gup.c 66.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/spinlock.h>

#include <linux/mm.h>
8
#include <linux/memremap.h>
9 10 11 12 13
#include <linux/pagemap.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/swapops.h>

14
#include <linux/sched/signal.h>
15
#include <linux/rwsem.h>
16
#include <linux/hugetlb.h>
17 18 19
#include <linux/migrate.h>
#include <linux/mm_inline.h>
#include <linux/sched/mm.h>
20

21
#include <asm/mmu_context.h>
22
#include <asm/pgtable.h>
23
#include <asm/tlbflush.h>
24

25 26
#include "internal.h"

27 28 29 30 31
struct follow_page_context {
	struct dev_pagemap *pgmap;
	unsigned int page_mask;
};

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
/*
 * Return the compound head page with ref appropriately incremented,
 * or NULL if that failed.
 */
static inline struct page *try_get_compound_head(struct page *page, int refs)
{
	struct page *head = compound_head(page);

	if (WARN_ON_ONCE(page_ref_count(head) < 0))
		return NULL;
	if (unlikely(!page_cache_add_speculative(head, refs)))
		return NULL;
	return head;
}

47
/**
48 49
 * put_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
 * @pages:  array of pages to be maybe marked dirty, and definitely released.
50
 * @npages: number of pages in the @pages array.
51
 * @make_dirty: whether to mark the pages dirty
52 53 54 55 56
 *
 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
 * variants called on that page.
 *
 * For each page in the @pages array, make that page (or its head page, if a
57 58 59
 * compound page) dirty, if @make_dirty is true, and if the page was previously
 * listed as clean. In any case, releases all pages using put_user_page(),
 * possibly via put_user_pages(), for the non-dirty case.
60 61 62
 *
 * Please see the put_user_page() documentation for details.
 *
63 64 65 66
 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
 * required, then the caller should a) verify that this is really correct,
 * because _lock() is usually required, and b) hand code it:
 * set_page_dirty_lock(), put_user_page().
67 68
 *
 */
69 70
void put_user_pages_dirty_lock(struct page **pages, unsigned long npages,
			       bool make_dirty)
71
{
72
	unsigned long index;
73

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
	/*
	 * TODO: this can be optimized for huge pages: if a series of pages is
	 * physically contiguous and part of the same compound page, then a
	 * single operation to the head page should suffice.
	 */

	if (!make_dirty) {
		put_user_pages(pages, npages);
		return;
	}

	for (index = 0; index < npages; index++) {
		struct page *page = compound_head(pages[index]);
		/*
		 * Checking PageDirty at this point may race with
		 * clear_page_dirty_for_io(), but that's OK. Two key
		 * cases:
		 *
		 * 1) This code sees the page as already dirty, so it
		 * skips the call to set_page_dirty(). That could happen
		 * because clear_page_dirty_for_io() called
		 * page_mkclean(), followed by set_page_dirty().
		 * However, now the page is going to get written back,
		 * which meets the original intention of setting it
		 * dirty, so all is well: clear_page_dirty_for_io() goes
		 * on to call TestClearPageDirty(), and write the page
		 * back.
		 *
		 * 2) This code sees the page as clean, so it calls
		 * set_page_dirty(). The page stays dirty, despite being
		 * written back, so it gets written back again in the
		 * next writeback cycle. This is harmless.
		 */
		if (!PageDirty(page))
			set_page_dirty_lock(page);
		put_user_page(page);
	}
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
}
EXPORT_SYMBOL(put_user_pages_dirty_lock);

/**
 * put_user_pages() - release an array of gup-pinned pages.
 * @pages:  array of pages to be marked dirty and released.
 * @npages: number of pages in the @pages array.
 *
 * For each page in the @pages array, release the page using put_user_page().
 *
 * Please see the put_user_page() documentation for details.
 */
void put_user_pages(struct page **pages, unsigned long npages)
{
	unsigned long index;

	/*
	 * TODO: this can be optimized for huge pages: if a series of pages is
	 * physically contiguous and part of the same compound page, then a
	 * single operation to the head page should suffice.
	 */
	for (index = 0; index < npages; index++)
		put_user_page(pages[index]);
}
EXPORT_SYMBOL(put_user_pages);

