vmstat.c 51.6 KB
Newer Older
1
2
3
4
5
/*
 *  linux/mm/vmstat.c
 *
 *  Manages VM statistics
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6
7
8
9
 *
 *  zoned VM statistics
 *  Copyright (C) 2006 Silicon Graphics, Inc.,
 *		Christoph Lameter <christoph@lameter.com>
10
 *  Copyright (C) 2008-2014 Christoph Lameter
11
 */
12
#include <linux/fs.h>
13
#include <linux/mm.h>
Alexey Dobriyan's avatar
Alexey Dobriyan committed
14
#include <linux/err.h>
15
#include <linux/module.h>
16
#include <linux/slab.h>
17
#include <linux/cpu.h>
18
#include <linux/cpumask.h>
Adrian Bunk's avatar
Adrian Bunk committed
19
#include <linux/vmstat.h>
20
21
22
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/debugfs.h>
Alexey Dobriyan's avatar
Alexey Dobriyan committed
23
#include <linux/sched.h>
24
#include <linux/math64.h>
25
#include <linux/writeback.h>
26
#include <linux/compaction.h>
27
#include <linux/mm_inline.h>
28
29
#include <linux/page_ext.h>
#include <linux/page_owner.h>
30
31

#include "internal.h"
32

33
34
#define NUMA_STATS_THRESHOLD (U16_MAX - 2)

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
#ifdef CONFIG_NUMA
int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;

/* zero numa counters within a zone */
static void zero_zone_numa_counters(struct zone *zone)
{
	int item, cpu;

	for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++) {
		atomic_long_set(&zone->vm_numa_stat[item], 0);
		for_each_online_cpu(cpu)
			per_cpu_ptr(zone->pageset, cpu)->vm_numa_stat_diff[item]
						= 0;
	}
}

/* zero numa counters of all the populated zones */
static void zero_zones_numa_counters(void)
{
	struct zone *zone;

	for_each_populated_zone(zone)
		zero_zone_numa_counters(zone);
}

/* zero global numa counters */
static void zero_global_numa_counters(void)
{
	int item;

	for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++)
		atomic_long_set(&vm_numa_stat[item], 0);
}

static void invalid_numa_statistics(void)
{
	zero_zones_numa_counters();
	zero_global_numa_counters();
}

static DEFINE_MUTEX(vm_numa_stat_lock);

int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *length, loff_t *ppos)
{
	int ret, oldval;

	mutex_lock(&vm_numa_stat_lock);
	if (write)
		oldval = sysctl_vm_numa_stat;
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (ret || !write)
		goto out;

	if (oldval == sysctl_vm_numa_stat)
		goto out;
	else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
		static_branch_enable(&vm_numa_stat_key);
		pr_info("enable numa statistics\n");
	} else {
		static_branch_disable(&vm_numa_stat_key);
		invalid_numa_statistics();
		pr_info("disable numa statistics, and clear numa counters\n");
	}

out:
	mutex_unlock(&vm_numa_stat_lock);
	return ret;
}
#endif

106
107
108
109
#ifdef CONFIG_VM_EVENT_COUNTERS
DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
EXPORT_PER_CPU_SYMBOL(vm_event_states);

110
static void sum_vm_events(unsigned long *ret)
111
{
Christoph Lameter's avatar
Christoph Lameter committed
112
	int cpu;
113
114
115
116
	int i;

	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));

117
	for_each_online_cpu(cpu) {
118
119
120
121
122
123
124
125
126
127
128
129
130
131
		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);

		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
			ret[i] += this->event[i];
	}
}

/*
 * Accumulate the vm event counters across all CPUs.
 * The result is unavoidably approximate - it can change
 * during and after execution of this function.
*/
void all_vm_events(unsigned long *ret)
{
KOSAKI Motohiro's avatar
KOSAKI Motohiro committed
132
	get_online_cpus();
133
	sum_vm_events(ret);
KOSAKI Motohiro's avatar
KOSAKI Motohiro committed
134
	put_online_cpus();
135
}
136
EXPORT_SYMBOL_GPL(all_vm_events);
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

/*
 * Fold the foreign cpu events into our own.
 *
 * This is adding to the events on one processor
 * but keeps the global counts constant.
 */
void vm_events_fold_cpu(int cpu)
{
	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
	int i;

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
		count_vm_events(i, fold_state->event[i]);
		fold_state->event[i] = 0;
	}
}

#endif /* CONFIG_VM_EVENT_COUNTERS */

157
158
159
160
161
/*
 * Manage combined zone based / global counters
 *
 * vm_stat contains the global counters
 */
162
atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
163
atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS] __cacheline_aligned_in_smp;
164
165
atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
EXPORT_SYMBOL(vm_zone_stat);
166
EXPORT_SYMBOL(vm_numa_stat);
167
EXPORT_SYMBOL(vm_node_stat);
168
169
170

#ifdef CONFIG_SMP

171
int calculate_pressure_threshold(struct zone *zone)
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
{
	int threshold;
	int watermark_distance;

	/*
	 * As vmstats are not up to date, there is drift between the estimated
	 * and real values. For high thresholds and a high number of CPUs, it
	 * is possible for the min watermark to be breached while the estimated
	 * value looks fine. The pressure threshold is a reduced value such
	 * that even the maximum amount of drift will not accidentally breach
	 * the min watermark
	 */
	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
	threshold = max(1, (int)(watermark_distance / num_online_cpus()));

	/*
	 * Maximum threshold is 125
	 */
	threshold = min(125, threshold);

	return threshold;
}

195
int calculate_normal_threshold(struct zone *zone)
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
{
	int threshold;
	int mem;	/* memory in 128 MB units */

