice little array
	 * so that they're not open-coded
	 */
	switch (mem->state) {
		case MEM_ONLINE:
			len = sprintf(buf, "online\n");
			break;
		case MEM_OFFLINE:
			len = sprintf(buf, "offline\n");
			break;
		case MEM_GOING_OFFLINE:
			len = sprintf(buf, "going-offline\n");
			break;
		default:
			len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
					mem->state);
			WARN_ON(1);
			break;
	}

	return len;
}

184
int memory_notify(unsigned long val, void *v)
185
{
186
	return blocking_notifier_call_chain(&memory_chain, val, v);
187 188
}

189 190 191 192 193
int memory_isolate_notify(unsigned long val, void *v)
{
	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
}

194 195 196 197
/*
 * The probe routines leave the pages reserved, just as the bootmem code does.
 * Make sure they're still that way.
 */
198
static bool pages_correctly_reserved(unsigned long start_pfn)
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
{
	int i, j;
	struct page *page;
	unsigned long pfn = start_pfn;

	/*
	 * memmap between sections is not contiguous except with
	 * SPARSEMEM_VMEMMAP. We lookup the page once per section
	 * and assume memmap is contiguous within each section
	 */
	for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
		if (WARN_ON_ONCE(!pfn_valid(pfn)))
			return false;
		page = pfn_to_page(pfn);

		for (j = 0; j < PAGES_PER_SECTION; j++) {
			if (PageReserved(page + j))
				continue;

			printk(KERN_WARNING "section number %ld page number %d "
				"not reserved, was it already online?\n",
				pfn_to_section_nr(pfn), j);

			return false;
		}
	}

	return true;
}

229 230 231 232 233
/*
 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
 * OK to have direct references to sparsemem variables in here.
 */
static int
234
memory_block_action(unsigned long phys_index, unsigned long action, int online_type)
235
{
236
	unsigned long start_pfn;
237
	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
238
	struct page *first_page;
239 240
	int ret;

241
	first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);
242
	start_pfn = page_to_pfn(first_page);
243

244 245
	switch (action) {
		case MEM_ONLINE:
246
			if (!pages_correctly_reserved(start_pfn))
247 248
				return -EBUSY;

249
			ret = online_pages(start_pfn, nr_pages, online_type);
250 251
			break;
		case MEM_OFFLINE:
252
			ret = offline_pages(start_pfn, nr_pages);
253 254
			break;
		default:
255 256
			WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
			     "%ld\n", __func__, phys_index, action, action);
257 258 259 260 261 262
			ret = -EINVAL;
	}

	return ret;
}

263 264
static int memory_block_change_state(struct memory_block *mem,
		unsigned long to_state, unsigned long from_state_req)
265
{
266
	int ret = 0;
267

268 269
	if (mem->state != from_state_req)
		return -EINVAL;
270

271 272 273
	if (to_state == MEM_OFFLINE)
		mem->state = MEM_GOING_OFFLINE;

274 275 276
	ret = memory_block_action(mem->start_section_nr, to_state,
				mem->online_type);

277
	mem->state = ret ? from_state_req : to_state;
278

279 280
	return ret;
}
281

282
/* The device lock serializes operations on memory_subsys_[online|offline] */
283 284
static int memory_subsys_online(struct device *dev)
{
285
	struct memory_block *mem = to_memory_block(dev);
286
	int ret;
287

288 289
	if (mem->state == MEM_ONLINE)
		return 0;
290

291 292 293 294 295 296 297
	/*
	 * If we are called from store_mem_state(), online_type will be
	 * set >= 0 Otherwise we were called from the device online
	 * attribute and need to set the online_type.
	 */
	if (mem->online_type < 0)
		mem->online_type = ONLINE_KEEP;
298

299
	ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
300

301 302
	/* clear online_type */
	mem->online_type = -1;
303 304 305 306 307

	return ret;
}

static int memory_subsys_offline(struct device *dev)
308
{
309
	struct memory_block *mem = to_memory_block(dev);
310

311 312
	if (mem->state == MEM_OFFLINE)
		return 0;
313

314
	return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
315
}
316

317
static ssize_t
318 319
store_mem_state(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t count)
320
{
321
	struct memory_block *mem = to_memory_block(dev);
322
	int ret, online_type;
323

