gup.c 57.3 KB
Newer Older
1 2 3 4 5 6
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/spinlock.h>

#include <linux/mm.h>
7
#include <linux/memremap.h>
8 9 10 11 12
#include <linux/pagemap.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/swapops.h>

13
#include <linux/sched/signal.h>
14
#include <linux/rwsem.h>
15
#include <linux/hugetlb.h>
16 17 18
#include <linux/migrate.h>
#include <linux/mm_inline.h>
#include <linux/sched/mm.h>
19

20
#include <asm/mmu_context.h>
21
#include <asm/pgtable.h>
22
#include <asm/tlbflush.h>
23

24 25
#include "internal.h"

26 27 28 29 30
struct follow_page_context {
	struct dev_pagemap *pgmap;
	unsigned int page_mask;
};

31 32
static struct page *no_page_table(struct vm_area_struct *vma,
		unsigned int flags)
33
{
34 35 36 37 38 39 40 41 42 43 44 45
	/*
	 * When core dumping an enormous anonymous area that nobody
	 * has touched so far, we don't want to allocate unnecessary pages or
	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
	 * then get_dump_page() will return NULL to leave a hole in the dump.
	 * But we can only make this optimization where a hole would surely
	 * be zero-filled if handle_mm_fault() actually did handle it.
	 */
	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
		return ERR_PTR(-EFAULT);
	return NULL;
}
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
		pte_t *pte, unsigned int flags)
{
	/* No page to get reference */
	if (flags & FOLL_GET)
		return -EFAULT;

	if (flags & FOLL_TOUCH) {
		pte_t entry = *pte;

		if (flags & FOLL_WRITE)
			entry = pte_mkdirty(entry);
		entry = pte_mkyoung(entry);

		if (!pte_same(*pte, entry)) {
			set_pte_at(vma->vm_mm, address, pte, entry);
			update_mmu_cache(vma, address, pte);
		}
	}

	/* Proper page table entry exists, but no corresponding struct page */
	return -EEXIST;
}

71 72 73 74 75 76
/*
 * FOLL_FORCE can write to even unwritable pte's, but only
 * after we've gone through a COW cycle and they are dirty.
 */
static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
{
77
	return pte_write(pte) ||
78 79 80
		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
}

81
static struct page *follow_page_pte(struct vm_area_struct *vma,
82 83
		unsigned long address, pmd_t *pmd, unsigned int flags,
		struct dev_pagemap **pgmap)
84 85 86 87 88
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	spinlock_t *ptl;
	pte_t *ptep, pte;
89

90
retry:
91
	if (unlikely(pmd_bad(*pmd)))
92
		return no_page_table(vma, flags);
93 94 95 96 97 98 99 100 101 102 103 104

	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
	pte = *ptep;
	if (!pte_present(pte)) {
		swp_entry_t entry;
		/*
		 * KSM's break_ksm() relies upon recognizing a ksm page
		 * even while it is being migrated, so for that case we
		 * need migration_entry_wait().
		 */
		if (likely(!(flags & FOLL_MIGRATION)))
			goto no_page;
105
		if (pte_none(pte))
106 107 108 109 110 111
			goto no_page;
		entry = pte_to_swp_entry(pte);
		if (!is_migration_entry(entry))
			goto no_page;
		pte_unmap_unlock(ptep, ptl);
		migration_entry_wait(mm, pmd, address);
112
		goto retry;
113
	}
114
	if ((flags & FOLL_NUMA) && pte_protnone(pte))
115
		goto no_page;
116
	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
117 118 119
		pte_unmap_unlock(ptep, ptl);
		return NULL;
	}
120 121

	page = vm_normal_page(vma, address, pte);
122 123 124 125 126
	if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
		/*
		 * Only return device mapping pages in the FOLL_GET case since
		 * they are only valid while holding the pgmap reference.
		 */
127 128
		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
		if (*pgmap)
129 130 131 132
			page = pte_page(pte);
		else
			goto no_page;
	} else if (unlikely(!page)) {
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
		if (flags & FOLL_DUMP) {
			/* Avoid special (like zero) pages in core dumps */
			page = ERR_PTR(-EFAULT);
			goto out;
		}

		if (is_zero_pfn(pte_pfn(pte))) {
			page = pte_page(pte);
		} else {
			int ret;

			ret = follow_pfn_pte(vma, address, ptep, flags);
			page = ERR_PTR(ret);
			goto out;
		}
148 149
	}