	/*
	 * The threshold scales with the number of processors and the amount
	 * of memory per zone. More memory means that we can defer updates for
	 * longer, more processors could lead to more contention.
 	 * fls() is used to have a cheap way of logarithmic scaling.
	 *
	 * Some sample thresholds:
	 *
	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
	 * ------------------------------------------------------------------
	 * 8		1		1	0.9-1 GB	4
	 * 16		2		2	0.9-1 GB	4
	 * 20 		2		2	1-2 GB		5
	 * 24		2		2	2-4 GB		6
	 * 28		2		2	4-8 GB		7
	 * 32		2		2	8-16 GB		8
	 * 4		2		2	<128M		1
	 * 30		4		3	2-4 GB		5
	 * 48		4		3	8-16 GB		8
	 * 32		8		4	1-2 GB		4
	 * 32		8		4	0.9-1GB		4
	 * 10		16		5	<128M		1
	 * 40		16		5	900M		4
	 * 70		64		7	2-4 GB		5
	 * 84		64		7	4-8 GB		6
	 * 108		512		9	4-8 GB		6
	 * 125		1024		10	8-16 GB		8
	 * 125		1024		10	16-32 GB	9
	 */

230
	mem = zone->managed_pages >> (27 - PAGE_SHIFT);
231
232
233
234
235
236
237
238
239
240

	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));

	/*
	 * Maximum threshold is 125
	 */
	threshold = min(125, threshold);

	return threshold;
}
241
242

/*
243
 * Refresh the thresholds for each zone.
244
 */
245
void refresh_zone_stat_thresholds(void)
246
{
247
	struct pglist_data *pgdat;
248
249
250
251
	struct zone *zone;
	int cpu;
	int threshold;

252
253
254
255
256
257
258
	/* Zero current pgdat thresholds */
	for_each_online_pgdat(pgdat) {
		for_each_online_cpu(cpu) {
			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
		}
	}

259
	for_each_populated_zone(zone) {
260
		struct pglist_data *pgdat = zone->zone_pgdat;
261
262
		unsigned long max_drift, tolerate_drift;

263
		threshold = calculate_normal_threshold(zone);
264

265
266
267
		for_each_online_cpu(cpu) {
			int pgdat_threshold;

268
269
			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
							= threshold;
270

271
272
273
274
275
276
			/* Base nodestat threshold on the largest populated zone. */
			pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
				= max(threshold, pgdat_threshold);
		}

277
278
279
280
281
282
283
284
285
286
		/*
		 * Only set percpu_drift_mark if there is a danger that
		 * NR_FREE_PAGES reports the low watermark is ok when in fact
		 * the min watermark could be breached by an allocation
		 */
		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
		max_drift = num_online_cpus() * threshold;
		if (max_drift > tolerate_drift)
			zone->percpu_drift_mark = high_wmark_pages(zone) +
					max_drift;
287
	}
288
289
}

290
291
void set_pgdat_percpu_threshold(pg_data_t *pgdat,
				int (*calculate_pressure)(struct zone *))
292
293
294
295
296
297
298
299
300
301
302
{
	struct zone *zone;
	int cpu;
	int threshold;
	int i;

	for (i = 0; i < pgdat->nr_zones; i++) {
		zone = &pgdat->node_zones[i];
		if (!zone->percpu_drift_mark)
			continue;

303
		threshold = (*calculate_pressure)(zone);
304
		for_each_online_cpu(cpu)
305
306
307
308
309
			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
							= threshold;
	}
}

310
/*
311
312
313
 * For use when we know that interrupts are disabled,
 * or when we know that preemption is disabled and that
 * particular counter cannot be updated from interrupt context.
314
315
 */
void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
316
			   long delta)
317
{
318
319
	struct per_cpu_pageset __percpu *pcp = zone->pageset;
	s8 __percpu *p = pcp->vm_stat_diff + item;
320
	long x;
321
322
323
	long t;

	x = delta + __this_cpu_read(*p);
324

325
	t = __this_cpu_read(pcp->stat_threshold);
326

327
	if (unlikely(x > t || x < -t)) {
328
329
330
		zone_page_state_add(x, zone, item);
		x = 0;
	}
331
	__this_cpu_write(*p, x);
332
333
334
}
EXPORT_SYMBOL(__mod_zone_page_state);

335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
				long delta)
{
	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
	s8 __percpu *p = pcp->vm_node_stat_diff + item;
	long x;
	long t;

	x = delta + __this_cpu_read(*p);

	t = __this_cpu_read(pcp->stat_threshold);

	if (unlikely(x > t || x < -t)) {
		node_page_state_add(x, pgdat, item);
		x = 0;
	}
	__this_cpu_write(*p, x);
}
EXPORT_SYMBOL(__mod_node_page_state);

355
356
357
358
359
360
361
362
363
364
365
366
367
/*
 * Optimized increment and decrement functions.
 *
 * These are only for a single page and therefore can take a struct page *
 * argument instead of struct zone *. This allows the inclusion of the code
 * generated for page_zone(page) into the optimized functions.
 *
 * No overflow check is necessary and therefore the differential can be
 * incremented or decremented in place which may allow the compilers to
 * generate better code.
 * The increment or decrement is known and therefore one boundary check can
 * be omitted.
 *
368
369
370
 * NOTE: These functions are very performance sensitive. Change only
 * with care.
 *
371
372
373
374
375
376
377
 * Some processors have inc/dec instructions that are atomic vs an interrupt.
 * However, the code must first determine the differential location in a zone
 * based on the processor number and then inc/dec the counter. There is no
 * guarantee without disabling preemption that the processor will not change
 * in between and therefore the atomicity vs. interrupt cannot be exploited
 * in a useful way here.
 */
378
void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
379
{
380
381
382
	struct per_cpu_pageset __percpu *pcp = zone->pageset;
	s8 __percpu *p = pcp->vm_stat_diff + item;
	s8 v, t;
383

