gup.c 65.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/spinlock.h>

#include <linux/mm.h>
8
#include <linux/memremap.h>
9 10 11 12 13
#include <linux/pagemap.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/swapops.h>

14
#include <linux/sched/signal.h>
15
#include <linux/rwsem.h>
16
#include <linux/hugetlb.h>
17 18 19
#include <linux/migrate.h>
#include <linux/mm_inline.h>
#include <linux/sched/mm.h>
20

21
#include <asm/mmu_context.h>
22
#include <asm/pgtable.h>
23
#include <asm/tlbflush.h>
24

25 26
#include "internal.h"

27 28 29 30 31
struct follow_page_context {
	struct dev_pagemap *pgmap;
	unsigned int page_mask;
};

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
typedef int (*set_dirty_func_t)(struct page *page);

static void __put_user_pages_dirty(struct page **pages,
				   unsigned long npages,
				   set_dirty_func_t sdf)
{
	unsigned long index;

	for (index = 0; index < npages; index++) {
		struct page *page = compound_head(pages[index]);

		/*
		 * Checking PageDirty at this point may race with
		 * clear_page_dirty_for_io(), but that's OK. Two key cases:
		 *
		 * 1) This code sees the page as already dirty, so it skips
		 * the call to sdf(). That could happen because
		 * clear_page_dirty_for_io() called page_mkclean(),
		 * followed by set_page_dirty(). However, now the page is
		 * going to get written back, which meets the original
		 * intention of setting it dirty, so all is well:
		 * clear_page_dirty_for_io() goes on to call
		 * TestClearPageDirty(), and write the page back.
		 *
		 * 2) This code sees the page as clean, so it calls sdf().
		 * The page stays dirty, despite being written back, so it
		 * gets written back again in the next writeback cycle.
		 * This is harmless.
		 */
		if (!PageDirty(page))
			sdf(page);

		put_user_page(page);
	}
}

/**
 * put_user_pages_dirty() - release and dirty an array of gup-pinned pages
 * @pages:  array of pages to be marked dirty and released.
 * @npages: number of pages in the @pages array.
 *
 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
 * variants called on that page.
 *
 * For each page in the @pages array, make that page (or its head page, if a
 * compound page) dirty, if it was previously listed as clean. Then, release
 * the page using put_user_page().
 *
 * Please see the put_user_page() documentation for details.
 *
 * set_page_dirty(), which does not lock the page, is used here.
 * Therefore, it is the caller's responsibility to ensure that this is
 * safe. If not, then put_user_pages_dirty_lock() should be called instead.
 *
 */
void put_user_pages_dirty(struct page **pages, unsigned long npages)
{
	__put_user_pages_dirty(pages, npages, set_page_dirty);
}
EXPORT_SYMBOL(put_user_pages_dirty);

/**
 * put_user_pages_dirty_lock() - release and dirty an array of gup-pinned pages
 * @pages:  array of pages to be marked dirty and released.
 * @npages: number of pages in the @pages array.
 *
 * For each page in the @pages array, make that page (or its head page, if a
 * compound page) dirty, if it was previously listed as clean. Then, release
 * the page using put_user_page().
 *
 * Please see the put_user_page() documentation for details.
 *
 * This is just like put_user_pages_dirty(), except that it invokes
 * set_page_dirty_lock(), instead of set_page_dirty().
 *
 */
void put_user_pages_dirty_lock(struct page **pages, unsigned long npages)
{
	__put_user_pages_dirty(pages, npages, set_page_dirty_lock);
}
EXPORT_SYMBOL(put_user_pages_dirty_lock);

/**
 * put_user_pages() - release an array of gup-pinned pages.
 * @pages:  array of pages to be marked dirty and released.
 * @npages: number of pages in the @pages array.
 *
 * For each page in the @pages array, release the page using put_user_page().
 *
 * Please see the put_user_page() documentation for details.
 */
void put_user_pages(struct page **pages, unsigned long npages)
{
	unsigned long index;

	/*
	 * TODO: this can be optimized for huge pages: if a series of pages is
	 * physically contiguous and part of the same compound page, then a
	 * single operation to the head page should suffice.
	 */
	for (index = 0; index < npages; index++)
		put_user_page(pages[index]);
}
EXPORT_SYMBOL(put_user_pages);

