memory.c 11.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
/*
 * drivers/base/memory.c - basic Memory class support
 *
 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
 *            Dave Hansen <haveblue@us.ibm.com>
 *
 * This file provides the necessary infrastructure to represent
 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
 * All arch-independent code that assumes MEMORY_HOTPLUG requires
 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
 */

#include <linux/sysdev.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/topology.h>
17
#include <linux/capability.h>
18
19
20
21
22
#include <linux/device.h>
#include <linux/memory.h>
#include <linux/kobject.h>
#include <linux/memory_hotplug.h>
#include <linux/mm.h>
23
#include <linux/mutex.h>
24
25
#include <linux/stat.h>

26
27
28
29
30
31
#include <asm/atomic.h>
#include <asm/uaccess.h>

#define MEMORY_CLASS_NAME	"memory"

static struct sysdev_class memory_sysdev_class = {
32
	.name = MEMORY_CLASS_NAME,
33
34
};

35
static const char *memory_uevent_name(struct kset *kset, struct kobject *kobj)
36
37
38
39
{
	return MEMORY_CLASS_NAME;
}

40
static int memory_uevent(struct kset *kset, struct kobject *obj, struct kobj_uevent_env *env)
41
42
43
44
45
46
{
	int retval = 0;

	return retval;
}

47
48
49
static struct kset_uevent_ops memory_uevent_ops = {
	.name		= memory_uevent_name,
	.uevent		= memory_uevent,
50
51
};

52
static BLOCKING_NOTIFIER_HEAD(memory_chain);
53

54
int register_memory_notifier(struct notifier_block *nb)
55
{
56
        return blocking_notifier_chain_register(&memory_chain, nb);
57
}
58
EXPORT_SYMBOL(register_memory_notifier);
59

60
void unregister_memory_notifier(struct notifier_block *nb)
61
{
62
        blocking_notifier_chain_unregister(&memory_chain, nb);
63
}
64
EXPORT_SYMBOL(unregister_memory_notifier);
65
66
67
68

/*
 * register_memory - Setup a sysfs device for a memory block
 */
69
70
static
int register_memory(struct memory_block *memory, struct mem_section *section)
71
72
73
74
75
76
77
78
79
80
81
{
	int error;

	memory->sysdev.cls = &memory_sysdev_class;
	memory->sysdev.id = __section_nr(section);

	error = sysdev_register(&memory->sysdev);
	return error;
}

static void
82
unregister_memory(struct memory_block *memory, struct mem_section *section)
83
84
85
86
{
	BUG_ON(memory->sysdev.cls != &memory_sysdev_class);
	BUG_ON(memory->sysdev.id != __section_nr(section));

87
88
	/* drop the ref. we got in remove_memory_block() */
	kobject_put(&memory->sysdev.kobj);
89
90
91
92
93
94
95
96
	sysdev_unregister(&memory->sysdev);
}

/*
 * use this as the physical section index that this memsection
 * uses.
 */

97
98
static ssize_t show_mem_phys_index(struct sys_device *dev,
			struct sysdev_attribute *attr, char *buf)
99
100
101
102
103
104
{
	struct memory_block *mem =
		container_of(dev, struct memory_block, sysdev);
	return sprintf(buf, "%08lx\n", mem->phys_index);
}

105
106
107
/*
 * Show whether the section of memory is likely to be hot-removable
 */
108
109
static ssize_t show_mem_removable(struct sys_device *dev,
			struct sysdev_attribute *attr, char *buf)
110
111
112
113
114
115
116
117
118
119
120
{
	unsigned long start_pfn;
	int ret;
	struct memory_block *mem =
		container_of(dev, struct memory_block, sysdev);

	start_pfn = section_nr_to_pfn(mem->phys_index);
	ret = is_mem_section_removable(start_pfn, PAGES_PER_SECTION);
	return sprintf(buf, "%d\n", ret);
}

121
122
123
/*
 * online, offline, going offline, etc.
 */
124
125
static ssize_t show_mem_state(struct sys_device *dev,
			struct sysdev_attribute *attr, char *buf)
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
{
	struct memory_block *mem =
		container_of(dev, struct memory_block, sysdev);
	ssize_t len = 0;

	/*
	 * We can probably put these states in a nice little array
	 * so that they're not open-coded
	 */
	switch (mem->state) {
		case MEM_ONLINE:
			len = sprintf(buf, "online\n");
			break;
		case MEM_OFFLINE:
			len = sprintf(buf, "offline\n");
			break;
		case MEM_GOING_OFFLINE:
			len = sprintf(buf, "going-offline\n");
			break;
		default:
			len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
					mem->state);
			WARN_ON(1);
			break;
	}

	return len;
}

155
int memory_notify(unsigned long val, void *v)
156
{
157
	return blocking_notifier_call_chain(&memory_chain, val, v);
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
}

