gup.c 80.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/spinlock.h>

#include <linux/mm.h>
8
#include <linux/memremap.h>
9 10 11 12 13
#include <linux/pagemap.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/swapops.h>

14
#include <linux/sched/signal.h>
15
#include <linux/rwsem.h>
16
#include <linux/hugetlb.h>
17 18 19
#include <linux/migrate.h>
#include <linux/mm_inline.h>
#include <linux/sched/mm.h>
20

21
#include <asm/mmu_context.h>
22
#include <asm/pgtable.h>
23
#include <asm/tlbflush.h>
24

25 26
#include "internal.h"

27 28 29 30 31
struct follow_page_context {
	struct dev_pagemap *pgmap;
	unsigned int page_mask;
};

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
static void hpage_pincount_add(struct page *page, int refs)
{
	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
	VM_BUG_ON_PAGE(page != compound_head(page), page);

	atomic_add(refs, compound_pincount_ptr(page));
}

static void hpage_pincount_sub(struct page *page, int refs)
{
	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
	VM_BUG_ON_PAGE(page != compound_head(page), page);

	atomic_sub(refs, compound_pincount_ptr(page));
}

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
/*
 * Return the compound head page with ref appropriately incremented,
 * or NULL if that failed.
 */
static inline struct page *try_get_compound_head(struct page *page, int refs)
{
	struct page *head = compound_head(page);

	if (WARN_ON_ONCE(page_ref_count(head) < 0))
		return NULL;
	if (unlikely(!page_cache_add_speculative(head, refs)))
		return NULL;
	return head;
}

John Hubbard's avatar
John Hubbard committed
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
/*
 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
 * flags-dependent amount.
 *
 * "grab" names in this file mean, "look at flags to decide whether to use
 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
 *
 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
 * same time. (That's true throughout the get_user_pages*() and
 * pin_user_pages*() APIs.) Cases:
 *
 *    FOLL_GET: page's refcount will be incremented by 1.
 *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
 *
 * Return: head page (with refcount appropriately incremented) for success, or
 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
 * considered failure, and furthermore, a likely bug in the caller, so a warning
 * is also emitted.
 */
static __maybe_unused struct page *try_grab_compound_head(struct page *page,
							  int refs,
							  unsigned int flags)
{
	if (flags & FOLL_GET)
		return try_get_compound_head(page, refs);
	else if (flags & FOLL_PIN) {
89 90
		int orig_refs = refs;

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
		/*
		 * When pinning a compound page of order > 1 (which is what
		 * hpage_pincount_available() checks for), use an exact count to
		 * track it, via hpage_pincount_add/_sub().
		 *
		 * However, be sure to *also* increment the normal page refcount
		 * field at least once, so that the page really is pinned.
		 */
		if (!hpage_pincount_available(page))
			refs *= GUP_PIN_COUNTING_BIAS;

		page = try_get_compound_head(page, refs);
		if (!page)
			return NULL;

		if (hpage_pincount_available(page))
			hpage_pincount_add(page, refs);

109 110 111
		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
				    orig_refs);

112
		return page;
John Hubbard's avatar
John Hubbard committed
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
	}

	WARN_ON_ONCE(1);
	return NULL;
}

/**
 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
 *
 * This might not do anything at all, depending on the flags argument.
 *
 * "grab" names in this file mean, "look at flags to decide whether to use
 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
 *
 * @page:    pointer to page to be grabbed
 * @flags:   gup flags: these are the FOLL_* flag values.
 *
 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
 * time. Cases:
 *
 *    FOLL_GET: page's refcount will be incremented by 1.
 *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
 *
 * Return: true for success, or if no action was required (if neither FOLL_PIN
 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
 * FOLL_PIN was set, but the page could not be grabbed.
 */
bool __must_check try_grab_page(struct page *page, unsigned int flags)
{
	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));

	if (flags & FOLL_GET)
		return try_get_page(page);
	else if (flags & FOLL_PIN) {
147 148
		int refs = 1;

John Hubbard's avatar
John Hubbard committed
149 150 151 152 153
		page = compound_head(page);

		if (WARN_ON_ONCE(page_ref_count(page) <= 0))
			return false;

154 155 156 157 158 159 160 161 162 163 164 165
		if (hpage_pincount_available(page))
			hpage_pincount_add(page, 1);
		else
			refs = GUP_PIN_COUNTING_BIAS;