137
#ifdef CONFIG_MMU
138 139
static struct page *no_page_table(struct vm_area_struct *vma,
		unsigned int flags)
140
{
141 142 143 144 145 146 147 148 149 150 151 152
	/*
	 * When core dumping an enormous anonymous area that nobody
	 * has touched so far, we don't want to allocate unnecessary pages or
	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
	 * then get_dump_page() will return NULL to leave a hole in the dump.
	 * But we can only make this optimization where a hole would surely
	 * be zero-filled if handle_mm_fault() actually did handle it.
	 */
	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
		return ERR_PTR(-EFAULT);
	return NULL;
}
153

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
		pte_t *pte, unsigned int flags)
{
	/* No page to get reference */
	if (flags & FOLL_GET)
		return -EFAULT;

	if (flags & FOLL_TOUCH) {
		pte_t entry = *pte;

		if (flags & FOLL_WRITE)
			entry = pte_mkdirty(entry);
		entry = pte_mkyoung(entry);

		if (!pte_same(*pte, entry)) {
			set_pte_at(vma->vm_mm, address, pte, entry);
			update_mmu_cache(vma, address, pte);
		}
	}

	/* Proper page table entry exists, but no corresponding struct page */
	return -EEXIST;
}

178 179 180 181 182 183
/*
 * FOLL_FORCE can write to even unwritable pte's, but only
 * after we've gone through a COW cycle and they are dirty.
 */
static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
{
184
	return pte_write(pte) ||
185 186 187
		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
}

188
static struct page *follow_page_pte(struct vm_area_struct *vma,
189 190
		unsigned long address, pmd_t *pmd, unsigned int flags,
		struct dev_pagemap **pgmap)
191 192 193 194 195
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	spinlock_t *ptl;
	pte_t *ptep, pte;
196

197
retry:
198
	if (unlikely(pmd_bad(*pmd)))
199
		return no_page_table(vma, flags);
200 201 202 203 204 205 206 207 208 209 210 211

	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
	pte = *ptep;
	if (!pte_present(pte)) {
		swp_entry_t entry;
		/*
		 * KSM's break_ksm() relies upon recognizing a ksm page
		 * even while it is being migrated, so for that case we
		 * need migration_entry_wait().
		 */
		if (likely(!(flags & FOLL_MIGRATION)))
			goto no_page;
212
		if (pte_none(pte))
213 214 215 216 217 218
			goto no_page;
		entry = pte_to_swp_entry(pte);
		if (!is_migration_entry(entry))
			goto no_page;
		pte_unmap_unlock(ptep, ptl);
		migration_entry_wait(mm, pmd, address);
219
		goto retry;
220
	}
221
	if ((flags & FOLL_NUMA) && pte_protnone(pte))
222
		goto no_page;
223
	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
224 225 226
		pte_unmap_unlock(ptep, ptl);
		return NULL;
	}
227 228

	page = vm_normal_page(vma, address, pte);
229 230 231 232 233
	if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
		/*
		 * Only return device mapping pages in the FOLL_GET case since
		 * they are only valid while holding the pgmap reference.
		 */
234 235
		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
		if (*pgmap)
236 237 238 239
			page = pte_page(pte);
		else
			goto no_page;
	} else if (unlikely(!page)) {
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
		if (flags & FOLL_DUMP) {
			/* Avoid special (like zero) pages in core dumps */
			page = ERR_PTR(-EFAULT);
			goto out;
		}

		if (is_zero_pfn(pte_pfn(pte))) {
			page = pte_page(pte);
		} else {
			int ret;

			ret = follow_pfn_pte(vma, address, ptep, flags);
			page = ERR_PTR(ret);
			goto out;
		}
255 256
	}

257 258 259 260 261 262 263 264 265 266 267 268 269
	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
		int ret;
		get_page(page);
		pte_unmap_unlock(ptep, ptl);
		lock_page(page);
		ret = split_huge_page(page);
		unlock_page(page);
		put_page(page);
		if (ret)
			return ERR_PTR(ret);
		goto retry;
	}

270 271 272 273 274 275
	if (flags & FOLL_GET) {
		if (unlikely(!try_get_page(page))) {
			page = ERR_PTR(-ENOMEM);
			goto out;
		}
	}
276 277 278 279 280 281 282 283 284 285 286
	if (flags & FOLL_TOUCH) {
		if ((flags & FOLL_WRITE) &&
		    !pte_dirty(pte) && !PageDirty(page))
			set_page_dirty(page);
		/*
		 * pte_mkyoung() would be more correct here, but atomic care
		 * is needed to avoid losing the dirty bit: it is easier to use
		 * mark_page_accessed().
		 */
		mark_page_accessed(page);
	}
Eric B Munson's avatar
Eric B Munson committed
287
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
288 289 290 291
		/* Do not mlock pte-mapped THP */
		if (PageTransCompound(page))
			goto out;

