memory.c 18.1 KB
Newer Older
1
/*
2
 * Memory subsystem support
3 4 5 6 7 8 9 10 11 12 13 14 15
 *
 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
 *            Dave Hansen <haveblue@us.ibm.com>
 *
 * This file provides the necessary infrastructure to represent
 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
 * All arch-independent code that assumes MEMORY_HOTPLUG requires
 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/topology.h>
16
#include <linux/capability.h>
17 18 19 20 21
#include <linux/device.h>
#include <linux/memory.h>
#include <linux/kobject.h>
#include <linux/memory_hotplug.h>
#include <linux/mm.h>
22
#include <linux/mutex.h>
23
#include <linux/stat.h>
24
#include <linux/slab.h>
25

Arun Sharma's avatar
Arun Sharma committed
26
#include <linux/atomic.h>
27 28
#include <asm/uaccess.h>

29 30
static DEFINE_MUTEX(mem_sysfs_mutex);

31
#define MEMORY_CLASS_NAME	"memory"
32 33 34 35 36 37 38

static int sections_per_block;

static inline int base_memory_block_id(int section_nr)
{
	return section_nr / sections_per_block;
}
39

40
static struct bus_type memory_subsys = {
41
	.name = MEMORY_CLASS_NAME,
42
	.dev_name = MEMORY_CLASS_NAME,
43 44
};

45
static BLOCKING_NOTIFIER_HEAD(memory_chain);
46

47
int register_memory_notifier(struct notifier_block *nb)
48
{
49
        return blocking_notifier_chain_register(&memory_chain, nb);
50
}
51
EXPORT_SYMBOL(register_memory_notifier);
52

53
void unregister_memory_notifier(struct notifier_block *nb)
54
{
55
        blocking_notifier_chain_unregister(&memory_chain, nb);
56
}
57
EXPORT_SYMBOL(unregister_memory_notifier);
58

59 60 61 62 63 64 65 66 67 68 69 70 71 72
static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);

int register_memory_isolate_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(register_memory_isolate_notifier);

void unregister_memory_isolate_notifier(struct notifier_block *nb)
{
	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(unregister_memory_isolate_notifier);

73 74 75 76 77 78 79
static void memory_block_release(struct device *dev)
{
	struct memory_block *mem = container_of(dev, struct memory_block, dev);

	kfree(mem);
}

80 81 82
/*
 * register_memory - Setup a sysfs device for a memory block
 */
83
static
84
int register_memory(struct memory_block *memory)
85 86 87
{
	int error;

88 89
	memory->dev.bus = &memory_subsys;
	memory->dev.id = memory->start_section_nr / sections_per_block;
90
	memory->dev.release = memory_block_release;
91

92
	error = device_register(&memory->dev);
93 94 95
	return error;
}

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
unsigned long __weak memory_block_size_bytes(void)
{
	return MIN_MEMORY_BLOCK_SIZE;
}

static unsigned long get_memory_block_size(void)
{
	unsigned long block_sz;

	block_sz = memory_block_size_bytes();

	/* Validate blk_sz is a power of 2 and not less than section size */
	if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
		WARN_ON(1);
		block_sz = MIN_MEMORY_BLOCK_SIZE;
	}

	return block_sz;
}

116 117 118 119 120
/*
 * use this as the physical section index that this memsection
 * uses.
 */

121 122
static ssize_t show_mem_start_phys_index(struct device *dev,
			struct device_attribute *attr, char *buf)
123 124
{
	struct memory_block *mem =
125
		container_of(dev, struct memory_block, dev);
126 127 128 129 130 131
	unsigned long phys_index;

	phys_index = mem->start_section_nr / sections_per_block;
	return sprintf(buf, "%08lx\n", phys_index);
}

132 133
static ssize_t show_mem_end_phys_index(struct device *dev,
			struct device_attribute *attr, char *buf)
134 135
{
	struct memory_block *mem =
136
		container_of(dev, struct memory_block, dev);
137 138 139 140
	unsigned long phys_index;

	phys_index = mem->end_section_nr / sections_per_block;
	return sprintf(buf, "%08lx\n", phys_index);
141 142
}

143 144 145
/*
 * Show whether the section of memory is likely to be hot-removable
 */
146 147
static ssize_t show_mem_removable(struct device *dev,
			struct device_attribute *attr, char *buf)
148
{
149 150
	unsigned long i, pfn;
	int ret = 1;
151
	struct memory_block *mem =
152
		container_of(dev, struct memory_block, dev);
153