		/*
		 * Similar to try_grab_compound_head(): even if using the
		 * hpage_pincount_add/_sub() routines, be sure to
		 * *also* increment the normal page refcount field at least
		 * once, so that the page really is pinned.
		 */
		page_ref_add(page, refs);
166 167

		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
John Hubbard's avatar
John Hubbard committed
168 169 170 171 172 173 174 175
	}

	return true;
}

#ifdef CONFIG_DEV_PAGEMAP_OPS
static bool __unpin_devmap_managed_user_page(struct page *page)
{
176
	int count, refs = 1;
John Hubbard's avatar
John Hubbard committed
177 178 179 180

	if (!page_is_devmap_managed(page))
		return false;

181 182 183 184 185 186
	if (hpage_pincount_available(page))
		hpage_pincount_sub(page, 1);
	else
		refs = GUP_PIN_COUNTING_BIAS;

	count = page_ref_sub_return(page, refs);
John Hubbard's avatar
John Hubbard committed
187

188
	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
John Hubbard's avatar
John Hubbard committed
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
	/*
	 * devmap page refcounts are 1-based, rather than 0-based: if
	 * refcount is 1, then the page is free and the refcount is
	 * stable because nobody holds a reference on the page.
	 */
	if (count == 1)
		free_devmap_managed_page(page);
	else if (!count)
		__put_page(page);

	return true;
}
#else
static bool __unpin_devmap_managed_user_page(struct page *page)
{
	return false;
}
#endif /* CONFIG_DEV_PAGEMAP_OPS */

/**
 * unpin_user_page() - release a dma-pinned page
 * @page:            pointer to page to be released
 *
 * Pages that were pinned via pin_user_pages*() must be released via either
 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
 * that such pages can be separately tracked and uniquely handled. In
 * particular, interactions with RDMA and filesystems need special handling.
 */
void unpin_user_page(struct page *page)
{
219 220
	int refs = 1;

John Hubbard's avatar
John Hubbard committed
221 222 223 224 225 226 227 228 229 230 231
	page = compound_head(page);

	/*
	 * For devmap managed pages we need to catch refcount transition from
	 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the
	 * page is free and we need to inform the device driver through
	 * callback. See include/linux/memremap.h and HMM for details.
	 */
	if (__unpin_devmap_managed_user_page(page))
		return;

232 233 234 235 236 237
	if (hpage_pincount_available(page))
		hpage_pincount_sub(page, 1);
	else
		refs = GUP_PIN_COUNTING_BIAS;

	if (page_ref_sub_and_test(page, refs))
John Hubbard's avatar
John Hubbard committed
238
		__put_page(page);
239 240

	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
John Hubbard's avatar
John Hubbard committed
241 242 243
}
EXPORT_SYMBOL(unpin_user_page);

244
/**
245
 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
246
 * @pages:  array of pages to be maybe marked dirty, and definitely released.
247
 * @npages: number of pages in the @pages array.
248
 * @make_dirty: whether to mark the pages dirty
249 250 251 252 253
 *
 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
 * variants called on that page.
 *
 * For each page in the @pages array, make that page (or its head page, if a
254
 * compound page) dirty, if @make_dirty is true, and if the page was previously
255 256
 * listed as clean. In any case, releases all pages using unpin_user_page(),
 * possibly via unpin_user_pages(), for the non-dirty case.
257
 *
258
 * Please see the unpin_user_page() documentation for details.
259
 *
260 261 262
 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
 * required, then the caller should a) verify that this is really correct,
 * because _lock() is usually required, and b) hand code it:
263
 * set_page_dirty_lock(), unpin_user_page().
264 265
 *
 */
266 267
void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
				 bool make_dirty)
268
{
269
	unsigned long index;
270

271 272 273 274 275 276 277
	/*
	 * TODO: this can be optimized for huge pages: if a series of pages is
	 * physically contiguous and part of the same compound page, then a
	 * single operation to the head page should suffice.
	 */

	if (!make_dirty) {
278
		unpin_user_pages(pages, npages);
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
		return;
	}

	for (index = 0; index < npages; index++) {
		struct page *page = compound_head(pages[index]);
		/*
		 * Checking PageDirty at this point may race with
		 * clear_page_dirty_for_io(), but that's OK. Two key
		 * cases:
		 *
		 * 1) This code sees the page as already dirty, so it
		 * skips the call to set_page_dirty(). That could happen
		 * because clear_page_dirty_for_io() called
		 * page_mkclean(), followed by set_page_dirty().
		 * However, now the page is going to get written back,
		 * which meets the original intention of setting it
		 * dirty, so all is well: clear_page_dirty_for_io() goes
		 * on to call TestClearPageDirty(), and write the page
		 * back.
		 *
		 * 2) This code sees the page as clean, so it calls
		 * set_page_dirty(). The page stays dirty, despite being
		 * written back, so it gets written back again in the
		 * next writeback cycle. This is harmless.
		 */
		if (!PageDirty(page))
			set_page_dirty_lock(page);
306
		unpin_user_page(page);
307
	}
308
}
309
EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
310 311

