memory.c 19.7 KB
Newer Older
1
/*
2
 * Memory subsystem support
3 4 5 6 7 8 9 10 11 12 13 14 15
 *
 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
 *            Dave Hansen <haveblue@us.ibm.com>
 *
 * This file provides the necessary infrastructure to represent
 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
 * All arch-independent code that assumes MEMORY_HOTPLUG requires
 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/topology.h>
16
#include <linux/capability.h>
17 18 19 20
#include <linux/device.h>
#include <linux/memory.h>
#include <linux/memory_hotplug.h>
#include <linux/mm.h>
21
#include <linux/mutex.h>
22
#include <linux/stat.h>
23
#include <linux/slab.h>
24

Arun Sharma's avatar
Arun Sharma committed
25
#include <linux/atomic.h>
26
#include <linux/uaccess.h>
27

28 29
static DEFINE_MUTEX(mem_sysfs_mutex);

30
#define MEMORY_CLASS_NAME	"memory"
31

32 33
#define to_memory_block(dev) container_of(dev, struct memory_block, dev)

34 35 36 37 38 39
static int sections_per_block;

static inline int base_memory_block_id(int section_nr)
{
	return section_nr / sections_per_block;
}
40

41 42 43
static int memory_subsys_online(struct device *dev);
static int memory_subsys_offline(struct device *dev);

44
static struct bus_type memory_subsys = {
45
	.name = MEMORY_CLASS_NAME,
46
	.dev_name = MEMORY_CLASS_NAME,
47 48
	.online = memory_subsys_online,
	.offline = memory_subsys_offline,
49 50
};

51
static BLOCKING_NOTIFIER_HEAD(memory_chain);
52

53
int register_memory_notifier(struct notifier_block *nb)
54
{
55
	return blocking_notifier_chain_register(&memory_chain, nb);
56
}
57
EXPORT_SYMBOL(register_memory_notifier);
58

59
void unregister_memory_notifier(struct notifier_block *nb)
60
{
61
	blocking_notifier_chain_unregister(&memory_chain, nb);
62
}
63
EXPORT_SYMBOL(unregister_memory_notifier);
64

65 66 67 68 69 70 71 72 73 74 75 76 77 78
static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);

int register_memory_isolate_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(register_memory_isolate_notifier);

void unregister_memory_isolate_notifier(struct notifier_block *nb)
{
	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(unregister_memory_isolate_notifier);

79 80
static void memory_block_release(struct device *dev)
{
81
	struct memory_block *mem = to_memory_block(dev);
82 83 84 85

	kfree(mem);
}

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
unsigned long __weak memory_block_size_bytes(void)
{
	return MIN_MEMORY_BLOCK_SIZE;
}

static unsigned long get_memory_block_size(void)
{
	unsigned long block_sz;

	block_sz = memory_block_size_bytes();

	/* Validate blk_sz is a power of 2 and not less than section size */
	if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
		WARN_ON(1);
		block_sz = MIN_MEMORY_BLOCK_SIZE;
	}

	return block_sz;
}

106 107 108 109 110
/*
 * use this as the physical section index that this memsection
 * uses.
 */

111 112
static ssize_t show_mem_start_phys_index(struct device *dev,
			struct device_attribute *attr, char *buf)
113
{
114
	struct memory_block *mem = to_memory_block(dev);
115 116 117 118 119 120
	unsigned long phys_index;

	phys_index = mem->start_section_nr / sections_per_block;
	return sprintf(buf, "%08lx\n", phys_index);
}

121 122 123
/*
 * Show whether the section of memory is likely to be hot-removable
 */
124 125
static ssize_t show_mem_removable(struct device *dev,
			struct device_attribute *attr, char *buf)
126
{
127 128
	unsigned long i, pfn;
	int ret = 1;
129
	struct memory_block *mem = to_memory_block(dev);
130

131
	for (i = 0; i < sections_per_block; i++) {
132 133
		if (!present_section_nr(mem->start_section_nr + i))
			continue;
134
		pfn = section_nr_to_pfn(mem->start_section_nr + i);
135 136 137
		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
	}