137
#ifdef CONFIG_MMU
138 139
static struct page *no_page_table(struct vm_area_struct *vma,
		unsigned int flags)
140
{
141 142 143 144 145 146 147 148 149 150 151 152
	/*
	 * When core dumping an enormous anonymous area that nobody
	 * has touched so far, we don't want to allocate unnecessary pages or
	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
	 * then get_dump_page() will return NULL to leave a hole in the dump.
	 * But we can only make this optimization where a hole would surely
	 * be zero-filled if handle_mm_fault() actually did handle it.
	 */
	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
		return ERR_PTR(-EFAULT);
	return NULL;
}
153

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
		pte_t *pte, unsigned int flags)
{
	/* No page to get reference */
	if (flags & FOLL_GET)
		return -EFAULT;

	if (flags & FOLL_TOUCH) {
		pte_t entry = *pte;

		if (flags & FOLL_WRITE)
			entry = pte_mkdirty(entry);
		entry = pte_mkyoung(entry);

		if (!pte_same(*pte, entry)) {
			set_pte_at(vma->vm_mm, address, pte, entry);
			update_mmu_cache(vma, address, pte);
		}
	}

	/* Proper page table entry exists, but no corresponding struct page */
	return -EEXIST;
}

178 179 180 181 182 183
/*
 * FOLL_FORCE can write to even unwritable pte's, but only
 * after we've gone through a COW cycle and they are dirty.
 */
static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
{
184
	return pte_write(pte) ||
185 186 187
		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
}

188
static struct page *follow_page_pte(struct vm_area_struct *vma,
189 190
		unsigned long address, pmd_t *pmd, unsigned int flags,
		struct dev_pagemap **pgmap)
191 192 193 194 195
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	spinlock_t *ptl;
	pte_t *ptep, pte;
196

197
retry:
198
	if (unlikely(pmd_bad(*pmd)))
199
		return no_page_table(vma, flags);
200 201 202 203 204 205 206 207 208 209 210 211

	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
	pte = *ptep;
	if (!pte_present(pte)) {
		swp_entry_t entry;
		/*
		 * KSM's break_ksm() relies upon recognizing a ksm page
		 * even while it is being migrated, so for that case we
		 * need migration_entry_wait().
		 */
		if (likely(!(flags & FOLL_MIGRATION)))
			goto no_page;
212
		if (pte_none(pte))
213 214 215 216 217 218
			goto no_page;
		entry = pte_to_swp_entry(pte);
		if (!is_migration_entry(entry))
			goto no_page;
		pte_unmap_unlock(ptep, ptl);
		migration_entry_wait(mm, pmd, address);
219
		goto retry;
220
	}
221
	if ((flags & FOLL_NUMA) && pte_protnone(pte))
222
		goto no_page;
223
	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
224 225 226
		pte_unmap_unlock(ptep, ptl);
		return NULL;
	}
227 228

	page = vm_normal_page(vma, address, pte);
229 230 231 232 233
	if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
		/*
		 * Only return device mapping pages in the FOLL_GET case since
		 * they are only valid while holding the pgmap reference.
		 */
234 235
		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
		if (*pgmap)
236 237 238 239
			page = pte_page(pte);
		else
			goto no_page;
	} else if (unlikely(!page)) {
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
		if (flags & FOLL_DUMP) {
			/* Avoid special (like zero) pages in core dumps */
			page = ERR_PTR(-EFAULT);
			goto out;
		}

		if (is_zero_pfn(pte_pfn(pte))) {
			page = pte_page(pte);
		} else {
			int ret;

			ret = follow_pfn_pte(vma, address, ptep, flags);
			page = ERR_PTR(ret);
			goto out;
		}
255 256
	}

257 258 259 260 261 262 263 264 265 266 267 268 269
	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
		int ret;
		get_page(page);
		pte_unmap_unlock(ptep, ptl);
		lock_page(page);
		ret = split_huge_page(page);
		unlock_page(page);
		put_page(page);
		if (ret)
			return ERR_PTR(ret);
		goto retry;
	}

270 271 272 273 274 275
	if (flags & FOLL_GET) {
		if (unlikely(!try_get_page(page))) {
			page = ERR_PTR(-ENOMEM);
			goto out;
		}
	}
276 277 278 279 280 281 282 283 284 285 286
	if (flags & FOLL_TOUCH) {
		if ((flags & FOLL_WRITE) &&
		    !pte_dirty(pte) && !PageDirty(page))
			set_page_dirty(page);
		/*
		 * pte_mkyoung() would be more correct here, but atomic care
		 * is needed to avoid losing the dirty bit: it is easier to use
		 * mark_page_accessed().
		 */
		mark_page_accessed(page);
	}
Eric B Munson's avatar
Eric B Munson committed
287
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
288 289 290 291
		/* Do not mlock pte-mapped THP */
		if (PageTransCompound(page))
			goto out;