/**
312
 * unpin_user_pages() - release an array of gup-pinned pages.
313 314 315
 * @pages:  array of pages to be marked dirty and released.
 * @npages: number of pages in the @pages array.
 *
316
 * For each page in the @pages array, release the page using unpin_user_page().
317
 *
318
 * Please see the unpin_user_page() documentation for details.
319
 */
320
void unpin_user_pages(struct page **pages, unsigned long npages)
321 322 323 324 325 326 327 328 329
{
	unsigned long index;

	/*
	 * TODO: this can be optimized for huge pages: if a series of pages is
	 * physically contiguous and part of the same compound page, then a
	 * single operation to the head page should suffice.
	 */
	for (index = 0; index < npages; index++)
330
		unpin_user_page(pages[index]);
331
}
332
EXPORT_SYMBOL(unpin_user_pages);
333

334
#ifdef CONFIG_MMU
335 336
static struct page *no_page_table(struct vm_area_struct *vma,
		unsigned int flags)
337
{
338 339 340 341 342 343 344 345 346 347 348 349
	/*
	 * When core dumping an enormous anonymous area that nobody
	 * has touched so far, we don't want to allocate unnecessary pages or
	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
	 * then get_dump_page() will return NULL to leave a hole in the dump.
	 * But we can only make this optimization where a hole would surely
	 * be zero-filled if handle_mm_fault() actually did handle it.
	 */
	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
		return ERR_PTR(-EFAULT);
	return NULL;
}
350

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
		pte_t *pte, unsigned int flags)
{
	/* No page to get reference */
	if (flags & FOLL_GET)
		return -EFAULT;

	if (flags & FOLL_TOUCH) {
		pte_t entry = *pte;

		if (flags & FOLL_WRITE)
			entry = pte_mkdirty(entry);
		entry = pte_mkyoung(entry);

		if (!pte_same(*pte, entry)) {
			set_pte_at(vma->vm_mm, address, pte, entry);
			update_mmu_cache(vma, address, pte);
		}
	}

	/* Proper page table entry exists, but no corresponding struct page */
	return -EEXIST;
}

375 376 377 378 379 380
/*
 * FOLL_FORCE can write to even unwritable pte's, but only
 * after we've gone through a COW cycle and they are dirty.
 */
static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
{
381
	return pte_write(pte) ||
382 383 384
		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
}

385
static struct page *follow_page_pte(struct vm_area_struct *vma,
386 387
		unsigned long address, pmd_t *pmd, unsigned int flags,
		struct dev_pagemap **pgmap)
388 389 390 391 392
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	spinlock_t *ptl;
	pte_t *ptep, pte;
393

394 395 396 397
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return ERR_PTR(-EINVAL);
398
retry:
399
	if (unlikely(pmd_bad(*pmd)))
400
		return no_page_table(vma, flags);
401 402 403 404 405 406 407 408 409 410 411 412

	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
	pte = *ptep;
	if (!pte_present(pte)) {
		swp_entry_t entry;
		/*
		 * KSM's break_ksm() relies upon recognizing a ksm page
		 * even while it is being migrated, so for that case we
		 * need migration_entry_wait().
		 */
		if (likely(!(flags & FOLL_MIGRATION)))
			goto no_page;
413
		if (pte_none(pte))
414 415 416 417 418 419
			goto no_page;
		entry = pte_to_swp_entry(pte);
		if (!is_migration_entry(entry))
			goto no_page;
		pte_unmap_unlock(ptep, ptl);
		migration_entry_wait(mm, pmd, address);
420
		goto retry;
421
	}
422
	if ((flags & FOLL_NUMA) && pte_protnone(pte))
423
		goto no_page;
424
	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
425 426 427
		pte_unmap_unlock(ptep, ptl);
		return NULL;
	}
428 429