384
	v = __this_cpu_inc_return(*p);
385
386
387
	t = __this_cpu_read(pcp->stat_threshold);
	if (unlikely(v > t)) {
		s8 overstep = t >> 1;
388

389
390
		zone_page_state_add(v + overstep, zone, item);
		__this_cpu_write(*p, -overstep);
391
392
	}
}
393

394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
{
	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
	s8 __percpu *p = pcp->vm_node_stat_diff + item;
	s8 v, t;

	v = __this_cpu_inc_return(*p);
	t = __this_cpu_read(pcp->stat_threshold);
	if (unlikely(v > t)) {
		s8 overstep = t >> 1;

		node_page_state_add(v + overstep, pgdat, item);
		__this_cpu_write(*p, -overstep);
	}
}

410
411
412
413
void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
	__inc_zone_state(page_zone(page), item);
}
414
415
EXPORT_SYMBOL(__inc_zone_page_state);

416
417
418
419
420
421
void __inc_node_page_state(struct page *page, enum node_stat_item item)
{
	__inc_node_state(page_pgdat(page), item);
}
EXPORT_SYMBOL(__inc_node_page_state);

422
void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
423
{
424
425
426
	struct per_cpu_pageset __percpu *pcp = zone->pageset;
	s8 __percpu *p = pcp->vm_stat_diff + item;
	s8 v, t;
427

428
	v = __this_cpu_dec_return(*p);
429
430
431
	t = __this_cpu_read(pcp->stat_threshold);
	if (unlikely(v < - t)) {
		s8 overstep = t >> 1;
432

433
434
		zone_page_state_add(v - overstep, zone, item);
		__this_cpu_write(*p, overstep);
435
436
	}
}
437

438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
{
	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
	s8 __percpu *p = pcp->vm_node_stat_diff + item;
	s8 v, t;

	v = __this_cpu_dec_return(*p);
	t = __this_cpu_read(pcp->stat_threshold);
	if (unlikely(v < - t)) {
		s8 overstep = t >> 1;

		node_page_state_add(v - overstep, pgdat, item);
		__this_cpu_write(*p, overstep);
	}
}

454
455
456
457
void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
	__dec_zone_state(page_zone(page), item);
}
458
459
EXPORT_SYMBOL(__dec_zone_page_state);

460
461
462
463
464
465
void __dec_node_page_state(struct page *page, enum node_stat_item item)
{
	__dec_node_state(page_pgdat(page), item);
}
EXPORT_SYMBOL(__dec_node_page_state);

466
#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
467
468
469
470
471
472
473
474
475
476
477
478
/*
 * If we have cmpxchg_local support then we do not need to incur the overhead
 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
 *
 * mod_state() modifies the zone counter state through atomic per cpu
 * operations.
 *
 * Overstep mode specifies how overstep should handled:
 *     0       No overstepping
 *     1       Overstepping half of threshold
 *     -1      Overstepping minus half of threshold
*/
479
480
static inline void mod_zone_state(struct zone *zone,
       enum zone_stat_item item, long delta, int overstep_mode)
481
482
483
484
485
486
487
488
489
490
491
{
	struct per_cpu_pageset __percpu *pcp = zone->pageset;
	s8 __percpu *p = pcp->vm_stat_diff + item;
	long o, n, t, z;

	do {
		z = 0;  /* overflow to zone counters */

		/*
		 * The fetching of the stat_threshold is racy. We may apply
		 * a counter threshold to the wrong the cpu if we get
492
493
494
495
496
497
		 * rescheduled while executing here. However, the next
		 * counter update will apply the threshold again and
		 * therefore bring the counter under the threshold again.
		 *
		 * Most of the time the thresholds are the same anyways
		 * for all cpus in a zone.
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
		 */
		t = this_cpu_read(pcp->stat_threshold);

		o = this_cpu_read(*p);
		n = delta + o;

		if (n > t || n < -t) {
			int os = overstep_mode * (t >> 1) ;

			/* Overflow must be added to zone counters */
			z = n + os;
			n = -os;
		}
	} while (this_cpu_cmpxchg(*p, o, n) != o);

	if (z)
		zone_page_state_add(z, zone, item);
}

void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
518
			 long delta)
519
{
520
	mod_zone_state(zone, item, delta, 0);
521
522
523
524
525
}
EXPORT_SYMBOL(mod_zone_page_state);

void inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
526
	mod_zone_state(page_zone(page), item, 1, 1);
527
528
529
530
531
}
EXPORT_SYMBOL(inc_zone_page_state);

void dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
532
	mod_zone_state(page_zone(page), item, -1, -1);
533
534
}
EXPORT_SYMBOL(dec_zone_page_state);
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596

static inline void mod_node_state(struct pglist_data *pgdat,
       enum node_stat_item item, int delta, int overstep_mode)
{
	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
	s8 __percpu *p = pcp->vm_node_stat_diff + item;
	long o, n, t, z;

	do {
		z = 0;  /* overflow to node counters */

		/*
		 * The fetching of the stat_threshold is racy. We may apply
		 * a counter threshold to the wrong the cpu if we get
		 * rescheduled while executing here. However, the next
		 * counter update will apply the threshold again and
		 * therefore bring the counter under the threshold again.
		 *
		 * Most of the time the thresholds are the same anyways
		 * for all cpus in a node.
		 */
		t = this_cpu_read(pcp->stat_threshold);

		o = this_cpu_read(*p);
		n = delta + o;

		if (n > t || n < -t) {
			int os = overstep_mode * (t >> 1) ;