138 139 140
	return sprintf(buf, "%d\n", ret);
}

141 142 143
/*
 * online, offline, going offline, etc.
 */
144 145
static ssize_t show_mem_state(struct device *dev,
			struct device_attribute *attr, char *buf)
146
{
147
	struct memory_block *mem = to_memory_block(dev);
148 149 150 151 152 153 154
	ssize_t len = 0;

	/*
	 * We can probably put these states in a nice little array
	 * so that they're not open-coded
	 */
	switch (mem->state) {
155 156 157 158 159 160 161 162 163 164 165 166 167 168
	case MEM_ONLINE:
		len = sprintf(buf, "online\n");
		break;
	case MEM_OFFLINE:
		len = sprintf(buf, "offline\n");
		break;
	case MEM_GOING_OFFLINE:
		len = sprintf(buf, "going-offline\n");
		break;
	default:
		len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
				mem->state);
		WARN_ON(1);
		break;
169 170 171 172 173
	}

	return len;
}

174
int memory_notify(unsigned long val, void *v)
175
{
176
	return blocking_notifier_call_chain(&memory_chain, val, v);
177 178
}

179 180 181 182 183
int memory_isolate_notify(unsigned long val, void *v)
{
	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
}

184 185 186 187
/*
 * The probe routines leave the pages reserved, just as the bootmem code does.
 * Make sure they're still that way.
 */
188
static bool pages_correctly_reserved(unsigned long start_pfn)
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
{
	int i, j;
	struct page *page;
	unsigned long pfn = start_pfn;

	/*
	 * memmap between sections is not contiguous except with
	 * SPARSEMEM_VMEMMAP. We lookup the page once per section
	 * and assume memmap is contiguous within each section
	 */
	for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
		if (WARN_ON_ONCE(!pfn_valid(pfn)))
			return false;
		page = pfn_to_page(pfn);

		for (j = 0; j < PAGES_PER_SECTION; j++) {
			if (PageReserved(page + j))
				continue;

			printk(KERN_WARNING "section number %ld page number %d "
				"not reserved, was it already online?\n",
				pfn_to_section_nr(pfn), j);

			return false;
		}
	}

	return true;
}

219 220 221
/*
 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
 * OK to have direct references to sparsemem variables in here.
222
 * Must already be protected by mem_hotplug_begin().
223 224
 */
static int
225
memory_block_action(unsigned long phys_index, unsigned long action, int online_type)
226
{
227
	unsigned long start_pfn;
228
	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
229 230
	int ret;

231
	start_pfn = section_nr_to_pfn(phys_index);
232

233
	switch (action) {
234 235 236 237 238 239 240 241 242 243 244 245 246
	case MEM_ONLINE:
		if (!pages_correctly_reserved(start_pfn))
			return -EBUSY;

		ret = online_pages(start_pfn, nr_pages, online_type);
		break;
	case MEM_OFFLINE:
		ret = offline_pages(start_pfn, nr_pages);
		break;
	default:
		WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
		     "%ld\n", __func__, phys_index, action, action);
		ret = -EINVAL;
247 248 249 250 251
	}

	return ret;
}

252
static int memory_block_change_state(struct memory_block *mem,
253
		unsigned long to_state, unsigned long from_state_req)
254
{
255
	int ret = 0;
256

257 258
	if (mem->state != from_state_req)
		return -EINVAL;
259

260 261 262
	if (to_state == MEM_OFFLINE)
		mem->state = MEM_GOING_OFFLINE;

263 264 265
	ret = memory_block_action(mem->start_section_nr, to_state,
				mem->online_type);

266
	mem->state = ret ? from_state_req : to_state;
267

268 269
	return ret;
}
270

271
/* The device lock serializes operations on memory_subsys_[online|offline] */
272 273
static int memory_subsys_online(struct device *dev)
{
274
	struct memory_block *mem = to_memory_block(dev);
275
	int ret;
276

277 278
	if (mem->state == MEM_ONLINE)
		return 0;
279

280 281 282 283 284 285
	/*
	 * If we are called from store_mem_state(), online_type will be
	 * set >= 0 Otherwise we were called from the device online
	 * attribute and need to set the online_type.
	 */
	if (mem->online_type < 0)
286
		mem->online_type = MMOP_ONLINE_KEEP;
287