	page = vm_normal_page(vma, address, pte);
John Hubbard's avatar
John Hubbard committed
430
	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
431
		/*
John Hubbard's avatar
John Hubbard committed
432 433 434
		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
		 * case since they are only valid while holding the pgmap
		 * reference.
435
		 */
436 437
		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
		if (*pgmap)
438 439 440 441
			page = pte_page(pte);
		else
			goto no_page;
	} else if (unlikely(!page)) {
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
		if (flags & FOLL_DUMP) {
			/* Avoid special (like zero) pages in core dumps */
			page = ERR_PTR(-EFAULT);
			goto out;
		}

		if (is_zero_pfn(pte_pfn(pte))) {
			page = pte_page(pte);
		} else {
			int ret;

			ret = follow_pfn_pte(vma, address, ptep, flags);
			page = ERR_PTR(ret);
			goto out;
		}
457 458
	}

459 460 461 462 463 464 465 466 467 468 469 470 471
	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
		int ret;
		get_page(page);
		pte_unmap_unlock(ptep, ptl);
		lock_page(page);
		ret = split_huge_page(page);
		unlock_page(page);
		put_page(page);
		if (ret)
			return ERR_PTR(ret);
		goto retry;
	}

John Hubbard's avatar
John Hubbard committed
472 473 474 475
	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
	if (unlikely(!try_grab_page(page, flags))) {
		page = ERR_PTR(-ENOMEM);
		goto out;
476
	}
477 478 479 480 481 482 483 484 485 486 487
	if (flags & FOLL_TOUCH) {
		if ((flags & FOLL_WRITE) &&
		    !pte_dirty(pte) && !PageDirty(page))
			set_page_dirty(page);
		/*
		 * pte_mkyoung() would be more correct here, but atomic care
		 * is needed to avoid losing the dirty bit: it is easier to use
		 * mark_page_accessed().
		 */
		mark_page_accessed(page);
	}
Eric B Munson's avatar
Eric B Munson committed
488
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
489 490 491 492
		/* Do not mlock pte-mapped THP */
		if (PageTransCompound(page))
			goto out;

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
		/*
		 * The preliminary mapping check is mainly to avoid the
		 * pointless overhead of lock_page on the ZERO_PAGE
		 * which might bounce very badly if there is contention.
		 *
		 * If the page is already locked, we don't need to
		 * handle it now - vmscan will handle it later if and
		 * when it attempts to reclaim the page.
		 */
		if (page->mapping && trylock_page(page)) {
			lru_add_drain();  /* push cached pages to LRU */
			/*
			 * Because we lock page here, and migration is
			 * blocked by the pte's page reference, and we
			 * know the page is still mapped, we don't even
			 * need to check for file-cache page truncation.
			 */
			mlock_vma_page(page);
			unlock_page(page);
		}
	}
514
out:
515 516 517 518 519
	pte_unmap_unlock(ptep, ptl);
	return page;
no_page:
	pte_unmap_unlock(ptep, ptl);
	if (!pte_none(pte))
520 521 522 523
		return NULL;
	return no_page_table(vma, flags);
}

524 525
static struct page *follow_pmd_mask(struct vm_area_struct *vma,
				    unsigned long address, pud_t *pudp,
526 527
				    unsigned int flags,
				    struct follow_page_context *ctx)
528
{
529
	pmd_t *pmd, pmdval;
530 531 532 533
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

534
	pmd = pmd_offset(pudp, address);
535 536 537 538 539 540
	/*
	 * The READ_ONCE() will stabilize the pmdval in a register or
	 * on the stack so that it will stop changing under the code.
	 */
	pmdval = READ_ONCE(*pmd);
	if (pmd_none(pmdval))
541
		return no_page_table(vma, flags);
542
	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
543 544 545 546
		page = follow_huge_pmd(mm, address, pmd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
547
	}
548
	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
549
		page = follow_huge_pd(vma, address,
550
				      __hugepd(pmd_val(pmdval)), flags,
551 552 553 554 555
				      PMD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
556
retry:
557
	if (!pmd_present(pmdval)) {
558 559 560
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		VM_BUG_ON(thp_migration_supported() &&
561 562
				  !is_pmd_migration_entry(pmdval));
		if (is_pmd_migration_entry(pmdval))
563
			pmd_migration_entry_wait(mm, pmd);
564 565 566 567 568 569 570
		pmdval = READ_ONCE(*pmd);
		/*
		 * MADV_DONTNEED may convert the pmd to null because
		 * mmap_sem is held in read mode
		 */
		if (pmd_none(pmdval))
			return no_page_table(vma, flags);
571 572
		goto retry;
	}
573
	if (pmd_devmap(pmdval)) {
574
		ptl = pmd_lock(mm, pmd);
575
		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
576 577 578 579
		spin_unlock(ptl);
		if (page)
			return page;
	}
580
	if (likely(!pmd_trans_huge(pmdval)))
581
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
582