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
		/*
		 * The preliminary mapping check is mainly to avoid the
		 * pointless overhead of lock_page on the ZERO_PAGE
		 * which might bounce very badly if there is contention.
		 *
		 * If the page is already locked, we don't need to
		 * handle it now - vmscan will handle it later if and
		 * when it attempts to reclaim the page.
		 */
		if (page->mapping && trylock_page(page)) {
			lru_add_drain();  /* push cached pages to LRU */
			/*
			 * Because we lock page here, and migration is
			 * blocked by the pte's page reference, and we
			 * know the page is still mapped, we don't even
			 * need to check for file-cache page truncation.
			 */
			mlock_vma_page(page);
			unlock_page(page);
		}
	}
313
out:
314 315 316 317 318
	pte_unmap_unlock(ptep, ptl);
	return page;
no_page:
	pte_unmap_unlock(ptep, ptl);
	if (!pte_none(pte))
319 320 321 322
		return NULL;
	return no_page_table(vma, flags);
}

323 324
static struct page *follow_pmd_mask(struct vm_area_struct *vma,
				    unsigned long address, pud_t *pudp,
325 326
				    unsigned int flags,
				    struct follow_page_context *ctx)
327
{
328
	pmd_t *pmd, pmdval;
329 330 331 332
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

333
	pmd = pmd_offset(pudp, address);
334 335 336 337 338 339
	/*
	 * The READ_ONCE() will stabilize the pmdval in a register or
	 * on the stack so that it will stop changing under the code.
	 */
	pmdval = READ_ONCE(*pmd);
	if (pmd_none(pmdval))
340
		return no_page_table(vma, flags);
341
	if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) {
342 343 344 345
		page = follow_huge_pmd(mm, address, pmd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
346
	}
347
	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
348
		page = follow_huge_pd(vma, address,
349
				      __hugepd(pmd_val(pmdval)), flags,
350 351 352 353 354
				      PMD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
355
retry:
356
	if (!pmd_present(pmdval)) {
357 358 359
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		VM_BUG_ON(thp_migration_supported() &&
360 361
				  !is_pmd_migration_entry(pmdval));
		if (is_pmd_migration_entry(pmdval))
362
			pmd_migration_entry_wait(mm, pmd);
363 364 365 366 367 368 369
		pmdval = READ_ONCE(*pmd);
		/*
		 * MADV_DONTNEED may convert the pmd to null because
		 * mmap_sem is held in read mode
		 */
		if (pmd_none(pmdval))
			return no_page_table(vma, flags);
370 371
		goto retry;
	}
372
	if (pmd_devmap(pmdval)) {
373
		ptl = pmd_lock(mm, pmd);
374
		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
375 376 377 378
		spin_unlock(ptl);
		if (page)
			return page;
	}
379
	if (likely(!pmd_trans_huge(pmdval)))
380
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
381

382
	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
383 384
		return no_page_table(vma, flags);

385
retry_locked:
386
	ptl = pmd_lock(mm, pmd);
387 388 389 390
	if (unlikely(pmd_none(*pmd))) {
		spin_unlock(ptl);
		return no_page_table(vma, flags);
	}
391 392 393 394 395 396 397
	if (unlikely(!pmd_present(*pmd))) {
		spin_unlock(ptl);
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		pmd_migration_entry_wait(mm, pmd);
		goto retry_locked;
	}
398 399
	if (unlikely(!pmd_trans_huge(*pmd))) {
		spin_unlock(ptl);
400
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
401 402 403 404 405 406 407
	}
	if (flags & FOLL_SPLIT) {
		int ret;
		page = pmd_page(*pmd);
		if (is_huge_zero_page(page)) {
			spin_unlock(ptl);
			ret = 0;
408
			split_huge_pmd(vma, pmd, address);
409 410
			if (pmd_trans_unstable(pmd))
				ret = -EBUSY;
411
		} else {
412 413 414 415
			if (unlikely(!try_get_page(page))) {
				spin_unlock(ptl);
				return ERR_PTR(-ENOMEM);
			}
416
			spin_unlock(ptl);
417 418 419 420
			lock_page(page);
			ret = split_huge_page(page);
			unlock_page(page);
			put_page(page);
421 422
			if (pmd_none(*pmd))
				return no_page_table(vma, flags);
423 424 425
		}

		return ret ? ERR_PTR(ret) :
426
			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
427
	}
428 429
	page = follow_trans_huge_pmd(vma, address, pmd, flags);
	spin_unlock(ptl);
430
	ctx->page_mask = HPAGE_PMD_NR - 1;
431
	return page;
432 433
}