/*
 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
 * OK to have direct references to sparsemem variables in here.
 */
static int
memory_block_action(struct memory_block *mem, unsigned long action)
{
	int i;
	unsigned long psection;
	unsigned long start_pfn, start_paddr;
	struct page *first_page;
	int ret;
	int old_state = mem->state;

	psection = mem->phys_index;
	first_page = pfn_to_page(psection << PFN_SECTION_SHIFT);

	/*
	 * The probe routines leave the pages reserved, just
	 * as the bootmem code does.  Make sure they're still
	 * that way.
	 */
	if (action == MEM_ONLINE) {
		for (i = 0; i < PAGES_PER_SECTION; i++) {
			if (PageReserved(first_page+i))
				continue;

			printk(KERN_WARNING "section number %ld page number %d "
				"not reserved, was it already online? \n",
				psection, i);
			return -EBUSY;
		}
	}

	switch (action) {
		case MEM_ONLINE:
			start_pfn = page_to_pfn(first_page);
			ret = online_pages(start_pfn, PAGES_PER_SECTION);
			break;
		case MEM_OFFLINE:
			mem->state = MEM_GOING_OFFLINE;
			start_paddr = page_to_pfn(first_page) << PAGE_SHIFT;
			ret = remove_memory(start_paddr,
					    PAGES_PER_SECTION << PAGE_SHIFT);
			if (ret) {
				mem->state = old_state;
				break;
			}
			break;
		default:
Arjan van de Ven's avatar
Arjan van de Ven committed
210
			WARN(1, KERN_WARNING "%s(%p, %ld) unknown action: %ld\n",
211
					__func__, mem, action, action);
212
213
214
215
216
217
218
219
220
221
			ret = -EINVAL;
	}

	return ret;
}

static int memory_block_change_state(struct memory_block *mem,
		unsigned long to_state, unsigned long from_state_req)
{
	int ret = 0;
222
	mutex_lock(&mem->state_mutex);
223
224
225
226
227
228
229
230
231
232
233

	if (mem->state != from_state_req) {
		ret = -EINVAL;
		goto out;
	}

	ret = memory_block_action(mem, to_state);
	if (!ret)
		mem->state = to_state;

out:
234
	mutex_unlock(&mem->state_mutex);
235
236
237
238
	return ret;
}

static ssize_t
239
240
store_mem_state(struct sys_device *dev,
		struct sysdev_attribute *attr, const char *buf, size_t count)
241
242
243
244
245
246
247
248
{
	struct memory_block *mem;
	unsigned int phys_section_nr;
	int ret = -EINVAL;

	mem = container_of(dev, struct memory_block, sysdev);
	phys_section_nr = mem->phys_index;

249
	if (!present_section_nr(phys_section_nr))
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
		goto out;

	if (!strncmp(buf, "online", min((int)count, 6)))
		ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
	else if(!strncmp(buf, "offline", min((int)count, 7)))
		ret = memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
out:
	if (ret)
		return ret;
	return count;
}

/*
 * phys_device is a bad name for this.  What I really want
 * is a way to differentiate between memory ranges that
 * are part of physical devices that constitute
 * a complete removable unit or fru.
 * i.e. do these ranges belong to the same physical device,
 * s.t. if I offline all of these sections I can then
 * remove the physical device?
 */
271
272
static ssize_t show_phys_device(struct sys_device *dev,
				struct sysdev_attribute *attr, char *buf)
273
274
275
276
277
278
279
280
281
{
	struct memory_block *mem =
		container_of(dev, struct memory_block, sysdev);
	return sprintf(buf, "%d\n", mem->phys_device);
}

static SYSDEV_ATTR(phys_index, 0444, show_mem_phys_index, NULL);
static SYSDEV_ATTR(state, 0644, show_mem_state, store_mem_state);
static SYSDEV_ATTR(phys_device, 0444, show_phys_device, NULL);
282
static SYSDEV_ATTR(removable, 0444, show_mem_removable, NULL);
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301

#define mem_create_simple_file(mem, attr_name)	\
	sysdev_create_file(&mem->sysdev, &attr_##attr_name)
#define mem_remove_simple_file(mem, attr_name)	\
	sysdev_remove_file(&mem->sysdev, &attr_##attr_name)

/*
 * Block size attribute stuff
 */
static ssize_t
print_block_size(struct class *class, char *buf)
{
	return sprintf(buf, "%lx\n", (unsigned long)PAGES_PER_SECTION * PAGE_SIZE);
}

static CLASS_ATTR(block_size_bytes, 0444, print_block_size, NULL);

static int block_size_init(void)
{
302
303
	return sysfs_create_file(&memory_sysdev_class.kset.kobj,
				&class_attr_block_size_bytes.attr);
304
305
306
307
308
309
310
311
312
313
}

/*
 * Some architectures will have custom drivers to do this, and
 * will not need to do it from userspace.  The fake hot-add code
 * as well as ppc64 will do all of their discovery in userspace
 * and will require this interface.
 */
#ifdef CONFIG_ARCH_MEMORY_PROBE
static ssize_t
314
memory_probe_store(struct class *class, const char *buf, size_t count)
315
316
{
	u64 phys_addr;
317
	int nid;
318
319
320
321
	int ret;

	phys_addr = simple_strtoull(buf, NULL, 0);