583
	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
584 585
		return no_page_table(vma, flags);

586
retry_locked:
587
	ptl = pmd_lock(mm, pmd);
588 589 590 591
	if (unlikely(pmd_none(*pmd))) {
		spin_unlock(ptl);
		return no_page_table(vma, flags);
	}
592 593 594 595 596 597 598
	if (unlikely(!pmd_present(*pmd))) {
		spin_unlock(ptl);
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		pmd_migration_entry_wait(mm, pmd);
		goto retry_locked;
	}
599 600
	if (unlikely(!pmd_trans_huge(*pmd))) {
		spin_unlock(ptl);
601
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
602
	}
Song Liu's avatar
Song Liu committed
603
	if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
604 605 606 607 608
		int ret;
		page = pmd_page(*pmd);
		if (is_huge_zero_page(page)) {
			spin_unlock(ptl);
			ret = 0;
609
			split_huge_pmd(vma, pmd, address);
610 611
			if (pmd_trans_unstable(pmd))
				ret = -EBUSY;
Song Liu's avatar
Song Liu committed
612
		} else if (flags & FOLL_SPLIT) {
613 614 615 616
			if (unlikely(!try_get_page(page))) {
				spin_unlock(ptl);
				return ERR_PTR(-ENOMEM);
			}
617
			spin_unlock(ptl);
618 619 620 621
			lock_page(page);
			ret = split_huge_page(page);
			unlock_page(page);
			put_page(page);
622 623
			if (pmd_none(*pmd))
				return no_page_table(vma, flags);
Song Liu's avatar
Song Liu committed
624 625 626 627
		} else {  /* flags & FOLL_SPLIT_PMD */
			spin_unlock(ptl);
			split_huge_pmd(vma, pmd, address);
			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
628 629 630
		}

		return ret ? ERR_PTR(ret) :
631
			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
632
	}
633 634
	page = follow_trans_huge_pmd(vma, address, pmd, flags);
	spin_unlock(ptl);
635
	ctx->page_mask = HPAGE_PMD_NR - 1;
636
	return page;
637 638
}

639 640
static struct page *follow_pud_mask(struct vm_area_struct *vma,
				    unsigned long address, p4d_t *p4dp,
641 642
				    unsigned int flags,
				    struct follow_page_context *ctx)
643 644 645 646 647 648 649 650 651
{
	pud_t *pud;
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

	pud = pud_offset(p4dp, address);
	if (pud_none(*pud))
		return no_page_table(vma, flags);
652
	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
653 654 655 656 657
		page = follow_huge_pud(mm, address, pud, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
658 659 660 661 662 663 664 665
	if (is_hugepd(__hugepd(pud_val(*pud)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pud_val(*pud)), flags,
				      PUD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
666 667
	if (pud_devmap(*pud)) {
		ptl = pud_lock(mm, pud);
668
		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
669 670 671 672 673 674 675
		spin_unlock(ptl);
		if (page)
			return page;
	}
	if (unlikely(pud_bad(*pud)))
		return no_page_table(vma, flags);

676
	return follow_pmd_mask(vma, address, pud, flags, ctx);
677 678 679 680
}

static struct page *follow_p4d_mask(struct vm_area_struct *vma,
				    unsigned long address, pgd_t *pgdp,
681 682
				    unsigned int flags,
				    struct follow_page_context *ctx)
683 684
{
	p4d_t *p4d;
685
	struct page *page;
686 687 688 689 690 691 692 693

	p4d = p4d_offset(pgdp, address);
	if (p4d_none(*p4d))
		return no_page_table(vma, flags);
	BUILD_BUG_ON(p4d_huge(*p4d));
	if (unlikely(p4d_bad(*p4d)))
		return no_page_table(vma, flags);

694 695 696 697 698 699 700 701
	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(p4d_val(*p4d)), flags,
				      P4D_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
702
	return follow_pud_mask(vma, address, p4d, flags, ctx);
703 704 705 706 707 708 709
}