288
	/* Already under protection of mem_hotplug_begin() */
289
	ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
290

291 292
	/* clear online_type */
	mem->online_type = -1;
293 294 295 296 297

	return ret;
}

static int memory_subsys_offline(struct device *dev)
298
{
299
	struct memory_block *mem = to_memory_block(dev);
300

301 302
	if (mem->state == MEM_OFFLINE)
		return 0;
303

304 305 306 307
	/* Can't offline block with non-present sections */
	if (mem->section_count != sections_per_block)
		return -EINVAL;

308
	return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
309
}
310

311
static ssize_t
312 313
store_mem_state(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t count)
314
{
315
	struct memory_block *mem = to_memory_block(dev);
316
	int ret, online_type;
317

318 319 320
	ret = lock_device_hotplug_sysfs();
	if (ret)
		return ret;
321

322
	if (sysfs_streq(buf, "online_kernel"))
323
		online_type = MMOP_ONLINE_KERNEL;
324
	else if (sysfs_streq(buf, "online_movable"))
325
		online_type = MMOP_ONLINE_MOVABLE;
326
	else if (sysfs_streq(buf, "online"))
327
		online_type = MMOP_ONLINE_KEEP;
328
	else if (sysfs_streq(buf, "offline"))
329
		online_type = MMOP_OFFLINE;
330 331 332 333
	else {
		ret = -EINVAL;
		goto err;
	}
334

335 336 337 338 339 340 341 342 343
	/*
	 * Memory hotplug needs to hold mem_hotplug_begin() for probe to find
	 * the correct memory block to online before doing device_online(dev),
	 * which will take dev->mutex.  Take the lock early to prevent an
	 * inversion, memory_subsys_online() callbacks will be implemented by
	 * assuming it's already protected.
	 */
	mem_hotplug_begin();

344
	switch (online_type) {
345 346 347
	case MMOP_ONLINE_KERNEL:
	case MMOP_ONLINE_MOVABLE:
	case MMOP_ONLINE_KEEP:
348 349 350
		mem->online_type = online_type;
		ret = device_online(&mem->dev);
		break;
351
	case MMOP_OFFLINE:
352 353 354 355
		ret = device_offline(&mem->dev);
		break;
	default:
		ret = -EINVAL; /* should never happen */
356 357
	}

358
	mem_hotplug_done();
359
err:
360
	unlock_device_hotplug();
361

362
	if (ret < 0)
363
		return ret;
364 365 366
	if (ret)
		return -EINVAL;

367 368 369 370 371 372 373 374 375 376 377 378
	return count;
}

/*
 * phys_device is a bad name for this.  What I really want
 * is a way to differentiate between memory ranges that
 * are part of physical devices that constitute
 * a complete removable unit or fru.
 * i.e. do these ranges belong to the same physical device,
 * s.t. if I offline all of these sections I can then
 * remove the physical device?
 */
379 380
static ssize_t show_phys_device(struct device *dev,
				struct device_attribute *attr, char *buf)
381
{
382
	struct memory_block *mem = to_memory_block(dev);
383 384 385
	return sprintf(buf, "%d\n", mem->phys_device);
}

386 387 388 389 390 391
#ifdef CONFIG_MEMORY_HOTREMOVE
static ssize_t show_valid_zones(struct device *dev,
				struct device_attribute *attr, char *buf)
{
	struct memory_block *mem = to_memory_block(dev);
	unsigned long start_pfn, end_pfn;
392
	unsigned long valid_start, valid_end, valid_pages;
393 394
	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
	struct zone *zone;
395
	int zone_shift = 0;
396 397 398 399 400

	start_pfn = section_nr_to_pfn(mem->start_section_nr);
	end_pfn = start_pfn + nr_pages;

	/* The block contains more than one zone can not be offlined. */
401
	if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start, &valid_end))
402 403
		return sprintf(buf, "none\n");

404 405
	zone = page_zone(pfn_to_page(valid_start));
	valid_pages = valid_end - valid_start;
406

407 408 409 410
	/* MMOP_ONLINE_KEEP */
	sprintf(buf, "%s", zone->name);