324 325 326
	ret = lock_device_hotplug_sysfs();
	if (ret)
		return ret;
327

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
	if (!strncmp(buf, "online_kernel", min_t(int, count, 13)))
		online_type = ONLINE_KERNEL;
	else if (!strncmp(buf, "online_movable", min_t(int, count, 14)))
		online_type = ONLINE_MOVABLE;
	else if (!strncmp(buf, "online", min_t(int, count, 6)))
		online_type = ONLINE_KEEP;
	else if (!strncmp(buf, "offline", min_t(int, count, 7)))
		online_type = -1;
	else
		return -EINVAL;

	switch (online_type) {
	case ONLINE_KERNEL:
	case ONLINE_MOVABLE:
	case ONLINE_KEEP:
		/*
		 * mem->online_type is not protected so there can be a
		 * race here.  However, when racing online, the first
		 * will succeed and the second will just return as the
		 * block will already be online.  The online type
		 * could be either one, but that is expected.
		 */
		mem->online_type = online_type;
		ret = device_online(&mem->dev);
		break;
	case -1:
		ret = device_offline(&mem->dev);
		break;
	default:
		ret = -EINVAL; /* should never happen */
358 359 360
	}

	unlock_device_hotplug();
361

362 363 364 365 366 367 368 369 370 371 372 373 374 375
	if (ret)
		return ret;
	return count;
}

/*
 * phys_device is a bad name for this.  What I really want
 * is a way to differentiate between memory ranges that
 * are part of physical devices that constitute
 * a complete removable unit or fru.
 * i.e. do these ranges belong to the same physical device,
 * s.t. if I offline all of these sections I can then
 * remove the physical device?
 */
376 377
static ssize_t show_phys_device(struct device *dev,
				struct device_attribute *attr, char *buf)
378
{
379
	struct memory_block *mem = to_memory_block(dev);
380 381 382
	return sprintf(buf, "%d\n", mem->phys_device);
}

383 384 385 386 387
static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
static DEVICE_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL);
static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
388 389 390 391 392

/*
 * Block size attribute stuff
 */
static ssize_t
393
print_block_size(struct device *dev, struct device_attribute *attr,
394
		 char *buf)
395
{
396
	return sprintf(buf, "%lx\n", get_memory_block_size());
397 398
}

399
static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
400 401 402 403 404 405 406 407 408

/*
 * Some architectures will have custom drivers to do this, and
 * will not need to do it from userspace.  The fake hot-add code
 * as well as ppc64 will do all of their discovery in userspace
 * and will require this interface.
 */
#ifdef CONFIG_ARCH_MEMORY_PROBE
static ssize_t
409
memory_probe_store(struct device *dev, struct device_attribute *attr,
410
		   const char *buf, size_t count)
411 412
{
	u64 phys_addr;
413
	int nid;
414
	int i, ret;
415
	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
416 417 418

	phys_addr = simple_strtoull(buf, NULL, 0);

419 420 421
	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
		return -EINVAL;

422 423 424 425 426
	for (i = 0; i < sections_per_block; i++) {
		nid = memory_add_physaddr_to_nid(phys_addr);
		ret = add_memory(nid, phys_addr,
				 PAGES_PER_SECTION << PAGE_SHIFT);
		if (ret)
427
			goto out;
428 429 430

		phys_addr += MIN_MEMORY_BLOCK_SIZE;
	}
431

432 433 434
	ret = count;
out:
	return ret;
435 436
}

437
static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
438 439
#endif

440 441 442 443 444 445 446
#ifdef CONFIG_MEMORY_FAILURE
/*
 * Support for offlining pages of memory
 */

/* Soft offline a page */
static ssize_t
447 448
store_soft_offline_page(struct device *dev,
			struct device_attribute *attr,
449
			const char *buf, size_t count)
450 451 452 453 454
{
	int ret;
	u64 pfn;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
455
	if (kstrtoull(buf, 0, &pfn) < 0)
456 457 458 459 460 461 462 463 464 465
		return -EINVAL;
	pfn >>= PAGE_SHIFT;
	if (!pfn_valid(pfn))
		return -ENXIO;
	ret = soft_offline_page(pfn_to_page(pfn), 0);
	return ret == 0 ? count : ret;
}