			/* Overflow must be added to node counters */
			z = n + os;
			n = -os;
		}
	} while (this_cpu_cmpxchg(*p, o, n) != o);

	if (z)
		node_page_state_add(z, pgdat, item);
}

void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
					long delta)
{
	mod_node_state(pgdat, item, delta, 0);
}
EXPORT_SYMBOL(mod_node_page_state);

void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
{
	mod_node_state(pgdat, item, 1, 1);
}

void inc_node_page_state(struct page *page, enum node_stat_item item)
{
	mod_node_state(page_pgdat(page), item, 1, 1);
}
EXPORT_SYMBOL(inc_node_page_state);

void dec_node_page_state(struct page *page, enum node_stat_item item)
{
	mod_node_state(page_pgdat(page), item, -1, -1);
}
EXPORT_SYMBOL(dec_node_page_state);
597
598
599
600
601
#else
/*
 * Use interrupt disable to serialize counter updates
 */
void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
602
			 long delta)
603
604
605
606
607
608
609
610
611
{
	unsigned long flags;

	local_irq_save(flags);
	__mod_zone_page_state(zone, item, delta);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(mod_zone_page_state);

612
613
614
615
616
617
618
void inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
	unsigned long flags;
	struct zone *zone;

	zone = page_zone(page);
	local_irq_save(flags);
619
	__inc_zone_state(zone, item);
620
621
622
623
624
625
626
627
628
	local_irq_restore(flags);
}
EXPORT_SYMBOL(inc_zone_page_state);

void dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
	unsigned long flags;

	local_irq_save(flags);
629
	__dec_zone_page_state(page, item);
630
631
632
633
	local_irq_restore(flags);
}
EXPORT_SYMBOL(dec_zone_page_state);

634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
{
	unsigned long flags;

	local_irq_save(flags);
	__inc_node_state(pgdat, item);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(inc_node_state);

void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
					long delta)
{
	unsigned long flags;

	local_irq_save(flags);
	__mod_node_page_state(pgdat, item, delta);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(mod_node_page_state);

void inc_node_page_state(struct page *page, enum node_stat_item item)
{
	unsigned long flags;
	struct pglist_data *pgdat;

	pgdat = page_pgdat(page);
	local_irq_save(flags);
	__inc_node_state(pgdat, item);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(inc_node_page_state);

void dec_node_page_state(struct page *page, enum node_stat_item item)
{
	unsigned long flags;

	local_irq_save(flags);
	__dec_node_page_state(page, item);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(dec_node_page_state);
#endif
677
678
679
680
681

/*
 * Fold a differential into the global counters.
 * Returns the number of counters updated.
 */
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
#ifdef CONFIG_NUMA
static int fold_diff(int *zone_diff, int *numa_diff, int *node_diff)
{
	int i;
	int changes = 0;

	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
		if (zone_diff[i]) {
			atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
			changes++;
	}

	for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
		if (numa_diff[i]) {
			atomic_long_add(numa_diff[i], &vm_numa_stat[i]);
			changes++;
	}

	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
		if (node_diff[i]) {
			atomic_long_add(node_diff[i], &vm_node_stat[i]);
			changes++;
	}
	return changes;
}
#else
708
static int fold_diff(int *zone_diff, int *node_diff)
Christoph Lameter's avatar
Christoph Lameter committed
709
710
{
	int i;
711
	int changes = 0;
Christoph Lameter's avatar
Christoph Lameter committed
712
713

	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
714
715
716
717
718
719
720
721
		if (zone_diff[i]) {
			atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
			changes++;
	}

	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
		if (node_diff[i]) {
			atomic_long_add(node_diff[i], &vm_node_stat[i]);
722
723
724
			changes++;
	}
	return changes;
Christoph Lameter's avatar
Christoph Lameter committed
725
}
726
#endif /* CONFIG_NUMA */
Christoph Lameter's avatar
Christoph Lameter committed
727

728
/*
729
 * Update the zone counters for the current cpu.
730
 *
731
732
733
734
735
736
737
738
739
740
 * Note that refresh_cpu_vm_stats strives to only access
 * node local memory. The per cpu pagesets on remote zones are placed
 * in the memory local to the processor using that pageset. So the
 * loop over all zones will access a series of cachelines local to
 * the processor.
 *
 * The call to zone_page_state_add updates the cachelines with the
 * statistics in the remote zone struct as well as the global cachelines
 * with the global counters. These could cause remote node cache line
 * bouncing and will have to be only done when necessary.
741
742
 *
 * The function returns the number of global counters updated.
743
 */
744
static int refresh_cpu_vm_stats(bool do_pagesets)
745
{
746
	struct pglist_data *pgdat;
747
748
	struct zone *zone;
	int i;
749
	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
750
751
752
#ifdef CONFIG_NUMA
	int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
#endif
753
	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
754
	int changes = 0;
755

756
	for_each_populated_zone(zone) {
757
		struct per_cpu_pageset __percpu *p = zone->pageset;
758