/**
 * follow_page_mask - look up a page descriptor from a user-virtual address
 * @vma: vm_area_struct mapping @address
 * @address: virtual address to look up
 * @flags: flags modifying lookup behaviour
710 711
 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
 *       pointer to output page_mask
712 713 714
 *
 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
 *
715 716 717 718 719 720
 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
 *
 * On output, the @ctx->page_mask is set according to the size of the page.
 *
 * Return: the mapped (struct page *), %NULL if no mapping exists, or
721 722 723
 * an error pointer if there is a mapping to something not represented
 * by a page descriptor (see also vm_normal_page()).
 */
724
static struct page *follow_page_mask(struct vm_area_struct *vma,
725
			      unsigned long address, unsigned int flags,
726
			      struct follow_page_context *ctx)
727 728 729 730 731
{
	pgd_t *pgd;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

732
	ctx->page_mask = 0;
733 734 735 736

	/* make this handle hugepd */
	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
	if (!IS_ERR(page)) {
John Hubbard's avatar
John Hubbard committed
737
		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
738 739 740 741 742 743 744 745
		return page;
	}

	pgd = pgd_offset(mm, address);

	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
		return no_page_table(vma, flags);

746 747 748 749 750 751
	if (pgd_huge(*pgd)) {
		page = follow_huge_pgd(mm, address, pgd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
752 753 754 755 756 757 758 759
	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pgd_val(*pgd)), flags,
				      PGDIR_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
760

761 762 763 764 765 766 767 768 769 770 771 772 773
	return follow_p4d_mask(vma, address, pgd, flags, ctx);
}

struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
			 unsigned int foll_flags)
{
	struct follow_page_context ctx = { NULL };
	struct page *page;

	page = follow_page_mask(vma, address, foll_flags, &ctx);
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return page;
774 775
}

776 777 778 779 780
static int get_gate_page(struct mm_struct *mm, unsigned long address,
		unsigned int gup_flags, struct vm_area_struct **vma,
		struct page **page)
{
	pgd_t *pgd;
781
	p4d_t *p4d;
782 783 784 785 786 787 788 789 790 791 792 793
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	int ret = -EFAULT;

	/* user gate pages are read-only */
	if (gup_flags & FOLL_WRITE)
		return -EFAULT;
	if (address > TASK_SIZE)
		pgd = pgd_offset_k(address);
	else
		pgd = pgd_offset_gate(mm, address);
794 795
	if (pgd_none(*pgd))
		return -EFAULT;
796
	p4d = p4d_offset(pgd, address);
797 798
	if (p4d_none(*p4d))
		return -EFAULT;
799
	pud = pud_offset(p4d, address);
800 801
	if (pud_none(*pud))
		return -EFAULT;
802
	pmd = pmd_offset(pud, address);
803
	if (!pmd_present(*pmd))
804 805 806 807 808 809 810 811 812 813 814 815 816 817
		return -EFAULT;
	VM_BUG_ON(pmd_trans_huge(*pmd));
	pte = pte_offset_map(pmd, address);
	if (pte_none(*pte))
		goto unmap;
	*vma = get_gate_vma(mm);
	if (!page)
		goto out;
	*page = vm_normal_page(*vma, address, *pte);
	if (!*page) {
		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
			goto unmap;
		*page = pte_page(*pte);
	}
818 819 820 821
	if (unlikely(!try_get_page(*page))) {
		ret = -ENOMEM;
		goto unmap;
	}
822 823 824 825 826 827 828
out:
	ret = 0;
unmap:
	pte_unmap(pte);
	return ret;
}

829 830 831 832 833
/*
 * mmap_sem must be held on entry.  If @nonblocking != NULL and
 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
 */
834 835 836 837
static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
		unsigned long address, unsigned int *flags, int *nonblocking)
{
	unsigned int fault_flags = 0;
838
	vm_fault_t ret;
839

Eric B Munson's avatar
Eric B Munson committed
840 841 842
	/* mlock all present pages, but do not fault in new pages */
	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
		return -ENOENT;
843 844
	if (*flags & FOLL_WRITE)
		fault_flags |= FAULT_FLAG_WRITE;
845 846
	if (*flags & FOLL_REMOTE)
		fault_flags |= FAULT_FLAG_REMOTE;
847 848 849 850
	if (nonblocking)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
	if (*flags & FOLL_NOWAIT)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
851 852 853 854
	if (*flags & FOLL_TRIED) {
		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
		fault_flags |= FAULT_FLAG_TRIED;
	}
855

