memory.c 20.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
 * Memory subsystem support
4 5 6 7 8 9 10 11 12 13 14 15 16
 *
 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
 *            Dave Hansen <haveblue@us.ibm.com>
 *
 * This file provides the necessary infrastructure to represent
 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
 * All arch-independent code that assumes MEMORY_HOTPLUG requires
 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/topology.h>
17
#include <linux/capability.h>
18 19 20 21
#include <linux/device.h>
#include <linux/memory.h>
#include <linux/memory_hotplug.h>
#include <linux/mm.h>
22
#include <linux/mutex.h>
23
#include <linux/stat.h>
24
#include <linux/slab.h>
25

Arun Sharma's avatar
Arun Sharma committed
26
#include <linux/atomic.h>
27
#include <linux/uaccess.h>
28

29 30
static DEFINE_MUTEX(mem_sysfs_mutex);

31
#define MEMORY_CLASS_NAME	"memory"
32

33 34
#define to_memory_block(dev) container_of(dev, struct memory_block, dev)

35 36 37 38 39 40
static int sections_per_block;

static inline int base_memory_block_id(int section_nr)
{
	return section_nr / sections_per_block;
}
41

42 43 44
static int memory_subsys_online(struct device *dev);
static int memory_subsys_offline(struct device *dev);

45
static struct bus_type memory_subsys = {
46
	.name = MEMORY_CLASS_NAME,
47
	.dev_name = MEMORY_CLASS_NAME,
48 49
	.online = memory_subsys_online,
	.offline = memory_subsys_offline,
50 51
};

52
static BLOCKING_NOTIFIER_HEAD(memory_chain);
53

54
int register_memory_notifier(struct notifier_block *nb)
55
{
56
	return blocking_notifier_chain_register(&memory_chain, nb);
57
}
58
EXPORT_SYMBOL(register_memory_notifier);
59

60
void unregister_memory_notifier(struct notifier_block *nb)
61
{
62
	blocking_notifier_chain_unregister(&memory_chain, nb);
63
}
64
EXPORT_SYMBOL(unregister_memory_notifier);
65

66 67 68 69 70 71 72 73 74 75 76 77 78 79
static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);

int register_memory_isolate_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(register_memory_isolate_notifier);

void unregister_memory_isolate_notifier(struct notifier_block *nb)
{
	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(unregister_memory_isolate_notifier);

80 81
static void memory_block_release(struct device *dev)
{
82
	struct memory_block *mem = to_memory_block(dev);
83 84 85 86

	kfree(mem);
}

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
unsigned long __weak memory_block_size_bytes(void)
{
	return MIN_MEMORY_BLOCK_SIZE;
}

static unsigned long get_memory_block_size(void)
{
	unsigned long block_sz;

	block_sz = memory_block_size_bytes();

	/* Validate blk_sz is a power of 2 and not less than section size */
	if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
		WARN_ON(1);
		block_sz = MIN_MEMORY_BLOCK_SIZE;
	}

	return block_sz;
}

107 108 109 110 111
/*
 * use this as the physical section index that this memsection
 * uses.
 */

112 113
static ssize_t show_mem_start_phys_index(struct device *dev,
			struct device_attribute *attr, char *buf)
114
{
115
	struct memory_block *mem = to_memory_block(dev);
116 117 118 119 120 121
	unsigned long phys_index;

	phys_index = mem->start_section_nr / sections_per_block;
	return sprintf(buf, "%08lx\n", phys_index);
}

122 123 124
/*
 * Show whether the section of memory is likely to be hot-removable
 */
125 126
static ssize_t show_mem_removable(struct device *dev,
			struct device_attribute *attr, char *buf)
127
{
128 129
	unsigned long i, pfn;
	int ret = 1;
130
	struct memory_block *mem = to_memory_block(dev);
131

132 133 134
	if (mem->state != MEM_ONLINE)
		goto out;

135
	for (i = 0; i < sections_per_block; i++) {
136 137
		if (!present_section_nr(mem->start_section_nr + i))
			continue;
138
		pfn = section_nr_to_pfn(mem->start_section_nr + i);
139 140 141
		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
	}

142
out:
143 144 145
	return sprintf(buf, "%d\n", ret);
}

146 147 148
/*
 * online, offline, going offline, etc.
 */
149 150
static ssize_t show_mem_state(struct device *dev,
			struct device_attribute *attr, char *buf)
151
{
152
	struct memory_block *mem = to_memory_block(dev);
153 154 155 156 157 158 159
	ssize_t len = 0;