434 435
static struct page *follow_pud_mask(struct vm_area_struct *vma,
				    unsigned long address, p4d_t *p4dp,
436 437
				    unsigned int flags,
				    struct follow_page_context *ctx)
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
{
	pud_t *pud;
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

	pud = pud_offset(p4dp, address);
	if (pud_none(*pud))
		return no_page_table(vma, flags);
	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
		page = follow_huge_pud(mm, address, pud, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
453 454 455 456 457 458 459 460
	if (is_hugepd(__hugepd(pud_val(*pud)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pud_val(*pud)), flags,
				      PUD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
461 462
	if (pud_devmap(*pud)) {
		ptl = pud_lock(mm, pud);
463
		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
464 465 466 467 468 469 470
		spin_unlock(ptl);
		if (page)
			return page;
	}
	if (unlikely(pud_bad(*pud)))
		return no_page_table(vma, flags);

471
	return follow_pmd_mask(vma, address, pud, flags, ctx);
472 473 474 475
}

static struct page *follow_p4d_mask(struct vm_area_struct *vma,
				    unsigned long address, pgd_t *pgdp,
476 477
				    unsigned int flags,
				    struct follow_page_context *ctx)
478 479
{
	p4d_t *p4d;
480
	struct page *page;
481 482 483 484 485 486 487 488

	p4d = p4d_offset(pgdp, address);
	if (p4d_none(*p4d))
		return no_page_table(vma, flags);
	BUILD_BUG_ON(p4d_huge(*p4d));
	if (unlikely(p4d_bad(*p4d)))
		return no_page_table(vma, flags);

489 490 491 492 493 494 495 496
	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(p4d_val(*p4d)), flags,
				      P4D_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
497
	return follow_pud_mask(vma, address, p4d, flags, ctx);
498 499 500 501 502 503 504
}

/**
 * follow_page_mask - look up a page descriptor from a user-virtual address
 * @vma: vm_area_struct mapping @address
 * @address: virtual address to look up
 * @flags: flags modifying lookup behaviour
505 506
 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
 *       pointer to output page_mask
507 508 509
 *
 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
 *
510 511 512 513 514 515
 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
 *
 * On output, the @ctx->page_mask is set according to the size of the page.
 *
 * Return: the mapped (struct page *), %NULL if no mapping exists, or
516 517 518
 * an error pointer if there is a mapping to something not represented
 * by a page descriptor (see also vm_normal_page()).
 */
519
static struct page *follow_page_mask(struct vm_area_struct *vma,
520
			      unsigned long address, unsigned int flags,
521
			      struct follow_page_context *ctx)
522 523 524 525 526
{
	pgd_t *pgd;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

527
	ctx->page_mask = 0;
528 529 530 531 532 533 534 535 536 537 538 539 540

	/* make this handle hugepd */
	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
	if (!IS_ERR(page)) {
		BUG_ON(flags & FOLL_GET);
		return page;
	}

	pgd = pgd_offset(mm, address);

	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
		return no_page_table(vma, flags);

541 542 543 544 545 546
	if (pgd_huge(*pgd)) {
		page = follow_huge_pgd(mm, address, pgd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
547 548 549 550 551 552 553 554
	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pgd_val(*pgd)), flags,
				      PGDIR_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
555

556 557 558 559 560 561 562 563 564 565 566 567 568
	return follow_p4d_mask(vma, address, pgd, flags, ctx);
}

struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
			 unsigned int foll_flags)
{
	struct follow_page_context ctx = { NULL };
	struct page *page;

	page = follow_page_mask(vma, address, foll_flags, &ctx);
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return page;
569 570
}

571 572 573 574 575
static int get_gate_page(struct mm_struct *mm, unsigned long address,
		unsigned int gup_flags, struct vm_area_struct **vma,
		struct page **page)
{
	pgd_t *pgd;
576
	p4d_t *p4d;
577 578 579 580 581 582 583 584 585 586 587 588 589
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	int ret = -EFAULT;