150 151 152 153 154 155 156 157 158 159 160 161 162
	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
		int ret;
		get_page(page);
		pte_unmap_unlock(ptep, ptl);
		lock_page(page);
		ret = split_huge_page(page);
		unlock_page(page);
		put_page(page);
		if (ret)
			return ERR_PTR(ret);
		goto retry;
	}

163 164 165 166 167 168
	if (flags & FOLL_GET) {
		if (unlikely(!try_get_page(page))) {
			page = ERR_PTR(-ENOMEM);
			goto out;
		}
	}
169 170 171 172 173 174 175 176 177 178 179
	if (flags & FOLL_TOUCH) {
		if ((flags & FOLL_WRITE) &&
		    !pte_dirty(pte) && !PageDirty(page))
			set_page_dirty(page);
		/*
		 * pte_mkyoung() would be more correct here, but atomic care
		 * is needed to avoid losing the dirty bit: it is easier to use
		 * mark_page_accessed().
		 */
		mark_page_accessed(page);
	}
Eric B Munson's avatar
Eric B Munson committed
180
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
181 182 183 184
		/* Do not mlock pte-mapped THP */
		if (PageTransCompound(page))
			goto out;

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
		/*
		 * The preliminary mapping check is mainly to avoid the
		 * pointless overhead of lock_page on the ZERO_PAGE
		 * which might bounce very badly if there is contention.
		 *
		 * If the page is already locked, we don't need to
		 * handle it now - vmscan will handle it later if and
		 * when it attempts to reclaim the page.
		 */
		if (page->mapping && trylock_page(page)) {
			lru_add_drain();  /* push cached pages to LRU */
			/*
			 * Because we lock page here, and migration is
			 * blocked by the pte's page reference, and we
			 * know the page is still mapped, we don't even
			 * need to check for file-cache page truncation.
			 */
			mlock_vma_page(page);
			unlock_page(page);
		}
	}
206
out:
207 208 209 210 211
	pte_unmap_unlock(ptep, ptl);
	return page;
no_page:
	pte_unmap_unlock(ptep, ptl);
	if (!pte_none(pte))
212 213 214 215
		return NULL;
	return no_page_table(vma, flags);
}

216 217
static struct page *follow_pmd_mask(struct vm_area_struct *vma,
				    unsigned long address, pud_t *pudp,
218 219
				    unsigned int flags,
				    struct follow_page_context *ctx)
220
{
221
	pmd_t *pmd, pmdval;
222 223 224 225
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

226
	pmd = pmd_offset(pudp, address);
227 228 229 230 231 232
	/*
	 * The READ_ONCE() will stabilize the pmdval in a register or
	 * on the stack so that it will stop changing under the code.
	 */
	pmdval = READ_ONCE(*pmd);
	if (pmd_none(pmdval))
233
		return no_page_table(vma, flags);
234
	if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) {
235 236 237 238
		page = follow_huge_pmd(mm, address, pmd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
239
	}
240
	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
241
		page = follow_huge_pd(vma, address,
242
				      __hugepd(pmd_val(pmdval)), flags,
243 244 245 246 247
				      PMD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
248
retry:
249
	if (!pmd_present(pmdval)) {
250 251 252
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		VM_BUG_ON(thp_migration_supported() &&
253 254
				  !is_pmd_migration_entry(pmdval));
		if (is_pmd_migration_entry(pmdval))
255
			pmd_migration_entry_wait(mm, pmd);
256 257 258 259 260 261 262
		pmdval = READ_ONCE(*pmd);
		/*
		 * MADV_DONTNEED may convert the pmd to null because
		 * mmap_sem is held in read mode
		 */
		if (pmd_none(pmdval))
			return no_page_table(vma, flags);
263 264
		goto retry;
	}
265
	if (pmd_devmap(pmdval)) {
266
		ptl = pmd_lock(mm, pmd);
267
		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
268 269 270 271
		spin_unlock(ptl);
		if (page)
			return page;
	}
272
	if (likely(!pmd_trans_huge(pmdval)))
273
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
274

275
	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
276 277
		return no_page_table(vma, flags);

