machine_kexec_64.c 11.4 KB
Newer Older
1
/*
Dave Jones's avatar
Dave Jones committed
2
 * handle transition of Linux booting another kernel
3 4 5 6 7 8
 * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
 *
 * This source code is licensed under the GNU General Public License,
 * Version 2.  See the file COPYING for more details.
 */

9 10
#define pr_fmt(fmt)	"kexec: " fmt

11 12 13
#include <linux/mm.h>
#include <linux/kexec.h>
#include <linux/string.h>
14
#include <linux/gfp.h>
15
#include <linux/reboot.h>
Ken'ichi Ohmichi's avatar
Ken'ichi Ohmichi committed
16
#include <linux/numa.h>
Ingo Molnar's avatar
Ingo Molnar committed
17
#include <linux/ftrace.h>
18
#include <linux/io.h>
19
#include <linux/suspend.h>
Ingo Molnar's avatar
Ingo Molnar committed
20

21
#include <asm/init.h>
22 23 24
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <asm/mmu_context.h>
25
#include <asm/debugreg.h>
26
#include <asm/kexec-bzimage64.h>
27

28
static struct kexec_file_ops *kexec_file_loaders[] = {
29
		&kexec_bzImage64_ops,
30 31
};

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
static void free_transition_pgtable(struct kimage *image)
{
	free_page((unsigned long)image->arch.pud);
	free_page((unsigned long)image->arch.pmd);
	free_page((unsigned long)image->arch.pte);
}

static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
{
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	unsigned long vaddr, paddr;
	int result = -ENOMEM;

	vaddr = (unsigned long)relocate_kernel;
	paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
	pgd += pgd_index(vaddr);
	if (!pgd_present(*pgd)) {
		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
		if (!pud)
			goto err;
		image->arch.pud = pud;
		set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
	}
	pud = pud_offset(pgd, vaddr);
	if (!pud_present(*pud)) {
		pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
		if (!pmd)
			goto err;
		image->arch.pmd = pmd;
		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
	}
	pmd = pmd_offset(pud, vaddr);
	if (!pmd_present(*pmd)) {
		pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
		if (!pte)
			goto err;
		image->arch.pte = pte;
		set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
	}
	pte = pte_offset_kernel(pmd, vaddr);
	set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC));
	return 0;
err:
	free_transition_pgtable(image);
	return result;
}

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
static void *alloc_pgt_page(void *data)
{
	struct kimage *image = (struct kimage *)data;
	struct page *page;
	void *p = NULL;

	page = kimage_alloc_control_pages(image, 0);
	if (page) {
		p = page_address(page);
		clear_page(p);
	}

	return p;
}

96 97
static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
{
98 99 100 101 102
	struct x86_mapping_info info = {
		.alloc_pgt_page	= alloc_pgt_page,
		.context	= image,
		.pmd_flag	= __PAGE_KERNEL_LARGE_EXEC,
	};
103
	unsigned long mstart, mend;
104
	pgd_t *level4p;
105
	int result;
106 107
	int i;

108
	level4p = (pgd_t *)__va(start_pgtable);
109
	clear_page(level4p);
110 111 112 113 114 115 116 117 118
	for (i = 0; i < nr_pfn_mapped; i++) {
		mstart = pfn_mapped[i].start << PAGE_SHIFT;
		mend   = pfn_mapped[i].end << PAGE_SHIFT;

		result = kernel_ident_mapping_init(&info,
						 level4p, mstart, mend);
		if (result)
			return result;
	}
119

120
	/*
121 122 123 124
	 * segments's mem ranges could be outside 0 ~ max_pfn,
	 * for example when jump back to original kernel from kexeced kernel.
	 * or first kernel is booted with user mem map, and second kernel
	 * could be loaded out of that range.
125
	 */
126 127 128 129
	for (i = 0; i < image->nr_segments; i++) {
		mstart = image->segment[i].mem;
		mend   = mstart + image->segment[i].memsz;

130 131
		result = kernel_ident_mapping_init(&info,
						 level4p, mstart, mend);
132 133 134 135 136

		if (result)
			return result;
	}

137
	return init_transition_pgtable(image, level4p);
138 139 140 141
}

static void set_idt(void *newidt, u16 limit)
{
142
	struct desc_ptr curidt;
143 144

	/* x86-64 supports unaliged loads & stores */
145 146
	curidt.size    = limit;
	curidt.address = (unsigned long)newidt;
147 148

	__asm__ __volatile__ (
149 150
		"lidtq %0\n"
		: : "m" (curidt)
151 152 153 154 155 156
		);
};


static void set_gdt(void *newgdt, u16 limit)
{
157
	struct desc_ptr curgdt;
158 159

	/* x86-64 supports unaligned loads & stores */
160 161
	curgdt.size    = limit;
	curgdt.address = (unsigned long)newgdt;
162 163