759
760
		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
			int v;
761

762
763
			v = this_cpu_xchg(p->vm_stat_diff[i], 0);
			if (v) {
764
765

				atomic_long_add(v, &zone->vm_stat[i]);
766
				global_zone_diff[i] += v;
767
768
#ifdef CONFIG_NUMA
				/* 3 seconds idle till flush */
769
				__this_cpu_write(p->expire, 3);
770
#endif
771
			}
772
		}
773
#ifdef CONFIG_NUMA
774
775
776
777
778
779
780
781
782
783
784
785
		for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) {
			int v;

			v = this_cpu_xchg(p->vm_numa_stat_diff[i], 0);
			if (v) {

				atomic_long_add(v, &zone->vm_numa_stat[i]);
				global_numa_diff[i] += v;
				__this_cpu_write(p->expire, 3);
			}
		}

786
787
788
789
790
791
792
793
794
795
		if (do_pagesets) {
			cond_resched();
			/*
			 * Deal with draining the remote pageset of this
			 * processor
			 *
			 * Check if there are pages remaining in this pageset
			 * if not then there is nothing to expire.
			 */
			if (!__this_cpu_read(p->expire) ||
796
			       !__this_cpu_read(p->pcp.count))
797
				continue;
798

799
800
801
802
803
804
805
			/*
			 * We never drain zones local to this processor.
			 */
			if (zone_to_nid(zone) == numa_node_id()) {
				__this_cpu_write(p->expire, 0);
				continue;
			}
806

807
808
			if (__this_cpu_dec_return(p->expire))
				continue;
809

810
811
812
813
			if (__this_cpu_read(p->pcp.count)) {
				drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
				changes++;
			}
814
		}
815
#endif
816
	}
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831

	for_each_online_pgdat(pgdat) {
		struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;

		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
			int v;

			v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
			if (v) {
				atomic_long_add(v, &pgdat->vm_stat[i]);
				global_node_diff[i] += v;
			}
		}
	}

832
833
834
835
#ifdef CONFIG_NUMA
	changes += fold_diff(global_zone_diff, global_numa_diff,
			     global_node_diff);
#else
836
	changes += fold_diff(global_zone_diff, global_node_diff);
837
#endif
838
	return changes;
839
840
}

841
842
843
844
845
846
847
/*
 * Fold the data for an offline cpu into the global array.
 * There cannot be any access by the offline cpu and therefore
 * synchronization is simplified.
 */
void cpu_vm_stats_fold(int cpu)
{
848
	struct pglist_data *pgdat;
849
850
	struct zone *zone;
	int i;
851
	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
852
853
854
#ifdef CONFIG_NUMA
	int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
#endif
855
	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
856
857
858
859
860
861
862
863
864
865
866
867
868

	for_each_populated_zone(zone) {
		struct per_cpu_pageset *p;

		p = per_cpu_ptr(zone->pageset, cpu);

		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
			if (p->vm_stat_diff[i]) {
				int v;

				v = p->vm_stat_diff[i];
				p->vm_stat_diff[i] = 0;
				atomic_long_add(v, &zone->vm_stat[i]);
869
				global_zone_diff[i] += v;
870
			}
871
872
873
874
875
876
877
878
879
880
881
882

#ifdef CONFIG_NUMA
		for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
			if (p->vm_numa_stat_diff[i]) {
				int v;

				v = p->vm_numa_stat_diff[i];
				p->vm_numa_stat_diff[i] = 0;
				atomic_long_add(v, &zone->vm_numa_stat[i]);
				global_numa_diff[i] += v;
			}
#endif
883
884
	}

885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
	for_each_online_pgdat(pgdat) {
		struct per_cpu_nodestat *p;

		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);

		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
			if (p->vm_node_stat_diff[i]) {
				int v;

				v = p->vm_node_stat_diff[i];
				p->vm_node_stat_diff[i] = 0;
				atomic_long_add(v, &pgdat->vm_stat[i]);
				global_node_diff[i] += v;
			}
	}

901
902
903
#ifdef CONFIG_NUMA
	fold_diff(global_zone_diff, global_numa_diff, global_node_diff);
#else
904
	fold_diff(global_zone_diff, global_node_diff);
905
#endif
906
907
}

908
909
910
911
/*
 * this is only called if !populated_zone(zone), which implies no other users of
 * pset->vm_stat_diff[] exsist.
 */
912
913
914
915
916
917
918
919
920
void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
{
	int i;

	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
		if (pset->vm_stat_diff[i]) {
			int v = pset->vm_stat_diff[i];
			pset->vm_stat_diff[i] = 0;
			atomic_long_add(v, &zone->vm_stat[i]);
921
			atomic_long_add(v, &vm_zone_stat[i]);
922
		}
923
924
925
926
927
928
929
930
931
932
933

#ifdef CONFIG_NUMA
	for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
		if (pset->vm_numa_stat_diff[i]) {
			int v = pset->vm_numa_stat_diff[i];

			pset->vm_numa_stat_diff[i] = 0;
			atomic_long_add(v, &zone->vm_numa_stat[i]);
			atomic_long_add(v, &vm_numa_stat[i]);
		}
#endif
934
}
935
936
#endif

937
#ifdef CONFIG_NUMA
938
939
940
941
void __inc_numa_state(struct zone *zone,
				 enum numa_stat_item item)
{
	struct per_cpu_pageset __percpu *pcp = zone->pageset;
942
943
	u16 __percpu *p = pcp->vm_numa_stat_diff + item;
	u16 v;
944
945
946

	v = __this_cpu_inc_return(*p);

947
948
949
	if (unlikely(v > NUMA_STATS_THRESHOLD)) {
		zone_numa_state_add(v, zone, item);
		__this_cpu_write(*p, 0);
950
951
952
	}
}