278
retry_locked:
279
	ptl = pmd_lock(mm, pmd);
280 281 282 283
	if (unlikely(pmd_none(*pmd))) {
		spin_unlock(ptl);
		return no_page_table(vma, flags);
	}
284 285 286 287 288 289 290
	if (unlikely(!pmd_present(*pmd))) {
		spin_unlock(ptl);
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		pmd_migration_entry_wait(mm, pmd);
		goto retry_locked;
	}
291 292
	if (unlikely(!pmd_trans_huge(*pmd))) {
		spin_unlock(ptl);
293
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
294 295 296 297 298 299 300
	}
	if (flags & FOLL_SPLIT) {
		int ret;
		page = pmd_page(*pmd);
		if (is_huge_zero_page(page)) {
			spin_unlock(ptl);
			ret = 0;
301
			split_huge_pmd(vma, pmd, address);
302 303
			if (pmd_trans_unstable(pmd))
				ret = -EBUSY;
304
		} else {
305 306 307 308
			if (unlikely(!try_get_page(page))) {
				spin_unlock(ptl);
				return ERR_PTR(-ENOMEM);
			}
309
			spin_unlock(ptl);
310 311 312 313
			lock_page(page);
			ret = split_huge_page(page);
			unlock_page(page);
			put_page(page);
314 315
			if (pmd_none(*pmd))
				return no_page_table(vma, flags);
316 317 318
		}

		return ret ? ERR_PTR(ret) :
319
			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
320
	}
321 322
	page = follow_trans_huge_pmd(vma, address, pmd, flags);
	spin_unlock(ptl);
323
	ctx->page_mask = HPAGE_PMD_NR - 1;
324
	return page;
325 326
}

327 328
static struct page *follow_pud_mask(struct vm_area_struct *vma,
				    unsigned long address, p4d_t *p4dp,
329 330
				    unsigned int flags,
				    struct follow_page_context *ctx)
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
{
	pud_t *pud;
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

	pud = pud_offset(p4dp, address);
	if (pud_none(*pud))
		return no_page_table(vma, flags);
	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
		page = follow_huge_pud(mm, address, pud, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
346 347 348 349 350 351 352 353
	if (is_hugepd(__hugepd(pud_val(*pud)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pud_val(*pud)), flags,
				      PUD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
354 355
	if (pud_devmap(*pud)) {
		ptl = pud_lock(mm, pud);
356
		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
357 358 359 360 361 362 363
		spin_unlock(ptl);
		if (page)
			return page;
	}
	if (unlikely(pud_bad(*pud)))
		return no_page_table(vma, flags);

364
	return follow_pmd_mask(vma, address, pud, flags, ctx);
365 366 367 368
}

static struct page *follow_p4d_mask(struct vm_area_struct *vma,
				    unsigned long address, pgd_t *pgdp,
369 370
				    unsigned int flags,
				    struct follow_page_context *ctx)
371 372
{
	p4d_t *p4d;
373
	struct page *page;
374 375 376 377 378 379 380 381

	p4d = p4d_offset(pgdp, address);
	if (p4d_none(*p4d))
		return no_page_table(vma, flags);
	BUILD_BUG_ON(p4d_huge(*p4d));
	if (unlikely(p4d_bad(*p4d)))
		return no_page_table(vma, flags);

382 383 384 385 386 387 388 389
	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(p4d_val(*p4d)), flags,
				      P4D_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
390
	return follow_pud_mask(vma, address, p4d, flags, ctx);
391 392 393 394 395 396 397
}

/**
 * follow_page_mask - look up a page descriptor from a user-virtual address
 * @vma: vm_area_struct mapping @address
 * @address: virtual address to look up
 * @flags: flags modifying lookup behaviour
398 399
 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
 *       pointer to output page_mask
400 401 402
 *
 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
 *
403 404 405 406 407 408
 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
 *
 * On output, the @ctx->page_mask is set according to the size of the page.
 *
 * Return: the mapped (struct page *), %NULL if no mapping exists, or
409 410 411 412 413
 * an error pointer if there is a mapping to something not represented
 * by a page descriptor (see also vm_normal_page()).
 */
struct page *follow_page_mask(struct vm_area_struct *vma,
			      unsigned long address, unsigned int flags,
414
			      struct follow_page_context *ctx)
415 416 417 418 419
{
	pgd_t *pgd;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