	/*
	 * We can probably put these states in a nice little array
	 * so that they're not open-coded
	 */
	switch (mem->state) {
160 161 162 163 164 165 166 167 168 169 170 171 172 173
	case MEM_ONLINE:
		len = sprintf(buf, "online\n");
		break;
	case MEM_OFFLINE:
		len = sprintf(buf, "offline\n");
		break;
	case MEM_GOING_OFFLINE:
		len = sprintf(buf, "going-offline\n");
		break;
	default:
		len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
				mem->state);
		WARN_ON(1);
		break;
174 175 176 177 178
	}

	return len;
}

179
int memory_notify(unsigned long val, void *v)
180
{
181
	return blocking_notifier_call_chain(&memory_chain, val, v);
182 183
}

184 185 186 187 188
int memory_isolate_notify(unsigned long val, void *v)
{
	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
}

189
/*
190 191 192
 * The probe routines leave the pages uninitialized, just as the bootmem code
 * does. Make sure we do not access them, but instead use only information from
 * within sections.
193
 */
194
static bool pages_correctly_probed(unsigned long start_pfn)
195
{
196 197
	unsigned long section_nr = pfn_to_section_nr(start_pfn);
	unsigned long section_nr_end = section_nr + sections_per_block;
198 199 200 201 202 203 204
	unsigned long pfn = start_pfn;

	/*
	 * memmap between sections is not contiguous except with
	 * SPARSEMEM_VMEMMAP. We lookup the page once per section
	 * and assume memmap is contiguous within each section
	 */
205
	for (; section_nr < section_nr_end; section_nr++) {
206 207 208
		if (WARN_ON_ONCE(!pfn_valid(pfn)))
			return false;

209 210 211 212 213 214 215 216 217 218 219
		if (!present_section_nr(section_nr)) {
			pr_warn("section %ld pfn[%lx, %lx) not present",
				section_nr, pfn, pfn + PAGES_PER_SECTION);
			return false;
		} else if (!valid_section_nr(section_nr)) {
			pr_warn("section %ld pfn[%lx, %lx) no valid memmap",
				section_nr, pfn, pfn + PAGES_PER_SECTION);
			return false;
		} else if (online_section_nr(section_nr)) {
			pr_warn("section %ld pfn[%lx, %lx) is already online",
				section_nr, pfn, pfn + PAGES_PER_SECTION);
220 221
			return false;
		}
222
		pfn += PAGES_PER_SECTION;
223 224 225 226 227
	}

	return true;
}

228 229 230 231 232
/*
 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
 * OK to have direct references to sparsemem variables in here.
 */
static int
233
memory_block_action(unsigned long phys_index, unsigned long action, int online_type)
234
{
235
	unsigned long start_pfn;
236
	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
237 238
	int ret;

239
	start_pfn = section_nr_to_pfn(phys_index);
240

241
	switch (action) {
242
	case MEM_ONLINE:
243
		if (!pages_correctly_probed(start_pfn))
244 245 246 247 248 249 250 251 252 253 254
			return -EBUSY;

		ret = online_pages(start_pfn, nr_pages, online_type);
		break;
	case MEM_OFFLINE:
		ret = offline_pages(start_pfn, nr_pages);
		break;
	default:
		WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
		     "%ld\n", __func__, phys_index, action, action);
		ret = -EINVAL;
255 256 257 258 259
	}

	return ret;
}

260
static int memory_block_change_state(struct memory_block *mem,
261
		unsigned long to_state, unsigned long from_state_req)
262
{
263
	int ret = 0;
264

265 266
	if (mem->state != from_state_req)
		return -EINVAL;
267

268 269 270
	if (to_state == MEM_OFFLINE)
		mem->state = MEM_GOING_OFFLINE;

271 272 273
	ret = memory_block_action(mem->start_section_nr, to_state,
				mem->online_type);

274
	mem->state = ret ? from_state_req : to_state;
275

276 277
	return ret;
}
278

279
/* The device lock serializes operations on memory_subsys_[online|offline] */
280 281
static int memory_subsys_online(struct device *dev)
{
282
	struct memory_block *mem = to_memory_block(dev);
283
	int ret;
284