856
	ret = handle_mm_fault(vma, address, fault_flags);
857
	if (ret & VM_FAULT_ERROR) {
858 859 860 861
		int err = vm_fault_to_errno(ret, *flags);

		if (err)
			return err;
862 863 864 865 866 867 868 869 870 871 872
		BUG();
	}

	if (tsk) {
		if (ret & VM_FAULT_MAJOR)
			tsk->maj_flt++;
		else
			tsk->min_flt++;
	}

	if (ret & VM_FAULT_RETRY) {
873
		if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
874 875 876 877 878 879 880 881 882 883 884 885 886 887
			*nonblocking = 0;
		return -EBUSY;
	}

	/*
	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
	 * can thus safely do subsequent page lookups as if they were reads.
	 * But only do so when looping for pte_write is futile: in some cases
	 * userspace may also be wanting to write to the gotten user page,
	 * which a read fault here might prevent (a readonly page might get
	 * reCOWed by userspace write).
	 */
	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
888
		*flags |= FOLL_COW;
889 890 891
	return 0;
}

892 893 894
static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
{
	vm_flags_t vm_flags = vma->vm_flags;
895 896
	int write = (gup_flags & FOLL_WRITE);
	int foreign = (gup_flags & FOLL_REMOTE);
897 898 899 900

	if (vm_flags & (VM_IO | VM_PFNMAP))
		return -EFAULT;

901 902 903
	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
		return -EFAULT;

904
	if (write) {
905 906 907 908 909 910 911 912 913 914 915 916
		if (!(vm_flags & VM_WRITE)) {
			if (!(gup_flags & FOLL_FORCE))
				return -EFAULT;
			/*
			 * We used to let the write,force case do COW in a
			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
			 * set a breakpoint in a read-only mapping of an
			 * executable, without corrupting the file (yet only
			 * when that file had been opened for writing!).
			 * Anon pages in shared mappings are surprising: now
			 * just reject it.
			 */
917
			if (!is_cow_mapping(vm_flags))
918 919 920 921 922 923 924 925 926 927 928 929
				return -EFAULT;
		}
	} else if (!(vm_flags & VM_READ)) {
		if (!(gup_flags & FOLL_FORCE))
			return -EFAULT;
		/*
		 * Is there actually any vma we can reach here which does not
		 * have VM_MAYREAD set?
		 */
		if (!(vm_flags & VM_MAYREAD))
			return -EFAULT;
	}
930 931 932 933 934
	/*
	 * gups are always data accesses, not instruction
	 * fetches, so execute=false here
	 */
	if (!arch_vma_access_permitted(vma, write, false, foreign))
935
		return -EFAULT;
936 937 938
	return 0;
}

939 940 941 942 943 944 945 946 947 948 949 950 951 952
/**
 * __get_user_pages() - pin user pages in memory
 * @tsk:	task_struct of target task
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying pin behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 * @nonblocking: whether waiting for disk IO or mmap_sem contention
 *
953 954 955 956 957 958 959 960 961 962 963
 * Returns either number of pages pinned (which may be less than the
 * number requested), or an error. Details about the return value:
 *
 * -- If nr_pages is 0, returns 0.
 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
 * -- If nr_pages is >0, and some pages were pinned, returns the number of
 *    pages pinned. Again, this may be less than nr_pages.
 *
 * The caller is responsible for releasing returned @pages, via put_page().
 *
 * @vmas are valid only as long as mmap_sem is held.
964
 *
965
 * Must be called with mmap_sem held.  It may be released.  See below.
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
 *
 * __get_user_pages walks a process's page tables and takes a reference to
 * each struct page that each user address corresponds to at a given
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
 * __get_user_pages returns, and there may even be a completely different
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
 * appropriate) must be called after the page is finished with, and
 * before put_page is called.
 *
 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
 * or mmap_sem contention, and if waiting is needed to pin all pages,
988 989 990 991 992 993 994 995
 * *@nonblocking will be set to 0.  Further, if @gup_flags does not
 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
 * this case.
 *
 * A caller using such a combination of @nonblocking and @gup_flags
 * must therefore hold the mmap_sem for reading only, and recognize
 * when it's been released.  Otherwise, it must be held for either
 * reading or writing and will not be released.
996 997 998 999 1000
 *
 * In most cases, get_user_pages or get_user_pages_fast should be used
 * instead of __get_user_pages. __get_user_pages should be used only if
 * you need some special @gup_flags.
 */
1001
static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1002 1003 1004 1005
		unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas, int *nonblocking)
{
1006
	long ret = 0, i = 0;
1007
	struct vm_area_struct *vma = NULL;
1008
	struct follow_page_context ctx = { NULL };
1009 1010 1011 1012

	if (!nr_pages)
		return 0;