953
/*
954
955
956
 * Determine the per node value of a stat item. This function
 * is called frequently in a NUMA machine, so try to be as
 * frugal as possible.
957
 */
958
959
unsigned long sum_zone_node_page_state(int node,
				 enum zone_stat_item item)
960
961
{
	struct zone *zones = NODE_DATA(node)->node_zones;
962
963
	int i;
	unsigned long count = 0;
964

965
966
967
968
	for (i = 0; i < MAX_NR_ZONES; i++)
		count += zone_page_state(zones + i, item);

	return count;
969
970
}

971
972
973
974
/*
 * Determine the per node value of a numa stat item. To avoid deviation,
 * the per cpu stat number in vm_numa_stat_diff[] is also included.
 */
975
976
977
978
979
980
981
982
unsigned long sum_zone_numa_state(int node,
				 enum numa_stat_item item)
{
	struct zone *zones = NODE_DATA(node)->node_zones;
	int i;
	unsigned long count = 0;

	for (i = 0; i < MAX_NR_ZONES; i++)
983
		count += zone_numa_state_snapshot(zones + i, item);
984
985
986
987

	return count;
}

988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
 * Determine the per node value of a stat item.
 */
unsigned long node_page_state(struct pglist_data *pgdat,
				enum node_stat_item item)
{
	long x = atomic_long_read(&pgdat->vm_stat[item]);
#ifdef CONFIG_SMP
	if (x < 0)
		x = 0;
#endif
	return x;
}
1001
1002
#endif

1003
#ifdef CONFIG_COMPACTION
1004

1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
struct contig_page_info {
	unsigned long free_pages;
	unsigned long free_blocks_total;
	unsigned long free_blocks_suitable;
};

/*
 * Calculate the number of free pages in a zone, how many contiguous
 * pages are free and how many are large enough to satisfy an allocation of
 * the target size. Note that this function makes no attempt to estimate
 * how many suitable free blocks there *might* be if MOVABLE pages were
 * migrated. Calculating that is possible, but expensive and can be
 * figured out from userspace
 */
static void fill_contig_page_info(struct zone *zone,
				unsigned int suitable_order,
				struct contig_page_info *info)
{
	unsigned int order;

	info->free_pages = 0;
	info->free_blocks_total = 0;
	info->free_blocks_suitable = 0;

	for (order = 0; order < MAX_ORDER; order++) {
		unsigned long blocks;

		/* Count number of free blocks */
		blocks = zone->free_area[order].nr_free;
		info->free_blocks_total += blocks;

		/* Count free base pages */
		info->free_pages += blocks << order;

		/* Count the suitable free blocks */
		if (order >= suitable_order)
			info->free_blocks_suitable += blocks <<
						(order - suitable_order);
	}
}
1045
1046
1047
1048
1049
1050
1051
1052

/*
 * A fragmentation index only makes sense if an allocation of a requested
 * size would fail. If that is true, the fragmentation index indicates
 * whether external fragmentation or a lack of memory was the problem.
 * The value can be used to determine if page reclaim or compaction
 * should be used
 */
1053
static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1054
1055
1056
{
	unsigned long requested = 1UL << order;

1057
1058
1059
	if (WARN_ON_ONCE(order >= MAX_ORDER))
		return 0;

1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
	if (!info->free_blocks_total)
		return 0;

	/* Fragmentation index only makes sense when a request would fail */
	if (info->free_blocks_suitable)
		return -1000;

	/*
	 * Index is between 0 and 1 so return within 3 decimal places
	 *
	 * 0 => allocation would fail due to lack of memory
	 * 1 => allocation would fail due to fragmentation
	 */
	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
}
1075
1076
1077
1078
1079
1080
1081
1082
1083

/* Same as __fragmentation index but allocs contig_page_info on stack */
int fragmentation_index(struct zone *zone, unsigned int order)
{
	struct contig_page_info info;

	fill_contig_page_info(zone, order, &info);
	return __fragmentation_index(order, &info);
}
1084
1085
#endif

1086
#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
#ifdef CONFIG_ZONE_DMA
#define TEXT_FOR_DMA(xx) xx "_dma",
#else
#define TEXT_FOR_DMA(xx)
#endif

#ifdef CONFIG_ZONE_DMA32
#define TEXT_FOR_DMA32(xx) xx "_dma32",
#else
#define TEXT_FOR_DMA32(xx)
#endif

#ifdef CONFIG_HIGHMEM
#define TEXT_FOR_HIGHMEM(xx) xx "_high",
#else
#define TEXT_FOR_HIGHMEM(xx)
#endif

#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
					TEXT_FOR_HIGHMEM(xx) xx "_movable",

const char * const vmstat_text[] = {
1109
	/* enum zone_stat_item countes */
1110
	"nr_free_pages",
Minchan Kim's avatar
Minchan Kim committed
1111
1112
1113
1114
1115
	"nr_zone_inactive_anon",
	"nr_zone_active_anon",
	"nr_zone_inactive_file",
	"nr_zone_active_file",
	"nr_zone_unevictable",
1116
	"nr_zone_write_pending",
1117
1118
1119
1120
	"nr_mlock",
	"nr_page_table_pages",
	"nr_kernel_stack",
	"nr_bounce",
Minchan Kim's avatar
Minchan Kim committed
1121
1122
1123
#if IS_ENABLED(CONFIG_ZSMALLOC)
	"nr_zspages",
#endif
1124
1125
1126
	"nr_free_cma",

	/* enum numa_stat_item counters */
1127
1128
1129
1130
1131
1132
1133
1134
#ifdef CONFIG_NUMA
	"numa_hit",
	"numa_miss",
	"numa_foreign",
	"numa_interleave",
	"numa_local",
	"numa_other",
#endif
1135