285 286
	if (mem->state == MEM_ONLINE)
		return 0;
287

288 289 290 291 292 293
	/*
	 * If we are called from store_mem_state(), online_type will be
	 * set >= 0 Otherwise we were called from the device online
	 * attribute and need to set the online_type.
	 */
	if (mem->online_type < 0)
294
		mem->online_type = MMOP_ONLINE_KEEP;
295

296
	ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
297

298 299
	/* clear online_type */
	mem->online_type = -1;
300 301 302 303 304

	return ret;
}

static int memory_subsys_offline(struct device *dev)
305
{
306
	struct memory_block *mem = to_memory_block(dev);
307

308 309
	if (mem->state == MEM_OFFLINE)
		return 0;
310

311 312 313 314
	/* Can't offline block with non-present sections */
	if (mem->section_count != sections_per_block)
		return -EINVAL;

315
	return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
316
}
317

318
static ssize_t
319 320
store_mem_state(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t count)
321
{
322
	struct memory_block *mem = to_memory_block(dev);
323
	int ret, online_type;
324

325 326 327
	ret = lock_device_hotplug_sysfs();
	if (ret)
		return ret;
328

329
	if (sysfs_streq(buf, "online_kernel"))
330
		online_type = MMOP_ONLINE_KERNEL;
331
	else if (sysfs_streq(buf, "online_movable"))
332
		online_type = MMOP_ONLINE_MOVABLE;
333
	else if (sysfs_streq(buf, "online"))
334
		online_type = MMOP_ONLINE_KEEP;
335
	else if (sysfs_streq(buf, "offline"))
336
		online_type = MMOP_OFFLINE;
337 338 339 340
	else {
		ret = -EINVAL;
		goto err;
	}
341 342

	switch (online_type) {
343 344 345
	case MMOP_ONLINE_KERNEL:
	case MMOP_ONLINE_MOVABLE:
	case MMOP_ONLINE_KEEP:
346
		/* mem->online_type is protected by device_hotplug_lock */
347 348 349
		mem->online_type = online_type;
		ret = device_online(&mem->dev);
		break;
350
	case MMOP_OFFLINE:
351 352 353 354
		ret = device_offline(&mem->dev);
		break;
	default:
		ret = -EINVAL; /* should never happen */
355 356
	}

357
err:
358
	unlock_device_hotplug();
359

360
	if (ret < 0)
361
		return ret;
362 363 364
	if (ret)
		return -EINVAL;

365 366 367 368 369 370 371 372 373 374 375 376
	return count;
}

/*
 * phys_device is a bad name for this.  What I really want
 * is a way to differentiate between memory ranges that
 * are part of physical devices that constitute
 * a complete removable unit or fru.
 * i.e. do these ranges belong to the same physical device,
 * s.t. if I offline all of these sections I can then
 * remove the physical device?
 */
377 378
static ssize_t show_phys_device(struct device *dev,
				struct device_attribute *attr, char *buf)
379
{
380
	struct memory_block *mem = to_memory_block(dev);
381 382 383
	return sprintf(buf, "%d\n", mem->phys_device);
}

384
#ifdef CONFIG_MEMORY_HOTREMOVE
385 386 387 388 389 390 391 392 393 394 395 396 397
static void print_allowed_zone(char *buf, int nid, unsigned long start_pfn,
		unsigned long nr_pages, int online_type,
		struct zone *default_zone)
{
	struct zone *zone;

	zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages);
	if (zone != default_zone) {
		strcat(buf, " ");
		strcat(buf, zone->name);
	}
}

398 399 400 401
static ssize_t show_valid_zones(struct device *dev,
				struct device_attribute *attr, char *buf)
{
	struct memory_block *mem = to_memory_block(dev);
402
	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
403
	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
404
	unsigned long valid_start_pfn, valid_end_pfn;
405
	struct zone *default_zone;
406
	int nid;
407

408 409 410 411 412
	/*
	 * Check the existing zone. Make sure that we do that only on the
	 * online nodes otherwise the page_zone is not reliable
	 */
	if (mem->state == MEM_ONLINE) {
413 414 415 416 417 418 419 420
		/*
		 * The block contains more than one zone can not be offlined.
		 * This can happen e.g. for ZONE_DMA and ZONE_DMA32
		 */
		if (!test_pages_in_a_zone(start_pfn, start_pfn + nr_pages,
					  &valid_start_pfn, &valid_end_pfn))
			return sprintf(buf, "none\n");
		start_pfn = valid_start_pfn;
421 422
		strcat(buf, page_zone(pfn_to_page(start_pfn))->name);
		goto out;
423 424
	}