420
	ctx->page_mask = 0;
421 422 423 424 425 426 427 428 429 430 431 432 433

	/* make this handle hugepd */
	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
	if (!IS_ERR(page)) {
		BUG_ON(flags & FOLL_GET);
		return page;
	}

	pgd = pgd_offset(mm, address);

	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
		return no_page_table(vma, flags);

434 435 436 437 438 439
	if (pgd_huge(*pgd)) {
		page = follow_huge_pgd(mm, address, pgd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
440 441 442 443 444 445 446 447
	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pgd_val(*pgd)), flags,
				      PGDIR_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
448

449 450 451 452 453 454 455 456 457 458 459 460 461
	return follow_p4d_mask(vma, address, pgd, flags, ctx);
}

struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
			 unsigned int foll_flags)
{
	struct follow_page_context ctx = { NULL };
	struct page *page;

	page = follow_page_mask(vma, address, foll_flags, &ctx);
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return page;
462 463
}

464 465 466 467 468
static int get_gate_page(struct mm_struct *mm, unsigned long address,
		unsigned int gup_flags, struct vm_area_struct **vma,
		struct page **page)
{
	pgd_t *pgd;
469
	p4d_t *p4d;
470 471 472 473 474 475 476 477 478 479 480 481 482
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	int ret = -EFAULT;

	/* user gate pages are read-only */
	if (gup_flags & FOLL_WRITE)
		return -EFAULT;
	if (address > TASK_SIZE)
		pgd = pgd_offset_k(address);
	else
		pgd = pgd_offset_gate(mm, address);
	BUG_ON(pgd_none(*pgd));
483 484 485
	p4d = p4d_offset(pgd, address);
	BUG_ON(p4d_none(*p4d));
	pud = pud_offset(p4d, address);
486 487
	BUG_ON(pud_none(*pud));
	pmd = pmd_offset(pud, address);
488
	if (!pmd_present(*pmd))
489 490 491 492 493 494 495 496 497 498 499 500 501
		return -EFAULT;
	VM_BUG_ON(pmd_trans_huge(*pmd));
	pte = pte_offset_map(pmd, address);
	if (pte_none(*pte))
		goto unmap;
	*vma = get_gate_vma(mm);
	if (!page)
		goto out;
	*page = vm_normal_page(*vma, address, *pte);
	if (!*page) {
		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
			goto unmap;
		*page = pte_page(*pte);
502 503 504 505 506 507 508

		/*
		 * This should never happen (a device public page in the gate
		 * area).
		 */
		if (is_device_public_page(*page))
			goto unmap;
509
	}
510 511 512 513
	if (unlikely(!try_get_page(*page))) {
		ret = -ENOMEM;
		goto unmap;
	}
514 515 516 517 518 519 520
out:
	ret = 0;
unmap:
	pte_unmap(pte);
	return ret;
}

521 522 523 524 525
/*
 * mmap_sem must be held on entry.  If @nonblocking != NULL and
 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
 */
526 527 528 529
static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
		unsigned long address, unsigned int *flags, int *nonblocking)
{
	unsigned int fault_flags = 0;
530
	vm_fault_t ret;
531

Eric B Munson's avatar
Eric B Munson committed
532 533 534
	/* mlock all present pages, but do not fault in new pages */
	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
		return -ENOENT;
535 536
	if (*flags & FOLL_WRITE)
		fault_flags |= FAULT_FLAG_WRITE;
537 538
	if (*flags & FOLL_REMOTE)
		fault_flags |= FAULT_FLAG_REMOTE;
539 540 541 542
	if (nonblocking)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
	if (*flags & FOLL_NOWAIT)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
543 544 545 546
	if (*flags & FOLL_TRIED) {
		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
		fault_flags |= FAULT_FLAG_TRIED;
	}
547

548
	ret = handle_mm_fault(vma, address, fault_flags);
549
	if (ret & VM_FAULT_ERROR) {
550 551 552 553
		int err = vm_fault_to_errno(ret, *flags);

		if (err)
			return err;
554 555 556 557 558 559 560 561 562 563 564
		BUG();
	}

	if (tsk) {
		if (ret & VM_FAULT_MAJOR)
			tsk->maj_flt++;
		else
			tsk->min_flt++;
	}

	if (ret & VM_FAULT_RETRY) {
565
		if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
566 567 568 569 570 571 572 573 574 575 576 577 578 579
			*nonblocking = 0;
		return -EBUSY;
	}