	/* user gate pages are read-only */
	if (gup_flags & FOLL_WRITE)
		return -EFAULT;
	if (address > TASK_SIZE)
		pgd = pgd_offset_k(address);
	else
		pgd = pgd_offset_gate(mm, address);
	BUG_ON(pgd_none(*pgd));
590 591 592
	p4d = p4d_offset(pgd, address);
	BUG_ON(p4d_none(*p4d));
	pud = pud_offset(p4d, address);
593 594
	BUG_ON(pud_none(*pud));
	pmd = pmd_offset(pud, address);
595
	if (!pmd_present(*pmd))
596 597 598 599 600 601 602 603 604 605 606 607 608
		return -EFAULT;
	VM_BUG_ON(pmd_trans_huge(*pmd));
	pte = pte_offset_map(pmd, address);
	if (pte_none(*pte))
		goto unmap;
	*vma = get_gate_vma(mm);
	if (!page)
		goto out;
	*page = vm_normal_page(*vma, address, *pte);
	if (!*page) {
		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
			goto unmap;
		*page = pte_page(*pte);
609 610 611 612 613 614 615

		/*
		 * This should never happen (a device public page in the gate
		 * area).
		 */
		if (is_device_public_page(*page))
			goto unmap;
616
	}
617 618 619 620
	if (unlikely(!try_get_page(*page))) {
		ret = -ENOMEM;
		goto unmap;
	}
621 622 623 624 625 626 627
out:
	ret = 0;
unmap:
	pte_unmap(pte);
	return ret;
}

628 629 630 631 632
/*
 * mmap_sem must be held on entry.  If @nonblocking != NULL and
 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
 */
633 634 635 636
static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
		unsigned long address, unsigned int *flags, int *nonblocking)
{
	unsigned int fault_flags = 0;
637
	vm_fault_t ret;
638

Eric B Munson's avatar
Eric B Munson committed
639 640 641
	/* mlock all present pages, but do not fault in new pages */
	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
		return -ENOENT;
642 643
	if (*flags & FOLL_WRITE)
		fault_flags |= FAULT_FLAG_WRITE;
644 645
	if (*flags & FOLL_REMOTE)
		fault_flags |= FAULT_FLAG_REMOTE;
646 647 648 649
	if (nonblocking)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
	if (*flags & FOLL_NOWAIT)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
650 651 652 653
	if (*flags & FOLL_TRIED) {
		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
		fault_flags |= FAULT_FLAG_TRIED;
	}
654

655
	ret = handle_mm_fault(vma, address, fault_flags);
656
	if (ret & VM_FAULT_ERROR) {
657 658 659 660
		int err = vm_fault_to_errno(ret, *flags);

		if (err)
			return err;
661 662 663 664 665 666 667 668 669 670 671
		BUG();
	}

	if (tsk) {
		if (ret & VM_FAULT_MAJOR)
			tsk->maj_flt++;
		else
			tsk->min_flt++;
	}

	if (ret & VM_FAULT_RETRY) {
672
		if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
673 674 675 676 677 678 679 680 681 682 683 684 685 686
			*nonblocking = 0;
		return -EBUSY;
	}

	/*
	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
	 * can thus safely do subsequent page lookups as if they were reads.
	 * But only do so when looping for pte_write is futile: in some cases
	 * userspace may also be wanting to write to the gotten user page,
	 * which a read fault here might prevent (a readonly page might get
	 * reCOWed by userspace write).
	 */
	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
687
		*flags |= FOLL_COW;
688 689 690
	return 0;
}

691 692 693
static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
{
	vm_flags_t vm_flags = vma->vm_flags;
694 695
	int write = (gup_flags & FOLL_WRITE);
	int foreign = (gup_flags & FOLL_REMOTE);
696 697 698 699

	if (vm_flags & (VM_IO | VM_PFNMAP))
		return -EFAULT;

700 701 702
	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
		return -EFAULT;