425
	nid = mem->nid;
426 427
	default_zone = zone_for_pfn_range(MMOP_ONLINE_KEEP, nid, start_pfn, nr_pages);
	strcat(buf, default_zone->name);
428

429 430 431 432
	print_allowed_zone(buf, nid, start_pfn, nr_pages, MMOP_ONLINE_KERNEL,
			default_zone);
	print_allowed_zone(buf, nid, start_pfn, nr_pages, MMOP_ONLINE_MOVABLE,
			default_zone);
433
out:
434 435 436
	strcat(buf, "\n");

	return strlen(buf);
437 438 439 440
}
static DEVICE_ATTR(valid_zones, 0444, show_valid_zones, NULL);
#endif

441 442 443 444
static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
445 446 447 448 449

/*
 * Block size attribute stuff
 */
static ssize_t
450
print_block_size(struct device *dev, struct device_attribute *attr,
451
		 char *buf)
452
{
453
	return sprintf(buf, "%lx\n", get_memory_block_size());
454 455
}

456
static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
457

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
/*
 * Memory auto online policy.
 */

static ssize_t
show_auto_online_blocks(struct device *dev, struct device_attribute *attr,
			char *buf)
{
	if (memhp_auto_online)
		return sprintf(buf, "online\n");
	else
		return sprintf(buf, "offline\n");
}

static ssize_t
store_auto_online_blocks(struct device *dev, struct device_attribute *attr,
			 const char *buf, size_t count)
{
	if (sysfs_streq(buf, "online"))
		memhp_auto_online = true;
	else if (sysfs_streq(buf, "offline"))
		memhp_auto_online = false;
	else
		return -EINVAL;

	return count;
}

static DEVICE_ATTR(auto_online_blocks, 0644, show_auto_online_blocks,
		   store_auto_online_blocks);

489 490 491 492 493 494 495 496
/*
 * Some architectures will have custom drivers to do this, and
 * will not need to do it from userspace.  The fake hot-add code
 * as well as ppc64 will do all of their discovery in userspace
 * and will require this interface.
 */
#ifdef CONFIG_ARCH_MEMORY_PROBE
static ssize_t
497
memory_probe_store(struct device *dev, struct device_attribute *attr,
498
		   const char *buf, size_t count)
499 500
{
	u64 phys_addr;
501
	int nid, ret;
502
	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
503

504 505 506
	ret = kstrtoull(buf, 0, &phys_addr);
	if (ret)
		return ret;
507

508 509 510
	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
		return -EINVAL;

511 512 513 514
	ret = lock_device_hotplug_sysfs();
	if (ret)
		goto out;

515
	nid = memory_add_physaddr_to_nid(phys_addr);
516 517
	ret = __add_memory(nid, phys_addr,
			   MIN_MEMORY_BLOCK_SIZE * sections_per_block);
518

519 520
	if (ret)
		goto out;
521

522 523
	ret = count;
out:
524
	unlock_device_hotplug();
525
	return ret;
526 527
}

528
static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
529 530
#endif

531 532 533 534 535 536 537
#ifdef CONFIG_MEMORY_FAILURE
/*
 * Support for offlining pages of memory
 */

/* Soft offline a page */
static ssize_t
538 539
store_soft_offline_page(struct device *dev,
			struct device_attribute *attr,
540
			const char *buf, size_t count)
541 542 543 544 545
{
	int ret;
	u64 pfn;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
546
	if (kstrtoull(buf, 0, &pfn) < 0)
547 548 549 550 551 552 553 554 555 556
		return -EINVAL;
	pfn >>= PAGE_SHIFT;
	if (!pfn_valid(pfn))
		return -ENXIO;
	ret = soft_offline_page(pfn_to_page(pfn), 0);
	return ret == 0 ? count : ret;
}