	/*
	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
	 * can thus safely do subsequent page lookups as if they were reads.
	 * But only do so when looping for pte_write is futile: in some cases
	 * userspace may also be wanting to write to the gotten user page,
	 * which a read fault here might prevent (a readonly page might get
	 * reCOWed by userspace write).
	 */
	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
580
		*flags |= FOLL_COW;
581 582 583
	return 0;
}

584 585 586
static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
{
	vm_flags_t vm_flags = vma->vm_flags;
587 588
	int write = (gup_flags & FOLL_WRITE);
	int foreign = (gup_flags & FOLL_REMOTE);
589 590 591 592

	if (vm_flags & (VM_IO | VM_PFNMAP))
		return -EFAULT;

593 594 595
	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
		return -EFAULT;

596
	if (write) {
597 598 599 600 601 602 603 604 605 606 607 608
		if (!(vm_flags & VM_WRITE)) {
			if (!(gup_flags & FOLL_FORCE))
				return -EFAULT;
			/*
			 * We used to let the write,force case do COW in a
			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
			 * set a breakpoint in a read-only mapping of an
			 * executable, without corrupting the file (yet only
			 * when that file had been opened for writing!).
			 * Anon pages in shared mappings are surprising: now
			 * just reject it.
			 */
609
			if (!is_cow_mapping(vm_flags))
610 611 612 613 614 615 616 617 618 619 620 621
				return -EFAULT;
		}
	} else if (!(vm_flags & VM_READ)) {
		if (!(gup_flags & FOLL_FORCE))
			return -EFAULT;
		/*
		 * Is there actually any vma we can reach here which does not
		 * have VM_MAYREAD set?
		 */
		if (!(vm_flags & VM_MAYREAD))
			return -EFAULT;
	}
622 623 624 625 626
	/*
	 * gups are always data accesses, not instruction
	 * fetches, so execute=false here
	 */
	if (!arch_vma_access_permitted(vma, write, false, foreign))
627
		return -EFAULT;
628 629 630
	return 0;
}

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
/**
 * __get_user_pages() - pin user pages in memory
 * @tsk:	task_struct of target task
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying pin behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 * @nonblocking: whether waiting for disk IO or mmap_sem contention
 *
 * Returns number of pages pinned. This may be fewer than the number
 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 * were pinned, returns -errno. Each page returned must be released
 * with a put_page() call when it is finished with. vmas will only
 * remain valid while mmap_sem is held.
 *
651
 * Must be called with mmap_sem held.  It may be released.  See below.
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
 *
 * __get_user_pages walks a process's page tables and takes a reference to
 * each struct page that each user address corresponds to at a given
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
 * __get_user_pages returns, and there may even be a completely different
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
 * appropriate) must be called after the page is finished with, and
 * before put_page is called.
 *
 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
 * or mmap_sem contention, and if waiting is needed to pin all pages,
674 675 676 677 678 679 680 681
 * *@nonblocking will be set to 0.  Further, if @gup_flags does not
 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
 * this case.
 *
 * A caller using such a combination of @nonblocking and @gup_flags
 * must therefore hold the mmap_sem for reading only, and recognize
 * when it's been released.  Otherwise, it must be held for either
 * reading or writing and will not be released.
682 683 684 685 686
 *
 * In most cases, get_user_pages or get_user_pages_fast should be used
 * instead of __get_user_pages. __get_user_pages should be used only if
 * you need some special @gup_flags.
 */
687
static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
688 689 690 691
		unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas, int *nonblocking)
{
692
	long ret = 0, i = 0;
693
	struct vm_area_struct *vma = NULL;
694
	struct follow_page_context ctx = { NULL };
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709

	if (!nr_pages)
		return 0;

	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));

	/*
	 * If FOLL_FORCE is set then do not force a full fault as the hinting
	 * fault information is unrelated to the reference behaviour of a task
	 * using the address space
	 */
	if (!(gup_flags & FOLL_FORCE))
		gup_flags |= FOLL_NUMA;

	do {
710 711 712 713 714 715 716 717 718 719 720 721
		struct page *page;
		unsigned int foll_flags = gup_flags;
		unsigned int page_increm;