1013 1014
	start = untagged_addr(start);

1015
	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025

	/*
	 * If FOLL_FORCE is set then do not force a full fault as the hinting
	 * fault information is unrelated to the reference behaviour of a task
	 * using the address space
	 */
	if (!(gup_flags & FOLL_FORCE))
		gup_flags |= FOLL_NUMA;

	do {
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
		struct page *page;
		unsigned int foll_flags = gup_flags;
		unsigned int page_increm;

		/* first iteration or cross vma bound */
		if (!vma || start >= vma->vm_end) {
			vma = find_extend_vma(mm, start);
			if (!vma && in_gate_area(mm, start)) {
				ret = get_gate_page(mm, start & PAGE_MASK,
						gup_flags, &vma,
						pages ? &pages[i] : NULL);
				if (ret)
1038
					goto out;
1039
				ctx.page_mask = 0;
1040 1041
				goto next_page;
			}
1042

1043 1044 1045 1046
			if (!vma || check_vma_flags(vma, gup_flags)) {
				ret = -EFAULT;
				goto out;
			}
1047 1048 1049
			if (is_vm_hugetlb_page(vma)) {
				i = follow_hugetlb_page(mm, vma, pages, vmas,
						&start, &nr_pages, i,
1050
						gup_flags, nonblocking);
1051
				continue;
1052
			}
1053 1054 1055 1056 1057 1058
		}
retry:
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
1059
		if (fatal_signal_pending(current)) {
1060 1061 1062
			ret = -ERESTARTSYS;
			goto out;
		}
1063
		cond_resched();
1064 1065

		page = follow_page_mask(vma, start, foll_flags, &ctx);
1066 1067 1068 1069 1070 1071
		if (!page) {
			ret = faultin_page(tsk, vma, start, &foll_flags,
					nonblocking);
			switch (ret) {
			case 0:
				goto retry;
1072 1073 1074
			case -EBUSY:
				ret = 0;
				/* FALLTHRU */
1075 1076 1077
			case -EFAULT:
			case -ENOMEM:
			case -EHWPOISON:
1078
				goto out;
1079 1080
			case -ENOENT:
				goto next_page;
1081
			}
1082
			BUG();
1083 1084 1085 1086 1087 1088 1089
		} else if (PTR_ERR(page) == -EEXIST) {
			/*
			 * Proper page table entry exists, but no corresponding
			 * struct page.
			 */
			goto next_page;
		} else if (IS_ERR(page)) {
1090 1091
			ret = PTR_ERR(page);
			goto out;
1092
		}
1093 1094 1095 1096
		if (pages) {
			pages[i] = page;
			flush_anon_page(vma, page, start);
			flush_dcache_page(page);
1097
			ctx.page_mask = 0;
1098 1099
		}
next_page:
1100 1101
		if (vmas) {
			vmas[i] = vma;
1102
			ctx.page_mask = 0;
1103
		}
1104
		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1105 1106 1107 1108 1109
		if (page_increm > nr_pages)
			page_increm = nr_pages;
		i += page_increm;
		start += page_increm * PAGE_SIZE;
		nr_pages -= page_increm;
1110
	} while (nr_pages);
1111 1112 1113 1114
out:
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return i ? i : ret;
1115 1116
}

1117 1118
static bool vma_permits_fault(struct vm_area_struct *vma,
			      unsigned int fault_flags)
1119
{
1120 1121
	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1122
	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1123 1124 1125 1126

	if (!(vm_flags & vma->vm_flags))
		return false;

1127 1128
	/*
	 * The architecture might have a hardware protection
1129
	 * mechanism other than read/write that can deny access.
1130 1131 1132
	 *
	 * gup always represents data access, not instruction
	 * fetches, so execute=false here:
1133
	 */
1134
	if (!arch_vma_access_permitted(vma, write, false, foreign))
1135 1136
		return false;