154
	for (i = 0; i < sections_per_block; i++) {
155
		pfn = section_nr_to_pfn(mem->start_section_nr + i);
156 157 158
		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
	}

159 160 161
	return sprintf(buf, "%d\n", ret);
}

162 163 164
/*
 * online, offline, going offline, etc.
 */
165 166
static ssize_t show_mem_state(struct device *dev,
			struct device_attribute *attr, char *buf)
167 168
{
	struct memory_block *mem =
169
		container_of(dev, struct memory_block, dev);
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
	ssize_t len = 0;

	/*
	 * We can probably put these states in a nice little array
	 * so that they're not open-coded
	 */
	switch (mem->state) {
		case MEM_ONLINE:
			len = sprintf(buf, "online\n");
			break;
		case MEM_OFFLINE:
			len = sprintf(buf, "offline\n");
			break;
		case MEM_GOING_OFFLINE:
			len = sprintf(buf, "going-offline\n");
			break;
		default:
			len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
					mem->state);
			WARN_ON(1);
			break;
	}

	return len;
}

196
int memory_notify(unsigned long val, void *v)
197
{
198
	return blocking_notifier_call_chain(&memory_chain, val, v);
199 200
}

201 202 203 204 205
int memory_isolate_notify(unsigned long val, void *v)
{
	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
}

206 207 208 209
/*
 * The probe routines leave the pages reserved, just as the bootmem code does.
 * Make sure they're still that way.
 */
210
static bool pages_correctly_reserved(unsigned long start_pfn)
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
{
	int i, j;
	struct page *page;
	unsigned long pfn = start_pfn;

	/*
	 * memmap between sections is not contiguous except with
	 * SPARSEMEM_VMEMMAP. We lookup the page once per section
	 * and assume memmap is contiguous within each section
	 */
	for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
		if (WARN_ON_ONCE(!pfn_valid(pfn)))
			return false;
		page = pfn_to_page(pfn);

		for (j = 0; j < PAGES_PER_SECTION; j++) {
			if (PageReserved(page + j))
				continue;

			printk(KERN_WARNING "section number %ld page number %d "
				"not reserved, was it already online?\n",
				pfn_to_section_nr(pfn), j);

			return false;
		}
	}

	return true;
}

241 242 243 244 245
/*
 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
 * OK to have direct references to sparsemem variables in here.
 */
static int
246
memory_block_action(unsigned long phys_index, unsigned long action, int online_type)
247
{
248
	unsigned long start_pfn;
249
	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
250
	struct page *first_page;
251 252
	int ret;

253
	first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);
254
	start_pfn = page_to_pfn(first_page);
255

256 257
	switch (action) {
		case MEM_ONLINE:
258
			if (!pages_correctly_reserved(start_pfn))
259 260
				return -EBUSY;

261
			ret = online_pages(start_pfn, nr_pages, online_type);
262 263
			break;
		case MEM_OFFLINE:
264
			ret = offline_pages(start_pfn, nr_pages);
265 266
			break;
		default:
267 268
			WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
			     "%ld\n", __func__, phys_index, action, action);
269 270 271 272 273 274
			ret = -EINVAL;
	}

	return ret;
}

275
static int __memory_block_change_state(struct memory_block *mem,
276 277
		unsigned long to_state, unsigned long from_state_req,
		int online_type)
278
{
279
	int ret = 0;
280

281 282 283 284 285
	if (mem->state != from_state_req) {
		ret = -EINVAL;
		goto out;
	}

286 287 288
	if (to_state == MEM_OFFLINE)
		mem->state = MEM_GOING_OFFLINE;

289
	ret = memory_block_action(mem->start_section_nr, to_state, online_type);
290

291
	if (ret) {
292
		mem->state = from_state_req;
293 294
		goto out;
	}
295

296 297 298 299 300 301 302 303 304 305 306
	mem->state = to_state;
	switch (mem->state) {
	case MEM_OFFLINE:
		kobject_uevent(&mem->dev.kobj, KOBJ_OFFLINE);
		break;
	case MEM_ONLINE:
		kobject_uevent(&mem->dev.kobj, KOBJ_ONLINE);
		break;
	default:
		break;
	}
307 308 309 310
out:
	return ret;
}

311
static int memory_block_change_state(struct memory_block *mem,
312 313
		unsigned long to_state, unsigned long from_state_req,
		int online_type)
314 315 316 317
{
	int ret;

	mutex_lock(&mem->state_mutex);
318 319
	ret = __memory_block_change_state(mem, to_state, from_state_req,
					  online_type);
320 321 322 323
	mutex_unlock(&mem->state_mutex);

	return ret;
}
324
static ssize_t
325 326
store_mem_state(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t count)
327 328 329 330
{
	struct memory_block *mem;
	int ret = -EINVAL;