		/* first iteration or cross vma bound */
		if (!vma || start >= vma->vm_end) {
			vma = find_extend_vma(mm, start);
			if (!vma && in_gate_area(mm, start)) {
				ret = get_gate_page(mm, start & PAGE_MASK,
						gup_flags, &vma,
						pages ? &pages[i] : NULL);
				if (ret)
722
					goto out;
723
				ctx.page_mask = 0;
724 725
				goto next_page;
			}
726

727 728 729 730
			if (!vma || check_vma_flags(vma, gup_flags)) {
				ret = -EFAULT;
				goto out;
			}
731 732 733
			if (is_vm_hugetlb_page(vma)) {
				i = follow_hugetlb_page(mm, vma, pages, vmas,
						&start, &nr_pages, i,
734
						gup_flags, nonblocking);
735
				continue;
736
			}
737 738 739 740 741 742
		}
retry:
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
743
		if (fatal_signal_pending(current)) {
744 745 746
			ret = -ERESTARTSYS;
			goto out;
		}
747
		cond_resched();
748 749

		page = follow_page_mask(vma, start, foll_flags, &ctx);
750 751 752 753 754 755
		if (!page) {
			ret = faultin_page(tsk, vma, start, &foll_flags,
					nonblocking);
			switch (ret) {
			case 0:
				goto retry;
756 757 758
			case -EBUSY:
				ret = 0;
				/* FALLTHRU */
759 760 761
			case -EFAULT:
			case -ENOMEM:
			case -EHWPOISON:
762
				goto out;
763 764
			case -ENOENT:
				goto next_page;
765
			}
766
			BUG();
767 768 769 770 771 772 773
		} else if (PTR_ERR(page) == -EEXIST) {
			/*
			 * Proper page table entry exists, but no corresponding
			 * struct page.
			 */
			goto next_page;
		} else if (IS_ERR(page)) {
774 775
			ret = PTR_ERR(page);
			goto out;
776
		}
777 778 779 780
		if (pages) {
			pages[i] = page;
			flush_anon_page(vma, page, start);
			flush_dcache_page(page);
781
			ctx.page_mask = 0;
782 783
		}
next_page:
784 785
		if (vmas) {
			vmas[i] = vma;
786
			ctx.page_mask = 0;
787
		}
788
		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
789 790 791 792 793
		if (page_increm > nr_pages)
			page_increm = nr_pages;
		i += page_increm;
		start += page_increm * PAGE_SIZE;
		nr_pages -= page_increm;
794
	} while (nr_pages);
795 796 797 798
out:
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return i ? i : ret;
799 800
}

801 802
static bool vma_permits_fault(struct vm_area_struct *vma,
			      unsigned int fault_flags)
803
{
804 805
	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
806
	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
807 808 809 810

	if (!(vm_flags & vma->vm_flags))
		return false;

811 812
	/*
	 * The architecture might have a hardware protection
813
	 * mechanism other than read/write that can deny access.
814 815 816
	 *
	 * gup always represents data access, not instruction
	 * fetches, so execute=false here:
817
	 */
818
	if (!arch_vma_access_permitted(vma, write, false, foreign))
819 820
		return false;

821 822 823
	return true;
}

824 825 826 827 828 829 830
/*
 * fixup_user_fault() - manually resolve a user page fault
 * @tsk:	the task_struct to use for page fault accounting, or
 *		NULL if faults are not to be recorded.
 * @mm:		mm_struct of target mm
 * @address:	user address
 * @fault_flags:flags to pass down to handle_mm_fault()
831 832
 * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
 *		does not allow retry
833 834 835 836 837 838 839 840 841 842 843
 *
 * This is meant to be called in the specific scenario where for locking reasons
 * we try to access user memory in atomic context (within a pagefault_disable()
 * section), this returns -EFAULT, and we want to resolve the user fault before
 * trying again.
 *
 * Typically this is meant to be used by the futex code.
 *
 * The main difference with get_user_pages() is that this function will
 * unconditionally call handle_mm_fault() which will in turn perform all the
 * necessary SW fixup of the dirty and young bits in the PTE, while
844
 * get_user_pages() only guarantees to update these in the struct page.
845 846 847 848 849 850
 *
 * This is important for some architectures where those bits also gate the
 * access permission to the page because they are maintained in software.  On
 * such architectures, gup() will not be enough to make a subsequent access
 * succeed.
 *
851 852
 * This function will not return with an unlocked mmap_sem. So it has not the
 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
853 854
 */
int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
855 856
		     unsigned long address, unsigned int fault_flags,
		     bool *unlocked)
857 858
{
	struct vm_area_struct *vma;
859
	vm_fault_t ret, major = 0;
860 861 862