	__asm__ __volatile__ (
164 165
		"lgdtq %0\n"
		: : "m" (curgdt)
166 167 168 169 170 171
		);
};

static void load_segments(void)
{
	__asm__ __volatile__ (
172 173 174 175 176
		"\tmovl %0,%%ds\n"
		"\tmovl %0,%%es\n"
		"\tmovl %0,%%ss\n"
		"\tmovl %0,%%fs\n"
		"\tmovl %0,%%gs\n"
Michael Matz's avatar
Michael Matz committed
177
		: : "a" (__KERNEL_DS) : "memory"
178 179 180 181 182
		);
}

int machine_kexec_prepare(struct kimage *image)
{
183
	unsigned long start_pgtable;
184 185 186
	int result;

	/* Calculate the offsets */
Maneesh Soni's avatar
Maneesh Soni committed
187
	start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
188 189 190

	/* Setup the identity mapped 64bit page table */
	result = init_pgtable(image, start_pgtable);
Maneesh Soni's avatar
Maneesh Soni committed
191
	if (result)
192 193 194 195 196 197 198
		return result;

	return 0;
}

void machine_kexec_cleanup(struct kimage *image)
{
199
	free_transition_pgtable(image);
200 201 202 203 204 205
}

/*
 * Do not allocate memory (or fail in any way) in machine_kexec().
 * We are past the point of no return, committed to rebooting now.
 */
Huang Ying's avatar
Huang Ying committed
206
void machine_kexec(struct kimage *image)
207
{
208 209
	unsigned long page_list[PAGES_NR];
	void *control_page;
210
	int save_ftrace_enabled;
211

212
#ifdef CONFIG_KEXEC_JUMP
213
	if (image->preserve_context)
214 215 216 217
		save_processor_state();
#endif

	save_ftrace_enabled = __ftrace_enabled_save();
Ingo Molnar's avatar
Ingo Molnar committed
218

219 220
	/* Interrupts aren't acceptable while we reboot */
	local_irq_disable();
221
	hw_breakpoint_disable();
222

223 224 225 226 227 228 229 230 231 232 233 234 235
	if (image->preserve_context) {
#ifdef CONFIG_X86_IO_APIC
		/*
		 * We need to put APICs in legacy mode so that we can
		 * get timer interrupts in second kernel. kexec/kdump
		 * paths already have calls to disable_IO_APIC() in
		 * one form or other. kexec jump path also need
		 * one.
		 */
		disable_IO_APIC();
#endif
	}

236
	control_page = page_address(image->control_code_page) + PAGE_SIZE;
237
	memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
238

239
	page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
240
	page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
241 242
	page_list[PA_TABLE_PAGE] =
	  (unsigned long)__pa(page_address(image->control_code_page));
243

244 245 246 247
	if (image->type == KEXEC_TYPE_DEFAULT)
		page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
						<< PAGE_SHIFT);

248 249
	/*
	 * The segment registers are funny things, they have both a
250 251 252 253
	 * visible and an invisible part.  Whenever the visible part is
	 * set to a specific selector, the invisible part is loaded
	 * with from a table in memory.  At no other time is the
	 * descriptor table in memory accessed.
254 255 256 257 258
	 *
	 * I take advantage of this here by force loading the
	 * segments, before I zap the gdt with an invalid value.
	 */
	load_segments();
259 260
	/*
	 * The gdt & idt are now invalid.
261 262
	 * If you want to load them you must set up your own idt & gdt.
	 */
263 264
	set_gdt(phys_to_virt(0), 0);
	set_idt(phys_to_virt(0), 0);
265

266
	/* now call it */
267 268 269 270 271 272
	image->start = relocate_kernel((unsigned long)image->head,
				       (unsigned long)page_list,
				       image->start,
				       image->preserve_context);

#ifdef CONFIG_KEXEC_JUMP
273
	if (image->preserve_context)
274 275 276 277
		restore_processor_state();
#endif

	__ftrace_enabled_restore(save_ftrace_enabled);
278
}
279

Ken'ichi Ohmichi's avatar
Ken'ichi Ohmichi committed
280 281
void arch_crash_save_vmcoreinfo(void)
{
282
	VMCOREINFO_SYMBOL(phys_base);
283
	VMCOREINFO_SYMBOL(init_level4_pgt);
284 285 286 287 288

#ifdef CONFIG_NUMA
	VMCOREINFO_SYMBOL(node_data);
	VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
#endif
289 290
	vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
			      (unsigned long)&_text - __START_KERNEL);
Ken'ichi Ohmichi's avatar
Ken'ichi Ohmichi committed
291 292
}