331
	mem = container_of(dev, struct memory_block, dev);
332

333 334 335 336 337 338 339 340 341 342 343 344
	if (!strncmp(buf, "online_kernel", min_t(int, count, 13)))
		ret = memory_block_change_state(mem, MEM_ONLINE,
						MEM_OFFLINE, ONLINE_KERNEL);
	else if (!strncmp(buf, "online_movable", min_t(int, count, 14)))
		ret = memory_block_change_state(mem, MEM_ONLINE,
						MEM_OFFLINE, ONLINE_MOVABLE);
	else if (!strncmp(buf, "online", min_t(int, count, 6)))
		ret = memory_block_change_state(mem, MEM_ONLINE,
						MEM_OFFLINE, ONLINE_KEEP);
	else if(!strncmp(buf, "offline", min_t(int, count, 7)))
		ret = memory_block_change_state(mem, MEM_OFFLINE,
						MEM_ONLINE, -1);
345

346 347 348 349 350 351 352 353 354 355 356 357 358 359
	if (ret)
		return ret;
	return count;
}

/*
 * phys_device is a bad name for this.  What I really want
 * is a way to differentiate between memory ranges that
 * are part of physical devices that constitute
 * a complete removable unit or fru.
 * i.e. do these ranges belong to the same physical device,
 * s.t. if I offline all of these sections I can then
 * remove the physical device?
 */
360 361
static ssize_t show_phys_device(struct device *dev,
				struct device_attribute *attr, char *buf)
362 363
{
	struct memory_block *mem =
364
		container_of(dev, struct memory_block, dev);
365 366 367
	return sprintf(buf, "%d\n", mem->phys_device);
}

368 369 370 371 372
static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
static DEVICE_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL);
static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
373 374

#define mem_create_simple_file(mem, attr_name)	\
375
	device_create_file(&mem->dev, &dev_attr_##attr_name)
376
#define mem_remove_simple_file(mem, attr_name)	\
377
	device_remove_file(&mem->dev, &dev_attr_##attr_name)
378 379 380 381 382

/*
 * Block size attribute stuff
 */
static ssize_t
383
print_block_size(struct device *dev, struct device_attribute *attr,
384
		 char *buf)
385
{
386
	return sprintf(buf, "%lx\n", get_memory_block_size());
387 388
}

389
static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
390 391 392

static int block_size_init(void)
{
393 394
	return device_create_file(memory_subsys.dev_root,
				  &dev_attr_block_size_bytes);
395 396 397 398 399 400 401 402 403 404
}

/*
 * Some architectures will have custom drivers to do this, and
 * will not need to do it from userspace.  The fake hot-add code
 * as well as ppc64 will do all of their discovery in userspace
 * and will require this interface.
 */
#ifdef CONFIG_ARCH_MEMORY_PROBE
static ssize_t
405
memory_probe_store(struct device *dev, struct device_attribute *attr,
406
		   const char *buf, size_t count)
407 408
{
	u64 phys_addr;
409
	int nid;
410
	int i, ret;
411
	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
412 413 414

	phys_addr = simple_strtoull(buf, NULL, 0);

415 416 417
	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
		return -EINVAL;

418 419 420 421 422
	for (i = 0; i < sections_per_block; i++) {
		nid = memory_add_physaddr_to_nid(phys_addr);
		ret = add_memory(nid, phys_addr,
				 PAGES_PER_SECTION << PAGE_SHIFT);
		if (ret)
423
			goto out;
424 425 426

		phys_addr += MIN_MEMORY_BLOCK_SIZE;
	}
427

428 429 430
	ret = count;
out:
	return ret;
431
}
432
static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
433 434 435

static int memory_probe_init(void)
{
436
	return device_create_file(memory_subsys.dev_root, &dev_attr_probe);
437 438
}
#else
439 440 441 442
static inline int memory_probe_init(void)
{
	return 0;
}
443 444
#endif

445 446 447 448 449 450 451
#ifdef CONFIG_MEMORY_FAILURE
/*
 * Support for offlining pages of memory
 */

/* Soft offline a page */
static ssize_t
452 453
store_soft_offline_page(struct device *dev,
			struct device_attribute *attr,
454
			const char *buf, size_t count)
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
{
	int ret;
	u64 pfn;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
	if (strict_strtoull(buf, 0, &pfn) < 0)
		return -EINVAL;
	pfn >>= PAGE_SHIFT;
	if (!pfn_valid(pfn))
		return -ENXIO;
	ret = soft_offline_page(pfn_to_page(pfn), 0);
	return ret == 0 ? count : ret;
}