	if (unlocked)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
863

864
retry:
865 866 867 868
	vma = find_extend_vma(mm, address);
	if (!vma || address < vma->vm_start)
		return -EFAULT;

869
	if (!vma_permits_fault(vma, fault_flags))
870 871
		return -EFAULT;

872
	ret = handle_mm_fault(vma, address, fault_flags);
873
	major |= ret & VM_FAULT_MAJOR;
874
	if (ret & VM_FAULT_ERROR) {
875 876 877 878
		int err = vm_fault_to_errno(ret, 0);

		if (err)
			return err;
879 880
		BUG();
	}
881 882 883 884 885 886 887 888 889 890 891

	if (ret & VM_FAULT_RETRY) {
		down_read(&mm->mmap_sem);
		if (!(fault_flags & FAULT_FLAG_TRIED)) {
			*unlocked = true;
			fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
			fault_flags |= FAULT_FLAG_TRIED;
			goto retry;
		}
	}

892
	if (tsk) {
893
		if (major)
894 895 896 897 898 899
			tsk->maj_flt++;
		else
			tsk->min_flt++;
	}
	return 0;
}
900
EXPORT_SYMBOL_GPL(fixup_user_fault);
901

902 903 904 905 906 907
static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
						struct mm_struct *mm,
						unsigned long start,
						unsigned long nr_pages,
						struct page **pages,
						struct vm_area_struct **vmas,
908
						int *locked,
909
						unsigned int flags)
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
{
	long ret, pages_done;
	bool lock_dropped;

	if (locked) {
		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
		BUG_ON(vmas);
		/* check caller initialized locked */
		BUG_ON(*locked != 1);
	}

	if (pages)
		flags |= FOLL_GET;

	pages_done = 0;
	lock_dropped = false;
	for (;;) {
		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
				       vmas, locked);
		if (!locked)
			/* VM_FAULT_RETRY couldn't trigger, bypass */
			return ret;

		/* VM_FAULT_RETRY cannot return errors */
		if (!*locked) {
			BUG_ON(ret < 0);
			BUG_ON(ret >= nr_pages);
		}

		if (!pages)
			/* If it's a prefault don't insist harder */
			return ret;

		if (ret > 0) {
			nr_pages -= ret;
			pages_done += ret;
			if (!nr_pages)
				break;
		}
		if (*locked) {
950 951 952 953
			/*
			 * VM_FAULT_RETRY didn't trigger or it was a
			 * FOLL_NOWAIT.
			 */
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
			if (!pages_done)
				pages_done = ret;
			break;
		}
		/* VM_FAULT_RETRY triggered, so seek to the faulting offset */
		pages += ret;
		start += ret << PAGE_SHIFT;

		/*
		 * Repeat on the address that fired VM_FAULT_RETRY
		 * without FAULT_FLAG_ALLOW_RETRY but with
		 * FAULT_FLAG_TRIED.
		 */
		*locked = 1;
		lock_dropped = true;
		down_read(&mm->mmap_sem);
		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
				       pages, NULL, NULL);
		if (ret != 1) {
			BUG_ON(ret > 1);
			if (!pages_done)
				pages_done = ret;
			break;
		}
		nr_pages--;
		pages_done++;
		if (!nr_pages)
			break;
		pages++;
		start += PAGE_SIZE;
	}
985
	if (lock_dropped && *locked) {
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
		/*
		 * We must let the caller know we temporarily dropped the lock
		 * and so the critical section protected by it was lost.
		 */
		up_read(&mm->mmap_sem);
		*locked = 0;
	}
	return pages_done;
}