322
323
	nid = memory_add_physaddr_to_nid(phys_addr);
	ret = add_memory(nid, phys_addr, PAGES_PER_SECTION << PAGE_SHIFT);
324
325
326
327
328
329

	if (ret)
		count = ret;

	return count;
}
330
static CLASS_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
331
332
333

static int memory_probe_init(void)
{
334
335
	return sysfs_create_file(&memory_sysdev_class.kset.kobj,
				&class_attr_probe.attr);
336
337
}
#else
338
339
340
341
static inline int memory_probe_init(void)
{
	return 0;
}
342
343
344
345
346
347
348
349
#endif

/*
 * Note that phys_device is optional.  It is here to allow for
 * differentiation between which *physical* devices each
 * section belongs to...
 */

350
351
352
static int add_memory_block(int nid, struct mem_section *section,
			unsigned long state, int phys_device,
			enum mem_add_context context)
353
{
354
	struct memory_block *mem = kzalloc(sizeof(*mem), GFP_KERNEL);
355
356
357
358
359
360
361
	int ret = 0;

	if (!mem)
		return -ENOMEM;

	mem->phys_index = __section_nr(section);
	mem->state = state;
362
	mutex_init(&mem->state_mutex);
363
364
	mem->phys_device = phys_device;

365
	ret = register_memory(mem, section);
366
367
368
369
370
371
	if (!ret)
		ret = mem_create_simple_file(mem, phys_index);
	if (!ret)
		ret = mem_create_simple_file(mem, state);
	if (!ret)
		ret = mem_create_simple_file(mem, phys_device);
372
373
	if (!ret)
		ret = mem_create_simple_file(mem, removable);
374
375
376
377
	if (!ret) {
		if (context == HOTPLUG)
			ret = register_mem_sect_under_node(mem, nid);
	}
378
379
380
381
382
383
384
385
386
387
388
389

	return ret;
}

/*
 * For now, we have a linear search to go find the appropriate
 * memory_block corresponding to a particular phys_index. If
 * this gets to be a real problem, we can always use a radix
 * tree or something here.
 *
 * This could be made generic for all sysdev classes.
 */
390
struct memory_block *find_memory_block(struct mem_section *section)
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
{
	struct kobject *kobj;
	struct sys_device *sysdev;
	struct memory_block *mem;
	char name[sizeof(MEMORY_CLASS_NAME) + 9 + 1];

	/*
	 * This only works because we know that section == sysdev->id
	 * slightly redundant with sysdev_register()
	 */
	sprintf(&name[0], "%s%d", MEMORY_CLASS_NAME, __section_nr(section));

	kobj = kset_find_obj(&memory_sysdev_class.kset, name);
	if (!kobj)
		return NULL;

	sysdev = container_of(kobj, struct sys_device, kobj);
	mem = container_of(sysdev, struct memory_block, sysdev);

	return mem;
}

int remove_memory_block(unsigned long node_id, struct mem_section *section,
		int phys_device)
{
	struct memory_block *mem;

	mem = find_memory_block(section);
419
	unregister_mem_sect_under_nodes(mem);
420
421
422
	mem_remove_simple_file(mem, phys_index);
	mem_remove_simple_file(mem, state);
	mem_remove_simple_file(mem, phys_device);
423
	mem_remove_simple_file(mem, removable);
424
	unregister_memory(mem, section);
425
426
427
428
429
430
431
432

	return 0;
}

/*
 * need an interface for the VM to add new memory regions,
 * but without onlining it.
 */
433
int register_new_memory(int nid, struct mem_section *section)
434
{
435
	return add_memory_block(nid, section, MEM_OFFLINE, 0, HOTPLUG);
436
437
438
439
}

int unregister_memory_section(struct mem_section *section)
{
440
	if (!present_section(section))
441
442
443
444
445
446
447
448
449
450
451
452
		return -EINVAL;

	return remove_memory_block(0, section, 0);
}

/*
 * Initialize the sysfs support for memory devices...
 */
int __init memory_dev_init(void)
{
	unsigned int i;
	int ret;
453
	int err;
454

455
	memory_sysdev_class.kset.uevent_ops = &memory_uevent_ops;
456
	ret = sysdev_class_register(&memory_sysdev_class);
457
458
	if (ret)
		goto out;
459
460
461
462
463
464

	/*
	 * Create entries for memory sections that were found
	 * during boot and have been initialized
	 */
	for (i = 0; i < NR_MEM_SECTIONS; i++) {
465
		if (!present_section_nr(i))
466
			continue;
467
468
		err = add_memory_block(0, __nr_to_section(i), MEM_ONLINE,
					0, BOOT);
469
470
		if (!ret)
			ret = err;
471
472
	}

473
474
475
476
477
478
479
480
	err = memory_probe_init();
	if (!ret)
		ret = err;
	err = block_size_init();
	if (!ret)
		ret = err;
out:
	if (ret)
481
		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
482
483
	return ret;
}