703
	if (write) {
704 705 706 707 708 709 710 711 712 713 714 715
		if (!(vm_flags & VM_WRITE)) {
			if (!(gup_flags & FOLL_FORCE))
				return -EFAULT;
			/*
			 * We used to let the write,force case do COW in a
			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
			 * set a breakpoint in a read-only mapping of an
			 * executable, without corrupting the file (yet only
			 * when that file had been opened for writing!).
			 * Anon pages in shared mappings are surprising: now
			 * just reject it.
			 */
716
			if (!is_cow_mapping(vm_flags))
717 718 719 720 721 722 723 724 725 726 727 728
				return -EFAULT;
		}
	} else if (!(vm_flags & VM_READ)) {
		if (!(gup_flags & FOLL_FORCE))
			return -EFAULT;
		/*
		 * Is there actually any vma we can reach here which does not
		 * have VM_MAYREAD set?
		 */
		if (!(vm_flags & VM_MAYREAD))
			return -EFAULT;
	}
729 730 731 732 733
	/*
	 * gups are always data accesses, not instruction
	 * fetches, so execute=false here
	 */
	if (!arch_vma_access_permitted(vma, write, false, foreign))
734
		return -EFAULT;
735 736 737
	return 0;
}

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
/**
 * __get_user_pages() - pin user pages in memory
 * @tsk:	task_struct of target task
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying pin behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 * @nonblocking: whether waiting for disk IO or mmap_sem contention
 *
 * Returns number of pages pinned. This may be fewer than the number
 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 * were pinned, returns -errno. Each page returned must be released
 * with a put_page() call when it is finished with. vmas will only
 * remain valid while mmap_sem is held.
 *
758
 * Must be called with mmap_sem held.  It may be released.  See below.
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
 *
 * __get_user_pages walks a process's page tables and takes a reference to
 * each struct page that each user address corresponds to at a given
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
 * __get_user_pages returns, and there may even be a completely different
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
 * appropriate) must be called after the page is finished with, and
 * before put_page is called.
 *
 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
 * or mmap_sem contention, and if waiting is needed to pin all pages,
781 782 783 784 785 786 787 788
 * *@nonblocking will be set to 0.  Further, if @gup_flags does not
 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
 * this case.
 *
 * A caller using such a combination of @nonblocking and @gup_flags
 * must therefore hold the mmap_sem for reading only, and recognize
 * when it's been released.  Otherwise, it must be held for either
 * reading or writing and will not be released.
789 790 791 792 793
 *
 * In most cases, get_user_pages or get_user_pages_fast should be used
 * instead of __get_user_pages. __get_user_pages should be used only if
 * you need some special @gup_flags.
 */
794
static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
795 796 797 798
		unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas, int *nonblocking)
{
799
	long ret = 0, i = 0;
800
	struct vm_area_struct *vma = NULL;
801
	struct follow_page_context ctx = { NULL };
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816

	if (!nr_pages)
		return 0;

	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));

	/*
	 * If FOLL_FORCE is set then do not force a full fault as the hinting
	 * fault information is unrelated to the reference behaviour of a task
	 * using the address space
	 */
	if (!(gup_flags & FOLL_FORCE))
		gup_flags |= FOLL_NUMA;

	do {
817 818 819 820 821 822 823 824 825 826 827 828
		struct page *page;
		unsigned int foll_flags = gup_flags;
		unsigned int page_increm;

		/* first iteration or cross vma bound */
		if (!vma || start >= vma->vm_end) {
			vma = find_extend_vma(mm, start);
			if (!vma && in_gate_area(mm, start)) {
				ret = get_gate_page(mm, start & PAGE_MASK,
						gup_flags, &vma,
						pages ? &pages[i] : NULL);
				if (ret)
829
					goto out;
830
				ctx.page_mask = 0;
831 832
				goto next_page;
			}
833

834 835 836 837
			if (!vma || check_vma_flags(vma, gup_flags)) {
				ret = -EFAULT;
				goto out;
			}
838 839 840
			if (is_vm_hugetlb_page(vma)) {
				i = follow_hugetlb_page(mm, vma, pages, vmas,
						&start, &nr_pages, i,
841
						gup_flags, nonblocking);
842
				continue;
843
			}
844 845 846 847 848 849
		}
retry:
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
850
		if (fatal_signal_pending(current)) {
851 852 853
			ret = -ERESTARTSYS;
			goto out;
		}
854
		cond_resched();
855 856