/* Forcibly offline a page, including killing processes. */
static ssize_t
466 467
store_hard_offline_page(struct device *dev,
			struct device_attribute *attr,
468
			const char *buf, size_t count)
469 470 471 472 473
{
	int ret;
	u64 pfn;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
474
	if (kstrtoull(buf, 0, &pfn) < 0)
475 476
		return -EINVAL;
	pfn >>= PAGE_SHIFT;
477
	ret = memory_failure(pfn, 0, 0);
478 479 480
	return ret ? ret : count;
}

481 482
static DEVICE_ATTR(soft_offline_page, S_IWUSR, NULL, store_soft_offline_page);
static DEVICE_ATTR(hard_offline_page, S_IWUSR, NULL, store_hard_offline_page);
483 484
#endif

485 486 487 488 489
/*
 * Note that phys_device is optional.  It is here to allow for
 * differentiation between which *physical* devices each
 * section belongs to...
 */
490 491 492 493
int __weak arch_get_memory_phys_device(unsigned long start_pfn)
{
	return 0;
}
494

495 496 497 498
/*
 * A reference for the returned object is held and the reference for the
 * hinted object is released.
 */
499 500
struct memory_block *find_memory_block_hinted(struct mem_section *section,
					      struct memory_block *hint)
501
{
502
	int block_id = base_memory_block_id(__section_nr(section));
503 504
	struct device *hintdev = hint ? &hint->dev : NULL;
	struct device *dev;
505

506 507 508 509
	dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
	if (hint)
		put_device(&hint->dev);
	if (!dev)
510
		return NULL;
511
	return to_memory_block(dev);
512 513
}

514 515 516 517 518 519
/*
 * For now, we have a linear search to go find the appropriate
 * memory_block corresponding to a particular phys_index. If
 * this gets to be a real problem, we can always use a radix
 * tree or something here.
 *
520
 * This could be made generic for all device subsystems.
521 522 523 524 525 526
 */
struct memory_block *find_memory_block(struct mem_section *section)
{
	return find_memory_block_hinted(section, NULL);
}

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
static struct attribute *memory_memblk_attrs[] = {
	&dev_attr_phys_index.attr,
	&dev_attr_end_phys_index.attr,
	&dev_attr_state.attr,
	&dev_attr_phys_device.attr,
	&dev_attr_removable.attr,
	NULL
};

static struct attribute_group memory_memblk_attr_group = {
	.attrs = memory_memblk_attrs,
};

static const struct attribute_group *memory_memblk_attr_groups[] = {
	&memory_memblk_attr_group,
	NULL,
};

/*
 * register_memory - Setup a sysfs device for a memory block
 */
static
int register_memory(struct memory_block *memory)
{
	memory->dev.bus = &memory_subsys;
	memory->dev.id = memory->start_section_nr / sections_per_block;
	memory->dev.release = memory_block_release;
	memory->dev.groups = memory_memblk_attr_groups;
555
	memory->dev.offline = memory->state == MEM_OFFLINE;
556

557
	return device_register(&memory->dev);
558 559
}

560 561
static int init_memory_block(struct memory_block **memory,
			     struct mem_section *section, unsigned long state)
562
{
563
	struct memory_block *mem;
564
	unsigned long start_pfn;
565
	int scn_nr;
566 567
	int ret = 0;

568
	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
569 570 571
	if (!mem)
		return -ENOMEM;

572
	scn_nr = __section_nr(section);
573 574 575
	mem->start_section_nr =
			base_memory_block_id(scn_nr) * sections_per_block;
	mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
576
	mem->state = state;
577
	mem->section_count++;
578
	start_pfn = section_nr_to_pfn(mem->start_section_nr);
579 580
	mem->phys_device = arch_get_memory_phys_device(start_pfn);

581 582 583 584 585 586
	ret = register_memory(mem);

	*memory = mem;
	return ret;
}

587
static int add_memory_block(int base_section_nr)
588
{
589 590
	struct memory_block *mem;
	int i, ret, section_count = 0, section_nr;
591