	/* MMOP_ONLINE_KERNEL */
411
	zone_can_shift(valid_start, valid_pages, ZONE_NORMAL, &zone_shift);
412 413 414
	if (zone_shift) {
		strcat(buf, " ");
		strcat(buf, (zone + zone_shift)->name);
415 416
	}

417
	/* MMOP_ONLINE_MOVABLE */
418
	zone_can_shift(valid_start, valid_pages, ZONE_MOVABLE, &zone_shift);
419 420 421
	if (zone_shift) {
		strcat(buf, " ");
		strcat(buf, (zone + zone_shift)->name);
422 423
	}

424 425 426
	strcat(buf, "\n");

	return strlen(buf);
427 428 429 430
}
static DEVICE_ATTR(valid_zones, 0444, show_valid_zones, NULL);
#endif

431 432 433 434
static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
435 436 437 438 439

/*
 * Block size attribute stuff
 */
static ssize_t
440
print_block_size(struct device *dev, struct device_attribute *attr,
441
		 char *buf)
442
{
443
	return sprintf(buf, "%lx\n", get_memory_block_size());
444 445
}

446
static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
447

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
/*
 * Memory auto online policy.
 */

static ssize_t
show_auto_online_blocks(struct device *dev, struct device_attribute *attr,
			char *buf)
{
	if (memhp_auto_online)
		return sprintf(buf, "online\n");
	else
		return sprintf(buf, "offline\n");
}

static ssize_t
store_auto_online_blocks(struct device *dev, struct device_attribute *attr,
			 const char *buf, size_t count)
{
	if (sysfs_streq(buf, "online"))
		memhp_auto_online = true;
	else if (sysfs_streq(buf, "offline"))
		memhp_auto_online = false;
	else
		return -EINVAL;

	return count;
}

static DEVICE_ATTR(auto_online_blocks, 0644, show_auto_online_blocks,
		   store_auto_online_blocks);

479 480 481 482 483 484 485 486
/*
 * Some architectures will have custom drivers to do this, and
 * will not need to do it from userspace.  The fake hot-add code
 * as well as ppc64 will do all of their discovery in userspace
 * and will require this interface.
 */
#ifdef CONFIG_ARCH_MEMORY_PROBE
static ssize_t
487
memory_probe_store(struct device *dev, struct device_attribute *attr,
488
		   const char *buf, size_t count)
489 490
{
	u64 phys_addr;
491
	int nid, ret;
492
	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
493

494 495 496
	ret = kstrtoull(buf, 0, &phys_addr);
	if (ret)
		return ret;
497

498 499 500
	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
		return -EINVAL;

501 502 503
	nid = memory_add_physaddr_to_nid(phys_addr);
	ret = add_memory(nid, phys_addr,
			 MIN_MEMORY_BLOCK_SIZE * sections_per_block);
504

505 506
	if (ret)
		goto out;
507

508 509 510
	ret = count;
out:
	return ret;
511 512
}

513
static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
514 515
#endif

516 517 518 519 520 521 522
#ifdef CONFIG_MEMORY_FAILURE
/*
 * Support for offlining pages of memory
 */

/* Soft offline a page */
static ssize_t
523 524
store_soft_offline_page(struct device *dev,
			struct device_attribute *attr,
525
			const char *buf, size_t count)
526 527 528 529 530
{
	int ret;
	u64 pfn;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
531
	if (kstrtoull(buf, 0, &pfn) < 0)
532 533 534 535 536 537 538 539 540 541
		return -EINVAL;
	pfn >>= PAGE_SHIFT;
	if (!pfn_valid(pfn))
		return -ENXIO;
	ret = soft_offline_page(pfn_to_page(pfn), 0);
	return ret == 0 ? count : ret;
}

/* Forcibly offline a page, including killing processes. */
static ssize_t
542 543
store_hard_offline_page(struct device *dev,
			struct device_attribute *attr,
544
			const char *buf, size_t count)
545 546 547 548 549
{
	int ret;
	u64 pfn;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
550
	if (kstrtoull(buf, 0, &pfn) < 0)
551 552
		return -EINVAL;
	pfn >>= PAGE_SHIFT;
553
	ret = memory_failure(pfn, 0, 0);
554 555 556
	return ret ? ret : count;
}