/*
 * We can leverage the VM_FAULT_RETRY functionality in the page fault
 * paths better by using either get_user_pages_locked() or
 * get_user_pages_unlocked().
 *
 * get_user_pages_locked() is suitable to replace the form:
 *
 *      down_read(&mm->mmap_sem);
 *      do_something()
 *      get_user_pages(tsk, mm, ..., pages, NULL);
 *      up_read(&mm->mmap_sem);
 *
 *  to:
 *
 *      int locked = 1;
 *      down_read(&mm->mmap_sem);
 *      do_something()
 *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
 *      if (locked)
 *          up_read(&mm->mmap_sem);
 */
1017
long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1018
			   unsigned int gup_flags, struct page **pages,
1019 1020
			   int *locked)
{
1021 1022 1023 1024 1025 1026 1027 1028 1029
	/*
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;

1030
	return __get_user_pages_locked(current, current->mm, start, nr_pages,
1031
				       pages, NULL, locked,
1032
				       gup_flags | FOLL_TOUCH);
1033
}
1034
EXPORT_SYMBOL(get_user_pages_locked);
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047

/*
 * get_user_pages_unlocked() is suitable to replace the form:
 *
 *      down_read(&mm->mmap_sem);
 *      get_user_pages(tsk, mm, ..., pages, NULL);
 *      up_read(&mm->mmap_sem);
 *
 *  with:
 *
 *      get_user_pages_unlocked(tsk, mm, ..., pages);
 *
 * It is functionally equivalent to get_user_pages_fast so
1048 1049
 * get_user_pages_fast should be used instead if specific gup_flags
 * (e.g. FOLL_FORCE) are not required.
1050
 */
1051
long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1052
			     struct page **pages, unsigned int gup_flags)
1053
{
1054 1055 1056 1057
	struct mm_struct *mm = current->mm;
	int locked = 1;
	long ret;

1058 1059 1060 1061 1062 1063 1064 1065 1066
	/*
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;

1067 1068
	down_read(&mm->mmap_sem);
	ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
1069
				      &locked, gup_flags | FOLL_TOUCH);
1070 1071 1072
	if (locked)
		up_read(&mm->mmap_sem);
	return ret;
1073
}
1074
EXPORT_SYMBOL(get_user_pages_unlocked);
1075

1076
/*
1077
 * get_user_pages_remote() - pin user pages in memory
1078 1079 1080 1081 1082
 * @tsk:	the task_struct to use for page fault accounting, or
 *		NULL if faults are not to be recorded.
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
1083
 * @gup_flags:	flags modifying lookup behaviour
1084 1085 1086 1087 1088
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
1089 1090 1091
 * @locked:	pointer to lock flag indicating whether lock is held and
 *		subsequently whether VM_FAULT_RETRY functionality can be
 *		utilised. Lock must initially be held.
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
 *
 * Returns number of pages pinned. This may be fewer than the number
 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 * were pinned, returns -errno. Each page returned must be released
 * with a put_page() call when it is finished with. vmas will only
 * remain valid while mmap_sem is held.
 *
 * Must be called with mmap_sem held for read or write.
 *
 * get_user_pages walks a process's page tables and takes a reference to
 * each struct page that each user address corresponds to at a given
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
 * get_user_pages returns, and there may even be a completely different
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
1115 1116 1117
 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
 * be called after the page is finished with, and before put_page is called.
1118 1119 1120 1121 1122 1123 1124 1125
 *
 * get_user_pages is typically used for fewer-copy IO operations, to get a
 * handle on the memory by some means other than accesses via the user virtual
 * addresses. The pages may be submitted for DMA to devices or accessed via
 * their kernel linear mapping (via the kmap APIs). Care should be taken to
 * use the correct cache flushing APIs.
 *
 * See also get_user_pages_fast, for performance critical applications.
1126 1127 1128 1129 1130
 *
 * get_user_pages should be phased out in favor of
 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
 * should use get_user_pages because it cannot pass
 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1131
 */
1132 1133
long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
		unsigned long start, unsigned long nr_pages,
1134
		unsigned int gup_flags, struct page **pages,
1135
		struct vm_area_struct **vmas, int *locked)
1136
{
1137 1138 1139 1140 1141 1142 1143 1144 1145
	/*
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;

1146
	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1147
				       locked,
1148
				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1149 1150 1151
}
EXPORT_SYMBOL(get_user_pages_remote);

1152 1153 1154 1155 1156 1157