1136
1137
1138
1139
1140
1141
	/* Node-based counters */
	"nr_inactive_anon",
	"nr_active_anon",
	"nr_inactive_file",
	"nr_active_file",
	"nr_unevictable",
1142
1143
	"nr_slab_reclaimable",
	"nr_slab_unreclaimable",
1144
1145
	"nr_isolated_anon",
	"nr_isolated_file",
1146
1147
1148
	"workingset_refault",
	"workingset_activate",
	"workingset_nodereclaim",
1149
1150
	"nr_anon_pages",
	"nr_mapped",
1151
1152
1153
1154
1155
1156
1157
1158
1159
	"nr_file_pages",
	"nr_dirty",
	"nr_writeback",
	"nr_writeback_temp",
	"nr_shmem",
	"nr_shmem_hugepages",
	"nr_shmem_pmdmapped",
	"nr_anon_transparent_hugepages",
	"nr_unstable",
1160
1161
1162
1163
	"nr_vmscan_write",
	"nr_vmscan_immediate_reclaim",
	"nr_dirtied",
	"nr_written",
1164
	"nr_kernel_misc_reclaimable",
1165

1166
	/* enum writeback_stat_item counters */
1167
1168
1169
1170
	"nr_dirty_threshold",
	"nr_dirty_background_threshold",

#ifdef CONFIG_VM_EVENT_COUNTERS
1171
	/* enum vm_event_item counters */
1172
1173
1174
1175
1176
1177
	"pgpgin",
	"pgpgout",
	"pswpin",
	"pswpout",

	TEXTS_FOR_ZONES("pgalloc")
1178
1179
	TEXTS_FOR_ZONES("allocstall")
	TEXTS_FOR_ZONES("pgskip")
1180
1181
1182
1183

	"pgfree",
	"pgactivate",
	"pgdeactivate",
1184
	"pglazyfree",
1185
1186
1187

	"pgfault",
	"pgmajfault",
Minchan Kim's avatar
Minchan Kim committed
1188
	"pglazyfreed",
1189

1190
1191
1192
1193
1194
	"pgrefill",
	"pgsteal_kswapd",
	"pgsteal_direct",
	"pgscan_kswapd",
	"pgscan_direct",
1195
	"pgscan_direct_throttle",
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208

#ifdef CONFIG_NUMA
	"zone_reclaim_failed",
#endif
	"pginodesteal",
	"slabs_scanned",
	"kswapd_inodesteal",
	"kswapd_low_wmark_hit_quickly",
	"kswapd_high_wmark_hit_quickly",
	"pageoutrun",

	"pgrotated",

1209
1210
	"drop_pagecache",
	"drop_slab",
1211
	"oom_kill",
1212

1213
1214
#ifdef CONFIG_NUMA_BALANCING
	"numa_pte_updates",
1215
	"numa_huge_pte_updates",
1216
1217
1218
1219
	"numa_hint_faults",
	"numa_hint_faults_local",
	"numa_pages_migrated",
#endif
1220
1221
1222
1223
#ifdef CONFIG_MIGRATION
	"pgmigrate_success",
	"pgmigrate_fail",
#endif
1224
#ifdef CONFIG_COMPACTION
1225
1226
1227
	"compact_migrate_scanned",
	"compact_free_scanned",
	"compact_isolated",
1228
1229
1230
	"compact_stall",
	"compact_fail",
	"compact_success",
1231
	"compact_daemon_wake",
1232
1233
	"compact_daemon_migrate_scanned",
	"compact_daemon_free_scanned",
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
#endif

#ifdef CONFIG_HUGETLB_PAGE
	"htlb_buddy_alloc_success",
	"htlb_buddy_alloc_fail",
#endif
	"unevictable_pgs_culled",
	"unevictable_pgs_scanned",
	"unevictable_pgs_rescued",
	"unevictable_pgs_mlocked",
	"unevictable_pgs_munlocked",
	"unevictable_pgs_cleared",
	"unevictable_pgs_stranded",

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	"thp_fault_alloc",
	"thp_fault_fallback",
	"thp_collapse_alloc",
	"thp_collapse_alloc_failed",
1253
1254
	"thp_file_alloc",
	"thp_file_mapped",
1255
1256
	"thp_split_page",
	"thp_split_page_failed",
1257
	"thp_deferred_split_page",
1258
	"thp_split_pmd",
1259
1260
1261
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
	"thp_split_pud",
#endif
1262
1263
	"thp_zero_page_alloc",
	"thp_zero_page_alloc_failed",
1264
	"thp_swpout",
1265
	"thp_swpout_fallback",
1266
#endif
1267
1268
1269
1270
1271
1272
1273
#ifdef CONFIG_MEMORY_BALLOON
	"balloon_inflate",
	"balloon_deflate",
#ifdef CONFIG_BALLOON_COMPACTION
	"balloon_migrate",
#endif
#endif /* CONFIG_MEMORY_BALLOON */
1274
#ifdef CONFIG_DEBUG_TLBFLUSH
1275
#ifdef CONFIG_SMP
Dave Hansen's avatar
Dave Hansen committed
1276
1277
	"nr_tlb_remote_flush",
	"nr_tlb_remote_flush_received",
1278
1279
1280
#else
	"", /* nr_tlb_remote_flush */
	"", /* nr_tlb_remote_flush_received */
1281
#endif /* CONFIG_SMP */
Dave Hansen's avatar
Dave Hansen committed
1282
1283
	"nr_tlb_local_flush_all",
	"nr_tlb_local_flush_one",
1284
#endif /* CONFIG_DEBUG_TLBFLUSH */
1285