/* Forcibly offline a page, including killing processes. */
static ssize_t
557 558
store_hard_offline_page(struct device *dev,
			struct device_attribute *attr,
559
			const char *buf, size_t count)
560 561 562 563 564
{
	int ret;
	u64 pfn;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
565
	if (kstrtoull(buf, 0, &pfn) < 0)
566 567
		return -EINVAL;
	pfn >>= PAGE_SHIFT;
568
	ret = memory_failure(pfn, 0);
569 570 571
	return ret ? ret : count;
}

572 573
static DEVICE_ATTR(soft_offline_page, S_IWUSR, NULL, store_soft_offline_page);
static DEVICE_ATTR(hard_offline_page, S_IWUSR, NULL, store_hard_offline_page);
574 575
#endif

576 577 578 579 580
/*
 * Note that phys_device is optional.  It is here to allow for
 * differentiation between which *physical* devices each
 * section belongs to...
 */
581 582 583 584
int __weak arch_get_memory_phys_device(unsigned long start_pfn)
{
	return 0;
}
585

586 587 588 589
/*
 * A reference for the returned object is held and the reference for the
 * hinted object is released.
 */
590 591
struct memory_block *find_memory_block_hinted(struct mem_section *section,
					      struct memory_block *hint)
592
{
593
	int block_id = base_memory_block_id(__section_nr(section));
594 595
	struct device *hintdev = hint ? &hint->dev : NULL;
	struct device *dev;
596

597 598 599 600
	dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
	if (hint)
		put_device(&hint->dev);
	if (!dev)
601
		return NULL;
602
	return to_memory_block(dev);
603 604
}

605 606 607 608 609 610
/*
 * For now, we have a linear search to go find the appropriate
 * memory_block corresponding to a particular phys_index. If
 * this gets to be a real problem, we can always use a radix
 * tree or something here.
 *
611
 * This could be made generic for all device subsystems.
612 613 614 615 616 617
 */
struct memory_block *find_memory_block(struct mem_section *section)
{
	return find_memory_block_hinted(section, NULL);
}

618 619 620 621 622
static struct attribute *memory_memblk_attrs[] = {
	&dev_attr_phys_index.attr,
	&dev_attr_state.attr,
	&dev_attr_phys_device.attr,
	&dev_attr_removable.attr,
623 624 625
#ifdef CONFIG_MEMORY_HOTREMOVE
	&dev_attr_valid_zones.attr,
#endif
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
	NULL
};

static struct attribute_group memory_memblk_attr_group = {
	.attrs = memory_memblk_attrs,
};

static const struct attribute_group *memory_memblk_attr_groups[] = {
	&memory_memblk_attr_group,
	NULL,
};

/*
 * register_memory - Setup a sysfs device for a memory block
 */
static
int register_memory(struct memory_block *memory)
{
644 645
	int ret;

646 647 648 649
	memory->dev.bus = &memory_subsys;
	memory->dev.id = memory->start_section_nr / sections_per_block;
	memory->dev.release = memory_block_release;
	memory->dev.groups = memory_memblk_attr_groups;
650
	memory->dev.offline = memory->state == MEM_OFFLINE;
651

652 653 654 655 656
	ret = device_register(&memory->dev);
	if (ret)
		put_device(&memory->dev);

	return ret;
657 658
}

659 660
static int init_memory_block(struct memory_block **memory,
			     struct mem_section *section, unsigned long state)
661
{
662
	struct memory_block *mem;
663
	unsigned long start_pfn;
664
	int scn_nr;
665 666
	int ret = 0;

667
	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
668 669 670
	if (!mem)
		return -ENOMEM;

671
	scn_nr = __section_nr(section);
672 673 674
	mem->start_section_nr =
			base_memory_block_id(scn_nr) * sections_per_block;
	mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
675
	mem->state = state;
676
	start_pfn = section_nr_to_pfn(mem->start_section_nr);
677 678
	mem->phys_device = arch_get_memory_phys_device(start_pfn);

679 680 681 682 683 684
	ret = register_memory(mem);

	*memory = mem;
	return ret;
}

685
static int add_memory_block(int base_section_nr)
686
{
687 688
	struct memory_block *mem;
	int i, ret, section_count = 0, section_nr;
689

690 691 692 693 694 695 696 697
	for (i = base_section_nr;
	     (i < base_section_nr + sections_per_block) && i < NR_MEM_SECTIONS;
	     i++) {
		if (!present_section_nr(i))
			continue;
		if (section_count == 0)
			section_nr = i;
		section_count++;
698 699
	}