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
/* arch-dependent functionality related to kexec file-based syscall */

int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
				  unsigned long buf_len)
{
	int i, ret = -ENOEXEC;
	struct kexec_file_ops *fops;

	for (i = 0; i < ARRAY_SIZE(kexec_file_loaders); i++) {
		fops = kexec_file_loaders[i];
		if (!fops || !fops->probe)
			continue;

		ret = fops->probe(buf, buf_len);
		if (!ret) {
			image->fops = fops;
			return ret;
		}
	}

	return ret;
}

void *arch_kexec_kernel_image_load(struct kimage *image)
{
	if (!image->fops || !image->fops->load)
		return ERR_PTR(-ENOEXEC);

	return image->fops->load(image, image->kernel_buf,
				 image->kernel_buf_len, image->initrd_buf,
				 image->initrd_buf_len, image->cmdline_buf,
				 image->cmdline_buf_len);
}

int arch_kimage_file_post_load_cleanup(struct kimage *image)
{
	if (!image->fops || !image->fops->cleanup)
		return 0;

332
	return image->fops->cleanup(image->image_loader_data);
333
}
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473

/*
 * Apply purgatory relocations.
 *
 * ehdr: Pointer to elf headers
 * sechdrs: Pointer to section headers.
 * relsec: section index of SHT_RELA section.
 *
 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
 */
int arch_kexec_apply_relocations_add(const Elf64_Ehdr *ehdr,
				     Elf64_Shdr *sechdrs, unsigned int relsec)
{
	unsigned int i;
	Elf64_Rela *rel;
	Elf64_Sym *sym;
	void *location;
	Elf64_Shdr *section, *symtabsec;
	unsigned long address, sec_base, value;
	const char *strtab, *name, *shstrtab;

	/*
	 * ->sh_offset has been modified to keep the pointer to section
	 * contents in memory
	 */
	rel = (void *)sechdrs[relsec].sh_offset;

	/* Section to which relocations apply */
	section = &sechdrs[sechdrs[relsec].sh_info];

	pr_debug("Applying relocate section %u to %u\n", relsec,
		 sechdrs[relsec].sh_info);

	/* Associated symbol table */
	symtabsec = &sechdrs[sechdrs[relsec].sh_link];

	/* String table */
	if (symtabsec->sh_link >= ehdr->e_shnum) {
		/* Invalid strtab section number */
		pr_err("Invalid string table section index %d\n",
		       symtabsec->sh_link);
		return -ENOEXEC;
	}

	strtab = (char *)sechdrs[symtabsec->sh_link].sh_offset;

	/* section header string table */
	shstrtab = (char *)sechdrs[ehdr->e_shstrndx].sh_offset;

	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {

		/*
		 * rel[i].r_offset contains byte offset from beginning
		 * of section to the storage unit affected.
		 *
		 * This is location to update (->sh_offset). This is temporary
		 * buffer where section is currently loaded. This will finally
		 * be loaded to a different address later, pointed to by
		 * ->sh_addr. kexec takes care of moving it
		 *  (kexec_load_segment()).
		 */
		location = (void *)(section->sh_offset + rel[i].r_offset);

		/* Final address of the location */
		address = section->sh_addr + rel[i].r_offset;

		/*
		 * rel[i].r_info contains information about symbol table index
		 * w.r.t which relocation must be made and type of relocation
		 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
		 * these respectively.
		 */
		sym = (Elf64_Sym *)symtabsec->sh_offset +
				ELF64_R_SYM(rel[i].r_info);

		if (sym->st_name)
			name = strtab + sym->st_name;
		else
			name = shstrtab + sechdrs[sym->st_shndx].sh_name;

		pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
			 name, sym->st_info, sym->st_shndx, sym->st_value,
			 sym->st_size);

		if (sym->st_shndx == SHN_UNDEF) {
			pr_err("Undefined symbol: %s\n", name);
			return -ENOEXEC;
		}

		if (sym->st_shndx == SHN_COMMON) {
			pr_err("symbol '%s' in common section\n", name);
			return -ENOEXEC;
		}

		if (sym->st_shndx == SHN_ABS)
			sec_base = 0;
		else if (sym->st_shndx >= ehdr->e_shnum) {
			pr_err("Invalid section %d for symbol %s\n",
			       sym->st_shndx, name);
			return -ENOEXEC;
		} else
			sec_base = sechdrs[sym->st_shndx].sh_addr;

		value = sym->st_value;
		value += sec_base;
		value += rel[i].r_addend;

		switch (ELF64_R_TYPE(rel[i].r_info)) {
		case R_X86_64_NONE:
			break;
		case R_X86_64_64:
			*(u64 *)location = value;
			break;
		case R_X86_64_32:
			*(u32 *)location = value;
			if (value != *(u32 *)location)
				goto overflow;
			break;
		case R_X86_64_32S:
			*(s32 *)location = value;
			if ((s64)value != *(s32 *)location)
				goto overflow;
			break;
		case R_X86_64_PC32:
			value -= (u64)address;
			*(u32 *)location = value;
			break;
		default:
			pr_err("Unknown rela relocation: %llu\n",
			       ELF64_R_TYPE(rel[i].r_info));
			return -ENOEXEC;
		}
	}
	return 0;

overflow:
	pr_err("Overflow in relocation type %d value 0x%lx\n",
	       (int)ELF64_R_TYPE(rel[i].r_info), value);
	return -ENOEXEC;
}