557 558
static DEVICE_ATTR(soft_offline_page, S_IWUSR, NULL, store_soft_offline_page);
static DEVICE_ATTR(hard_offline_page, S_IWUSR, NULL, store_hard_offline_page);
559 560
#endif

561 562 563 564 565
/*
 * Note that phys_device is optional.  It is here to allow for
 * differentiation between which *physical* devices each
 * section belongs to...
 */
566 567 568 569
int __weak arch_get_memory_phys_device(unsigned long start_pfn)
{
	return 0;
}
570

571 572 573 574
/*
 * A reference for the returned object is held and the reference for the
 * hinted object is released.
 */
575 576
struct memory_block *find_memory_block_hinted(struct mem_section *section,
					      struct memory_block *hint)
577
{
578
	int block_id = base_memory_block_id(__section_nr(section));
579 580
	struct device *hintdev = hint ? &hint->dev : NULL;
	struct device *dev;
581

582 583 584 585
	dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
	if (hint)
		put_device(&hint->dev);
	if (!dev)
586
		return NULL;
587
	return to_memory_block(dev);
588 589
}

590 591 592 593 594 595
/*
 * For now, we have a linear search to go find the appropriate
 * memory_block corresponding to a particular phys_index. If
 * this gets to be a real problem, we can always use a radix
 * tree or something here.
 *
596
 * This could be made generic for all device subsystems.
597 598 599 600 601 602
 */
struct memory_block *find_memory_block(struct mem_section *section)
{
	return find_memory_block_hinted(section, NULL);
}

603 604 605 606 607
static struct attribute *memory_memblk_attrs[] = {
	&dev_attr_phys_index.attr,
	&dev_attr_state.attr,
	&dev_attr_phys_device.attr,
	&dev_attr_removable.attr,
608 609 610
#ifdef CONFIG_MEMORY_HOTREMOVE
	&dev_attr_valid_zones.attr,
#endif
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
	NULL
};

static struct attribute_group memory_memblk_attr_group = {
	.attrs = memory_memblk_attrs,
};

static const struct attribute_group *memory_memblk_attr_groups[] = {
	&memory_memblk_attr_group,
	NULL,
};

/*
 * register_memory - Setup a sysfs device for a memory block
 */
static
int register_memory(struct memory_block *memory)
{
	memory->dev.bus = &memory_subsys;
	memory->dev.id = memory->start_section_nr / sections_per_block;
	memory->dev.release = memory_block_release;
	memory->dev.groups = memory_memblk_attr_groups;
633
	memory->dev.offline = memory->state == MEM_OFFLINE;
634

635
	return device_register(&memory->dev);
636 637
}

638 639
static int init_memory_block(struct memory_block **memory,
			     struct mem_section *section, unsigned long state)
640
{
641
	struct memory_block *mem;
642
	unsigned long start_pfn;
643
	int scn_nr;
644 645
	int ret = 0;

646
	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
647 648 649
	if (!mem)
		return -ENOMEM;

650
	scn_nr = __section_nr(section);
651 652 653
	mem->start_section_nr =
			base_memory_block_id(scn_nr) * sections_per_block;
	mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
654
	mem->state = state;
655
	start_pfn = section_nr_to_pfn(mem->start_section_nr);
656 657
	mem->phys_device = arch_get_memory_phys_device(start_pfn);

658 659 660 661 662 663
	ret = register_memory(mem);

	*memory = mem;
	return ret;
}

664
static int add_memory_block(int base_section_nr)
665
{
666 667
	struct memory_block *mem;
	int i, ret, section_count = 0, section_nr;
668

669 670 671 672 673 674 675 676
	for (i = base_section_nr;
	     (i < base_section_nr + sections_per_block) && i < NR_MEM_SECTIONS;
	     i++) {
		if (!present_section_nr(i))
			continue;
		if (section_count == 0)
			section_nr = i;
		section_count++;
677 678
	}

679 680 681 682 683 684 685
	if (section_count == 0)
		return 0;
	ret = init_memory_block(&mem, __nr_to_section(section_nr), MEM_ONLINE);
	if (ret)
		return ret;
	mem->section_count = section_count;
	return 0;
686 687
}