		page = follow_page_mask(vma, start, foll_flags, &ctx);
857 858 859 860 861 862
		if (!page) {
			ret = faultin_page(tsk, vma, start, &foll_flags,
					nonblocking);
			switch (ret) {
			case 0:
				goto retry;
863 864 865
			case -EBUSY:
				ret = 0;
				/* FALLTHRU */
866 867 868
			case -EFAULT:
			case -ENOMEM:
			case -EHWPOISON:
869
				goto out;
870 871
			case -ENOENT:
				goto next_page;
872
			}
873
			BUG();
874 875 876 877 878 879 880
		} else if (PTR_ERR(page) == -EEXIST) {
			/*
			 * Proper page table entry exists, but no corresponding
			 * struct page.
			 */
			goto next_page;
		} else if (IS_ERR(page)) {
881 882
			ret = PTR_ERR(page);
			goto out;
883
		}
884 885 886 887
		if (pages) {
			pages[i] = page;
			flush_anon_page(vma, page, start);
			flush_dcache_page(page);
888
			ctx.page_mask = 0;
889 890
		}
next_page:
891 892
		if (vmas) {
			vmas[i] = vma;
893
			ctx.page_mask = 0;
894
		}
895
		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
896 897 898 899 900
		if (page_increm > nr_pages)
			page_increm = nr_pages;
		i += page_increm;
		start += page_increm * PAGE_SIZE;
		nr_pages -= page_increm;
901
	} while (nr_pages);
902 903 904 905
out:
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return i ? i : ret;
906 907
}

908 909
static bool vma_permits_fault(struct vm_area_struct *vma,
			      unsigned int fault_flags)
910
{
911 912
	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
913
	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
914 915 916 917

	if (!(vm_flags & vma->vm_flags))
		return false;

918 919
	/*
	 * The architecture might have a hardware protection
920
	 * mechanism other than read/write that can deny access.
921 922 923
	 *
	 * gup always represents data access, not instruction
	 * fetches, so execute=false here:
924
	 */
925
	if (!arch_vma_access_permitted(vma, write, false, foreign))
926 927
		return false;

928 929 930
	return true;
}

931 932 933 934 935 936 937
/*
 * fixup_user_fault() - manually resolve a user page fault
 * @tsk:	the task_struct to use for page fault accounting, or
 *		NULL if faults are not to be recorded.
 * @mm:		mm_struct of target mm
 * @address:	user address
 * @fault_flags:flags to pass down to handle_mm_fault()
938 939
 * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
 *		does not allow retry
940 941 942 943 944 945 946 947 948 949 950
 *
 * This is meant to be called in the specific scenario where for locking reasons
 * we try to access user memory in atomic context (within a pagefault_disable()
 * section), this returns -EFAULT, and we want to resolve the user fault before
 * trying again.
 *
 * Typically this is meant to be used by the futex code.
 *
 * The main difference with get_user_pages() is that this function will
 * unconditionally call handle_mm_fault() which will in turn perform all the
 * necessary SW fixup of the dirty and young bits in the PTE, while
951
 * get_user_pages() only guarantees to update these in the struct page.
952 953 954 955 956 957
 *
 * This is important for some architectures where those bits also gate the
 * access permission to the page because they are maintained in software.  On
 * such architectures, gup() will not be enough to make a subsequent access
 * succeed.
 *
958 959
 * This function will not return with an unlocked mmap_sem. So it has not the
 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
960 961
 */
int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
962 963
		     unsigned long address, unsigned int fault_flags,
		     bool *unlocked)
964 965
{
	struct vm_area_struct *vma;
966
	vm_fault_t ret, major = 0;
967 968 969

	if (unlocked)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
970

971
retry:
972 973 974 975
	vma = find_extend_vma(mm, address);
	if (!vma || address < vma->vm_start)
		return -EFAULT;

976
	if (!vma_permits_fault(vma, fault_flags))
977 978
		return -EFAULT;

979
	ret = handle_mm_fault(vma, address, fault_flags);
980
	major |= ret & VM_FAULT_MAJOR;
981
	if (ret & VM_FAULT_ERROR) {
982 983 984 985
		int err = vm_fault_to_errno(ret, 0);

		if (err)
			return err;
986 987
		BUG();
	}
988 989 990 991 992 993 994 995 996 997 998

	if (ret & VM_FAULT_RETRY) {
		down_read(&mm->mmap_sem);
		if (!(fault_flags & FAULT_FLAG_TRIED)) {
			*unlocked = true;
			fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
			fault_flags |= FAULT_FLAG_TRIED;
			goto retry;
		}
	}

999
	if (tsk) {
1000
		if (major)
1001 1002 1003 1004 1005 1006
			tsk->maj_flt++;
		else
			tsk->min_flt++;
	}
	return 0;
}
1007
EXPORT_SYMBOL_GPL(fixup_user_fault);
1008