/* Forcibly offline a page, including killing processes. */
static ssize_t
471 472
store_hard_offline_page(struct device *dev,
			struct device_attribute *attr,
473
			const char *buf, size_t count)
474 475 476 477 478 479 480 481
{
	int ret;
	u64 pfn;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
	if (strict_strtoull(buf, 0, &pfn) < 0)
		return -EINVAL;
	pfn >>= PAGE_SHIFT;
482
	ret = memory_failure(pfn, 0, 0);
483 484 485
	return ret ? ret : count;
}

486 487
static DEVICE_ATTR(soft_offline_page, S_IWUSR, NULL, store_soft_offline_page);
static DEVICE_ATTR(hard_offline_page, S_IWUSR, NULL, store_hard_offline_page);
488 489 490 491 492

static __init int memory_fail_init(void)
{
	int err;

493 494
	err = device_create_file(memory_subsys.dev_root,
				&dev_attr_soft_offline_page);
495
	if (!err)
496 497
		err = device_create_file(memory_subsys.dev_root,
				&dev_attr_hard_offline_page);
498 499 500 501 502 503 504 505 506
	return err;
}
#else
static inline int memory_fail_init(void)
{
	return 0;
}
#endif

507 508 509 510 511
/*
 * Note that phys_device is optional.  It is here to allow for
 * differentiation between which *physical* devices each
 * section belongs to...
 */
512 513 514 515
int __weak arch_get_memory_phys_device(unsigned long start_pfn)
{
	return 0;
}
516

517 518 519 520
/*
 * A reference for the returned object is held and the reference for the
 * hinted object is released.
 */
521 522
struct memory_block *find_memory_block_hinted(struct mem_section *section,
					      struct memory_block *hint)
523
{
524
	int block_id = base_memory_block_id(__section_nr(section));
525 526
	struct device *hintdev = hint ? &hint->dev : NULL;
	struct device *dev;
527

528 529 530 531
	dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
	if (hint)
		put_device(&hint->dev);
	if (!dev)
532
		return NULL;
533
	return container_of(dev, struct memory_block, dev);
534 535
}

536 537 538 539 540 541
/*
 * For now, we have a linear search to go find the appropriate
 * memory_block corresponding to a particular phys_index. If
 * this gets to be a real problem, we can always use a radix
 * tree or something here.
 *
542
 * This could be made generic for all device subsystems.
543 544 545 546 547 548
 */
struct memory_block *find_memory_block(struct mem_section *section)
{
	return find_memory_block_hinted(section, NULL);
}

549 550
static int init_memory_block(struct memory_block **memory,
			     struct mem_section *section, unsigned long state)
551
{
552
	struct memory_block *mem;
553
	unsigned long start_pfn;
554
	int scn_nr;
555 556
	int ret = 0;

557
	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
558 559 560
	if (!mem)
		return -ENOMEM;

561
	scn_nr = __section_nr(section);
562 563 564
	mem->start_section_nr =
			base_memory_block_id(scn_nr) * sections_per_block;
	mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
565
	mem->state = state;
566
	mem->section_count++;
567
	mutex_init(&mem->state_mutex);
568
	start_pfn = section_nr_to_pfn(mem->start_section_nr);
569 570
	mem->phys_device = arch_get_memory_phys_device(start_pfn);

571
	ret = register_memory(mem);
572 573
	if (!ret)
		ret = mem_create_simple_file(mem, phys_index);
574 575
	if (!ret)
		ret = mem_create_simple_file(mem, end_phys_index);
576 577 578 579 580 581
	if (!ret)
		ret = mem_create_simple_file(mem, state);
	if (!ret)
		ret = mem_create_simple_file(mem, phys_device);
	if (!ret)
		ret = mem_create_simple_file(mem, removable);
582 583 584 585 586 587

	*memory = mem;
	return ret;
}

static int add_memory_section(int nid, struct mem_section *section,
588
			struct memory_block **mem_p,
589 590
			unsigned long state, enum mem_add_context context)
{
591 592
	struct memory_block *mem = NULL;
	int scn_nr = __section_nr(section);
593 594 595 596
	int ret = 0;

	mutex_lock(&mem_sysfs_mutex);

597 598 599 600 601 602 603 604 605 606 607
	if (context == BOOT) {
		/* same memory block ? */
		if (mem_p && *mem_p)
			if (scn_nr >= (*mem_p)->start_section_nr &&
			    scn_nr <= (*mem_p)->end_section_nr) {
				mem = *mem_p;
				kobject_get(&mem->dev.kobj);
			}
	} else
		mem = find_memory_block(section);