Davidlohr Bueso's avatar
Davidlohr Bueso committed
1286
1287
1288
1289
#ifdef CONFIG_DEBUG_VM_VMACACHE
	"vmacache_find_calls",
	"vmacache_find_hits",
#endif
1290
1291
1292
1293
#ifdef CONFIG_SWAP
	"swap_ra",
	"swap_ra_hit",
#endif
1294
1295
#endif /* CONFIG_VM_EVENTS_COUNTERS */
};
1296
#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
1297

1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
     defined(CONFIG_PROC_FS)
static void *frag_start(struct seq_file *m, loff_t *pos)
{
	pg_data_t *pgdat;
	loff_t node = *pos;

	for (pgdat = first_online_pgdat();
	     pgdat && node;
	     pgdat = next_online_pgdat(pgdat))
		--node;

	return pgdat;
}

static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
{
	pg_data_t *pgdat = (pg_data_t *)arg;

	(*pos)++;
	return next_online_pgdat(pgdat);
}

static void frag_stop(struct seq_file *m, void *arg)
{
}

1325
1326
1327
1328
/*
 * Walk zones in a node and print using a callback.
 * If @assert_populated is true, only use callback for zones that are populated.
 */
1329
static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1330
		bool assert_populated, bool nolock,
1331
1332
1333
1334
1335
1336
1337
		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
{
	struct zone *zone;
	struct zone *node_zones = pgdat->node_zones;
	unsigned long flags;

	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1338
		if (assert_populated && !populated_zone(zone))
1339
1340
			continue;

1341
1342
		if (!nolock)
			spin_lock_irqsave(&zone->lock, flags);
1343
		print(m, pgdat, zone);
1344
1345
		if (!nolock)
			spin_unlock_irqrestore(&zone->lock, flags);
1346
1347
1348
1349
	}
}
#endif

1350
#ifdef CONFIG_PROC_FS
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
						struct zone *zone)
{
	int order;

	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
	for (order = 0; order < MAX_ORDER; ++order)
		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
	seq_putc(m, '\n');
}

/*
 * This walks the free areas for each zone.
 */
static int frag_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;
1368
	walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
	return 0;
}

static void pagetypeinfo_showfree_print(struct seq_file *m,
					pg_data_t *pgdat, struct zone *zone)
{
	int order, mtype;

	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
		seq_printf(m, "Node %4d, zone %8s, type %12s ",
					pgdat->node_id,
					zone->name,
					migratetype_names[mtype]);
		for (order = 0; order < MAX_ORDER; ++order) {
			unsigned long freecount = 0;
			struct free_area *area;
			struct list_head *curr;

			area = &(zone->free_area[order]);

			list_for_each(curr, &area->free_list[mtype])
				freecount++;
			seq_printf(m, "%6lu ", freecount);
		}
1393
1394
		seq_putc(m, '\n');
	}
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
}

/* Print out the free pages at each order for each migatetype */
static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
{
	int order;
	pg_data_t *pgdat = (pg_data_t *)arg;

	/* Print header */
	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
	for (order = 0; order < MAX_ORDER; ++order)
		seq_printf(m, "%6d ", order);
	seq_putc(m, '\n');

1409
	walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419

	return 0;
}

static void pagetypeinfo_showblockcount_print(struct seq_file *m,
					pg_data_t *pgdat, struct zone *zone)
{
	int mtype;
	unsigned long pfn;
	unsigned long start_pfn = zone->zone_start_pfn;
1420
	unsigned long end_pfn = zone_end_pfn(zone);
1421
1422
1423
1424
1425
	unsigned long count[MIGRATE_TYPES] = { 0, };

	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

1426
1427
		page = pfn_to_online_page(pfn);
		if (!page)
1428
1429
			continue;

1430
1431
		/* Watch for unexpected holes punched in the memmap */
		if (!memmap_valid_within(pfn, page, zone))
1432
			continue;
1433

1434
1435
1436
		if (page_zone(page) != zone)
			continue;

1437
1438
		mtype = get_pageblock_migratetype(page);

1439
1440
		if (mtype < MIGRATE_TYPES)
			count[mtype]++;
1441
1442
1443
1444
1445
1446
1447
1448
1449
	}

	/* Print counts */
	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
		seq_printf(m, "%12lu ", count[mtype]);
	seq_putc(m, '\n');
}

SeongJae Park's avatar
SeongJae Park committed
1450
/* Print out the number of pageblocks for each migratetype */
1451
1452
1453
1454
1455
1456
1457
1458
1459
static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
{
	int mtype;
	pg_data_t *pgdat = (pg_data_t *)arg;

	seq_printf(m, "\n%-23s", "Number of blocks type ");
	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
		seq_printf(m, "%12s ", migratetype_names[mtype]);
	seq_putc(m, '\n');
1460
1461
	walk_zones_in_node(m, pgdat, true, false,
		pagetypeinfo_showblockcount_print);
1462
1463
1464
1465

	return 0;
}

1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
/*
 * Print out the number of pageblocks for each migratetype that contain pages
 * of other types. This gives an indication of how well fallbacks are being
 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
 * to determine what is going on
 */
static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
{
#ifdef CONFIG_PAGE_OWNER
	int mtype;

1477
	if (!static_branch_unlikely(&page_owner_inited))
1478
1479
1480
1481
1482
1483
1484
1485
1486
		return;

	drain_all_pages(NULL);

	seq_printf(m, "\n%-23s", "Number of mixed blocks ");
	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
		seq_printf(m, "%12s ", migratetype_names[mtype]);
	seq_putc(m, '\n');