592 593 594 595 596 597 598 599
	for (i = base_section_nr;
	     (i < base_section_nr + sections_per_block) && i < NR_MEM_SECTIONS;
	     i++) {
		if (!present_section_nr(i))
			continue;
		if (section_count == 0)
			section_nr = i;
		section_count++;
600 601
	}

602 603 604 605 606 607 608
	if (section_count == 0)
		return 0;
	ret = init_memory_block(&mem, __nr_to_section(section_nr), MEM_ONLINE);
	if (ret)
		return ret;
	mem->section_count = section_count;
	return 0;
609 610
}

611

612 613 614 615 616 617
/*
 * need an interface for the VM to add new memory regions,
 * but without onlining it.
 */
int register_new_memory(int nid, struct mem_section *section)
{
618 619
	int ret = 0;
	struct memory_block *mem;
620 621 622

	mutex_lock(&mem_sysfs_mutex);

623 624 625 626 627 628 629 630 631 632 633 634 635 636
	mem = find_memory_block(section);
	if (mem) {
		mem->section_count++;
		put_device(&mem->dev);
	} else {
		ret = init_memory_block(&mem, section, MEM_OFFLINE);
		if (ret)
			goto out;
	}

	if (mem->section_count == sections_per_block)
		ret = register_mem_sect_under_node(mem, nid);
out:
	mutex_unlock(&mem_sysfs_mutex);
637
	return ret;
638 639 640 641 642 643 644 645 646
}

#ifdef CONFIG_MEMORY_HOTREMOVE
static void
unregister_memory(struct memory_block *memory)
{
	BUG_ON(memory->dev.bus != &memory_subsys);

	/* drop the ref. we got in remove_memory_block() */
647
	put_device(&memory->dev);
648 649 650 651 652
	device_unregister(&memory->dev);
}

static int remove_memory_block(unsigned long node_id,
			       struct mem_section *section, int phys_device)
653 654 655
{
	struct memory_block *mem;

656
	mutex_lock(&mem_sysfs_mutex);
657
	mem = find_memory_block(section);
658
	unregister_mem_sect_under_nodes(mem, __section_nr(section));
659 660

	mem->section_count--;
661
	if (mem->section_count == 0)
662
		unregister_memory(mem);
663
	else
664
		put_device(&mem->dev);
665

666
	mutex_unlock(&mem_sysfs_mutex);
667 668 669 670 671
	return 0;
}

int unregister_memory_section(struct mem_section *section)
{
672
	if (!present_section(section))
673 674 675 676
		return -EINVAL;

	return remove_memory_block(0, section, 0);
}
677
#endif /* CONFIG_MEMORY_HOTREMOVE */
678

679 680 681 682 683 684
/* return true if the memory block is offlined, otherwise, return false */
bool is_memblock_offlined(struct memory_block *mem)
{
	return mem->state == MEM_OFFLINE;
}

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
static struct attribute *memory_root_attrs[] = {
#ifdef CONFIG_ARCH_MEMORY_PROBE
	&dev_attr_probe.attr,
#endif

#ifdef CONFIG_MEMORY_FAILURE
	&dev_attr_soft_offline_page.attr,
	&dev_attr_hard_offline_page.attr,
#endif

	&dev_attr_block_size_bytes.attr,
	NULL
};

static struct attribute_group memory_root_attr_group = {
	.attrs = memory_root_attrs,
};

static const struct attribute_group *memory_root_attr_groups[] = {
	&memory_root_attr_group,
	NULL,
};

708 709 710 711 712 713 714
/*
 * Initialize the sysfs support for memory devices...
 */
int __init memory_dev_init(void)
{
	unsigned int i;
	int ret;
715
	int err;
716
	unsigned long block_sz;
717

718
	ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
719 720
	if (ret)
		goto out;
721

722 723 724
	block_sz = get_memory_block_size();
	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;

725 726 727 728
	/*
	 * Create entries for memory sections that were found
	 * during boot and have been initialized
	 */
729
	mutex_lock(&mem_sysfs_mutex);
730 731
	for (i = 0; i < NR_MEM_SECTIONS; i += sections_per_block) {
		err = add_memory_block(i);
732 733
		if (!ret)
			ret = err;
734
	}
735
	mutex_unlock(&mem_sysfs_mutex);
736

737 738
out:
	if (ret)
739
		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
740 741
	return ret;
}