608 609
	if (mem) {
		mem->section_count++;
610
		kobject_put(&mem->dev.kobj);
611
	} else {
612
		ret = init_memory_block(&mem, section, state);
613 614 615 616 617
		/* store memory_block pointer for next loop */
		if (!ret && context == BOOT)
			if (mem_p)
				*mem_p = mem;
	}
618

619
	if (!ret) {
620 621
		if (context == HOTPLUG &&
		    mem->section_count == sections_per_block)
622 623 624
			ret = register_mem_sect_under_node(mem, nid);
	}

625
	mutex_unlock(&mem_sysfs_mutex);
626 627 628
	return ret;
}

629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
/*
 * need an interface for the VM to add new memory regions,
 * but without onlining it.
 */
int register_new_memory(int nid, struct mem_section *section)
{
	return add_memory_section(nid, section, NULL, MEM_OFFLINE, HOTPLUG);
}

#ifdef CONFIG_MEMORY_HOTREMOVE
static void
unregister_memory(struct memory_block *memory)
{
	BUG_ON(memory->dev.bus != &memory_subsys);

	/* drop the ref. we got in remove_memory_block() */
	kobject_put(&memory->dev.kobj);
	device_unregister(&memory->dev);
}

static int remove_memory_block(unsigned long node_id,
			       struct mem_section *section, int phys_device)
651 652 653
{
	struct memory_block *mem;

654
	mutex_lock(&mem_sysfs_mutex);
655
	mem = find_memory_block(section);
656
	unregister_mem_sect_under_nodes(mem, __section_nr(section));
657 658 659 660

	mem->section_count--;
	if (mem->section_count == 0) {
		mem_remove_simple_file(mem, phys_index);
661
		mem_remove_simple_file(mem, end_phys_index);
662 663 664
		mem_remove_simple_file(mem, state);
		mem_remove_simple_file(mem, phys_device);
		mem_remove_simple_file(mem, removable);
665 666
		unregister_memory(mem);
	} else
667
		kobject_put(&mem->dev.kobj);
668

669
	mutex_unlock(&mem_sysfs_mutex);
670 671 672 673 674
	return 0;
}

int unregister_memory_section(struct mem_section *section)
{
675
	if (!present_section(section))
676 677 678 679
		return -EINVAL;

	return remove_memory_block(0, section, 0);
}
680
#endif /* CONFIG_MEMORY_HOTREMOVE */
681

682 683 684 685 686 687 688 689 690
/*
 * offline one memory block. If the memory block has been offlined, do nothing.
 */
int offline_memory_block(struct memory_block *mem)
{
	int ret = 0;

	mutex_lock(&mem->state_mutex);
	if (mem->state != MEM_OFFLINE)
691
		ret = __memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE, -1);
692 693 694 695 696
	mutex_unlock(&mem->state_mutex);

	return ret;
}

697 698 699 700 701 702
/* return true if the memory block is offlined, otherwise, return false */
bool is_memblock_offlined(struct memory_block *mem)
{
	return mem->state == MEM_OFFLINE;
}

703 704 705 706 707 708 709
/*
 * Initialize the sysfs support for memory devices...
 */
int __init memory_dev_init(void)
{
	unsigned int i;
	int ret;
710
	int err;
711
	unsigned long block_sz;
712
	struct memory_block *mem = NULL;
713

714
	ret = subsys_system_register(&memory_subsys, NULL);
715 716
	if (ret)
		goto out;
717

718 719 720
	block_sz = get_memory_block_size();
	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;

721 722 723 724 725
	/*
	 * Create entries for memory sections that were found
	 * during boot and have been initialized
	 */
	for (i = 0; i < NR_MEM_SECTIONS; i++) {
726
		if (!present_section_nr(i))
727
			continue;
728 729 730 731
		/* don't need to reuse memory_block if only one per block */
		err = add_memory_section(0, __nr_to_section(i),
				 (sections_per_block == 1) ? NULL : &mem,
					 MEM_ONLINE,
732
					 BOOT);
733 734
		if (!ret)
			ret = err;
735 736
	}

737
	err = memory_probe_init();
738 739 740
	if (!ret)
		ret = err;
	err = memory_fail_init();
741 742 743 744 745 746 747
	if (!ret)
		ret = err;
	err = block_size_init();
	if (!ret)
		ret = err;
out:
	if (ret)
748
		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
749 750
	return ret;
}