1009 1010 1011 1012 1013 1014
static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
						struct mm_struct *mm,
						unsigned long start,
						unsigned long nr_pages,
						struct page **pages,
						struct vm_area_struct **vmas,
1015
						int *locked,
1016
						unsigned int flags)
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
{
	long ret, pages_done;
	bool lock_dropped;

	if (locked) {
		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
		BUG_ON(vmas);
		/* check caller initialized locked */
		BUG_ON(*locked != 1);
	}

	if (pages)
		flags |= FOLL_GET;

	pages_done = 0;
	lock_dropped = false;
	for (;;) {
		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
				       vmas, locked);
		if (!locked)
			/* VM_FAULT_RETRY couldn't trigger, bypass */
			return ret;

		/* VM_FAULT_RETRY cannot return errors */
		if (!*locked) {
			BUG_ON(ret < 0);
			BUG_ON(ret >= nr_pages);
		}

		if (ret > 0) {
			nr_pages -= ret;
			pages_done += ret;
			if (!nr_pages)
				break;
		}
		if (*locked) {
1053 1054 1055 1056
			/*
			 * VM_FAULT_RETRY didn't trigger or it was a
			 * FOLL_NOWAIT.
			 */
1057 1058 1059 1060
			if (!pages_done)
				pages_done = ret;
			break;
		}
1061 1062 1063 1064 1065 1066
		/*
		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
		 * For the prefault case (!pages) we only update counts.
		 */
		if (likely(pages))
			pages += ret;
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
		start += ret << PAGE_SHIFT;

		/*
		 * Repeat on the address that fired VM_FAULT_RETRY
		 * without FAULT_FLAG_ALLOW_RETRY but with
		 * FAULT_FLAG_TRIED.
		 */
		*locked = 1;
		lock_dropped = true;
		down_read(&mm->mmap_sem);
		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
				       pages, NULL, NULL);
		if (ret != 1) {
			BUG_ON(ret > 1);
			if (!pages_done)
				pages_done = ret;
			break;
		}
		nr_pages--;
		pages_done++;
		if (!nr_pages)
			break;
1089 1090
		if (likely(pages))
			pages++;
1091 1092
		start += PAGE_SIZE;
	}
1093
	if (lock_dropped && *locked) {
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
		/*
		 * We must let the caller know we temporarily dropped the lock
		 * and so the critical section protected by it was lost.
		 */
		up_read(&mm->mmap_sem);
		*locked = 0;
	}
	return pages_done;
}

1104
/*
1105
 * get_user_pages_remote() - pin user pages in memory
1106 1107 1108 1109 1110
 * @tsk:	the task_struct to use for page fault accounting, or
 *		NULL if faults are not to be recorded.
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
1111
 * @gup_flags:	flags modifying lookup behaviour
1112 1113 1114 1115 1116
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
1117 1118 1119
 * @locked:	pointer to lock flag indicating whether lock is held and
 *		subsequently whether VM_FAULT_RETRY functionality can be
 *		utilised. Lock must initially be held.
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
 *
 * Returns number of pages pinned. This may be fewer than the number
 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 * were pinned, returns -errno. Each page returned must be released
 * with a put_page() call when it is finished with. vmas will only
 * remain valid while mmap_sem is held.
 *
 * Must be called with mmap_sem held for read or write.
 *
 * get_user_pages walks a process's page tables and takes a reference to
 * each struct page that each user address corresponds to at a given
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
 * get_user_pages returns, and there may even be a completely different
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
1143 1144 1145
 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
 * be called after the page is finished with, and before put_page is called.
1146 1147 1148 1149 1150 1151 1152 1153
 *
 * get_user_pages is typically used for fewer-copy IO operations, to get a
 * handle on the memory by some means other than accesses via the user virtual
 * addresses. The pages may be submitted for DMA to devices or accessed via
 * their kernel linear mapping (via the kmap APIs). Care should be taken to
 * use the correct cache flushing APIs.
 *
 * See also get_user_pages_fast, for performance critical applications.
1154 1155 1156 1157 1158
 *
 * get_user_pages should be phased out in favor of
 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
 * should use get_user_pages because it cannot pass
 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1159
 */
1160 1161
long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
		unsigned long start, unsigned long nr_pages,
1162
		unsigned int gup_flags, struct page **pages,
1163
		struct vm_area_struct **vmas, int *locked)
1164
{
1165 1166 1167 1168 1169 1170 1171 1172 1173
	/*
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;

1174
	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1175
				       locked,
1176
				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1177 1178 1179
}
EXPORT_SYMBOL(get_user_pages_remote);

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220