688 689 690 691 692 693
/*
 * need an interface for the VM to add new memory regions,
 * but without onlining it.
 */
int register_new_memory(int nid, struct mem_section *section)
{
694 695
	int ret = 0;
	struct memory_block *mem;
696 697 698

	mutex_lock(&mem_sysfs_mutex);

699 700 701 702 703 704 705 706
	mem = find_memory_block(section);
	if (mem) {
		mem->section_count++;
		put_device(&mem->dev);
	} else {
		ret = init_memory_block(&mem, section, MEM_OFFLINE);
		if (ret)
			goto out;
707
		mem->section_count++;
708 709 710 711 712 713
	}

	if (mem->section_count == sections_per_block)
		ret = register_mem_sect_under_node(mem, nid);
out:
	mutex_unlock(&mem_sysfs_mutex);
714
	return ret;
715 716 717 718 719 720 721 722 723
}

#ifdef CONFIG_MEMORY_HOTREMOVE
static void
unregister_memory(struct memory_block *memory)
{
	BUG_ON(memory->dev.bus != &memory_subsys);

	/* drop the ref. we got in remove_memory_block() */
724
	put_device(&memory->dev);
725 726 727
	device_unregister(&memory->dev);
}

728
static int remove_memory_section(unsigned long node_id,
729
			       struct mem_section *section, int phys_device)
730 731 732
{
	struct memory_block *mem;

733
	mutex_lock(&mem_sysfs_mutex);
734 735 736 737 738

	/*
	 * Some users of the memory hotplug do not want/need memblock to
	 * track all sections. Skip over those.
	 */
739
	mem = find_memory_block(section);
740 741 742
	if (!mem)
		goto out_unlock;

743
	unregister_mem_sect_under_nodes(mem, __section_nr(section));
744 745

	mem->section_count--;
746
	if (mem->section_count == 0)
747
		unregister_memory(mem);
748
	else
749
		put_device(&mem->dev);
750

751
out_unlock:
752
	mutex_unlock(&mem_sysfs_mutex);
753 754 755 756 757
	return 0;
}

int unregister_memory_section(struct mem_section *section)
{
758
	if (!present_section(section))
759 760
		return -EINVAL;

761
	return remove_memory_section(0, section, 0);
762
}
763
#endif /* CONFIG_MEMORY_HOTREMOVE */
764

765 766 767 768 769 770
/* return true if the memory block is offlined, otherwise, return false */
bool is_memblock_offlined(struct memory_block *mem)
{
	return mem->state == MEM_OFFLINE;
}

771 772 773 774 775 776 777 778 779 780 781
static struct attribute *memory_root_attrs[] = {
#ifdef CONFIG_ARCH_MEMORY_PROBE
	&dev_attr_probe.attr,
#endif

#ifdef CONFIG_MEMORY_FAILURE
	&dev_attr_soft_offline_page.attr,
	&dev_attr_hard_offline_page.attr,
#endif

	&dev_attr_block_size_bytes.attr,
782
	&dev_attr_auto_online_blocks.attr,
783 784 785 786 787 788 789 790 791 792 793 794
	NULL
};

static struct attribute_group memory_root_attr_group = {
	.attrs = memory_root_attrs,
};

static const struct attribute_group *memory_root_attr_groups[] = {
	&memory_root_attr_group,
	NULL,
};

795 796 797 798 799 800 801
/*
 * Initialize the sysfs support for memory devices...
 */
int __init memory_dev_init(void)
{
	unsigned int i;
	int ret;
802
	int err;
803
	unsigned long block_sz;
804

805
	ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
806 807
	if (ret)
		goto out;
808

809 810 811
	block_sz = get_memory_block_size();
	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;

812 813 814 815
	/*
	 * Create entries for memory sections that were found
	 * during boot and have been initialized
	 */
816
	mutex_lock(&mem_sysfs_mutex);
817
	for (i = 0; i < NR_MEM_SECTIONS; i += sections_per_block) {
818 819 820 821
		/* Don't iterate over sections we know are !present: */
		if (i > __highest_present_section_nr)
			break;

822
		err = add_memory_block(i);
823 824
		if (!ret)
			ret = err;
825
	}
826
	mutex_unlock(&mem_sysfs_mutex);
827

828 829
out:
	if (ret)
830
		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
831 832
	return ret;
}