700 701 702 703 704 705 706
	if (section_count == 0)
		return 0;
	ret = init_memory_block(&mem, __nr_to_section(section_nr), MEM_ONLINE);
	if (ret)
		return ret;
	mem->section_count = section_count;
	return 0;
707 708
}

709 710 711 712
/*
 * need an interface for the VM to add new memory regions,
 * but without onlining it.
 */
713
int hotplug_memory_register(int nid, struct mem_section *section)
714
{
715 716
	int ret = 0;
	struct memory_block *mem;
717 718 719

	mutex_lock(&mem_sysfs_mutex);

720 721 722 723 724 725 726 727
	mem = find_memory_block(section);
	if (mem) {
		mem->section_count++;
		put_device(&mem->dev);
	} else {
		ret = init_memory_block(&mem, section, MEM_OFFLINE);
		if (ret)
			goto out;
728
		mem->section_count++;
729 730 731 732
	}

out:
	mutex_unlock(&mem_sysfs_mutex);
733
	return ret;
734 735 736 737 738 739 740 741 742
}

#ifdef CONFIG_MEMORY_HOTREMOVE
static void
unregister_memory(struct memory_block *memory)
{
	BUG_ON(memory->dev.bus != &memory_subsys);

	/* drop the ref. we got in remove_memory_block() */
743
	put_device(&memory->dev);
744 745 746
	device_unregister(&memory->dev);
}

747
static int remove_memory_section(unsigned long node_id,
748
			       struct mem_section *section, int phys_device)
749 750 751
{
	struct memory_block *mem;

752
	mutex_lock(&mem_sysfs_mutex);
753 754 755 756 757

	/*
	 * Some users of the memory hotplug do not want/need memblock to
	 * track all sections. Skip over those.
	 */
758
	mem = find_memory_block(section);
759 760 761
	if (!mem)
		goto out_unlock;

762
	unregister_mem_sect_under_nodes(mem, __section_nr(section));
763 764

	mem->section_count--;
765
	if (mem->section_count == 0)
766
		unregister_memory(mem);
767
	else
768
		put_device(&mem->dev);
769

770
out_unlock:
771
	mutex_unlock(&mem_sysfs_mutex);
772 773 774 775 776
	return 0;
}

int unregister_memory_section(struct mem_section *section)
{
777
	if (!present_section(section))
778 779
		return -EINVAL;

780
	return remove_memory_section(0, section, 0);
781
}
782
#endif /* CONFIG_MEMORY_HOTREMOVE */
783

784 785 786 787 788 789
/* return true if the memory block is offlined, otherwise, return false */
bool is_memblock_offlined(struct memory_block *mem)
{
	return mem->state == MEM_OFFLINE;
}

790 791 792 793 794 795 796 797 798 799 800
static struct attribute *memory_root_attrs[] = {
#ifdef CONFIG_ARCH_MEMORY_PROBE
	&dev_attr_probe.attr,
#endif

#ifdef CONFIG_MEMORY_FAILURE
	&dev_attr_soft_offline_page.attr,
	&dev_attr_hard_offline_page.attr,
#endif

	&dev_attr_block_size_bytes.attr,
801
	&dev_attr_auto_online_blocks.attr,
802 803 804 805 806 807 808 809 810 811 812 813
	NULL
};

static struct attribute_group memory_root_attr_group = {
	.attrs = memory_root_attrs,
};

static const struct attribute_group *memory_root_attr_groups[] = {
	&memory_root_attr_group,
	NULL,
};

814 815 816 817 818 819 820
/*
 * Initialize the sysfs support for memory devices...
 */
int __init memory_dev_init(void)
{
	unsigned int i;
	int ret;
821
	int err;
822
	unsigned long block_sz;
823

824
	ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
825 826
	if (ret)
		goto out;
827

828 829 830
	block_sz = get_memory_block_size();
	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;

831 832 833 834
	/*
	 * Create entries for memory sections that were found
	 * during boot and have been initialized
	 */
835
	mutex_lock(&mem_sysfs_mutex);
836 837
	for (i = 0; i <= __highest_present_section_nr;
		i += sections_per_block) {
838
		err = add_memory_block(i);
839 840
		if (!ret)
			ret = err;
841
	}
842
	mutex_unlock(&mem_sysfs_mutex);
843

844 845
out:
	if (ret)
846
		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
847 848
	return ret;
}