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
		/*
		 * The preliminary mapping check is mainly to avoid the
		 * pointless overhead of lock_page on the ZERO_PAGE
		 * which might bounce very badly if there is contention.
		 *
		 * If the page is already locked, we don't need to
		 * handle it now - vmscan will handle it later if and
		 * when it attempts to reclaim the page.
		 */
		if (page->mapping && trylock_page(page)) {
			lru_add_drain();  /* push cached pages to LRU */
			/*
			 * Because we lock page here, and migration is
			 * blocked by the pte's page reference, and we
			 * know the page is still mapped, we don't even
			 * need to check for file-cache page truncation.
			 */
			mlock_vma_page(page);
			unlock_page(page);
		}
	}
313
out:
314 315 316 317 318
	pte_unmap_unlock(ptep, ptl);
	return page;
no_page:
	pte_unmap_unlock(ptep, ptl);
	if (!pte_none(pte))
319 320 321 322
		return NULL;
	return no_page_table(vma, flags);
}

323 324
static struct page *follow_pmd_mask(struct vm_area_struct *vma,
				    unsigned long address, pud_t *pudp,
325 326
				    unsigned int flags,
				    struct follow_page_context *ctx)
327
{
328
	pmd_t *pmd, pmdval;
329 330 331 332
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

333
	pmd = pmd_offset(pudp, address);
334 335 336 337 338 339
	/*
	 * The READ_ONCE() will stabilize the pmdval in a register or
	 * on the stack so that it will stop changing under the code.
	 */
	pmdval = READ_ONCE(*pmd);
	if (pmd_none(pmdval))
340
		return no_page_table(vma, flags);
341
	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
342 343 344 345
		page = follow_huge_pmd(mm, address, pmd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
346
	}
347
	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
348
		page = follow_huge_pd(vma, address,
349
				      __hugepd(pmd_val(pmdval)), flags,
350 351 352 353 354
				      PMD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
355
retry:
356
	if (!pmd_present(pmdval)) {
357 358 359
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		VM_BUG_ON(thp_migration_supported() &&
360 361
				  !is_pmd_migration_entry(pmdval));
		if (is_pmd_migration_entry(pmdval))
362
			pmd_migration_entry_wait(mm, pmd);
363 364 365 366 367 368 369
		pmdval = READ_ONCE(*pmd);
		/*
		 * MADV_DONTNEED may convert the pmd to null because
		 * mmap_sem is held in read mode
		 */
		if (pmd_none(pmdval))
			return no_page_table(vma, flags);
370 371
		goto retry;
	}
372
	if (pmd_devmap(pmdval)) {
373
		ptl = pmd_lock(mm, pmd);
374
		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
375 376 377 378
		spin_unlock(ptl);
		if (page)
			return page;
	}
379
	if (likely(!pmd_trans_huge(pmdval)))
380
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
381

382
	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
383 384
		return no_page_table(vma, flags);

385
retry_locked:
386
	ptl = pmd_lock(mm, pmd);
387 388 389 390
	if (unlikely(pmd_none(*pmd))) {
		spin_unlock(ptl);
		return no_page_table(vma, flags);
	}
391 392 393 394 395 396 397
	if (unlikely(!pmd_present(*pmd))) {
		spin_unlock(ptl);
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		pmd_migration_entry_wait(mm, pmd);
		goto retry_locked;
	}
398 399
	if (unlikely(!pmd_trans_huge(*pmd))) {
		spin_unlock(ptl);
400
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
401
	}
Song Liu's avatar
Song Liu committed
402
	if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
403 404 405 406 407
		int ret;
		page = pmd_page(*pmd);
		if (is_huge_zero_page(page)) {
			spin_unlock(ptl);
			ret = 0;
408
			split_huge_pmd(vma, pmd, address);
409 410
			if (pmd_trans_unstable(pmd))
				ret = -EBUSY;
Song Liu's avatar
Song Liu committed
411
		} else if (flags & FOLL_SPLIT) {
412 413 414 415
			if (unlikely(!try_get_page(page))) {
				spin_unlock(ptl);
				return ERR_PTR(-ENOMEM);
			}
416
			spin_unlock(ptl);
417 418 419 420
			lock_page(page);
			ret = split_huge_page(page);
			unlock_page(page);
			put_page(page);
421 422
			if (pmd_none(*pmd))
				return no_page_table(vma, flags);
Song Liu's avatar
Song Liu committed
423 424 425 426
		} else {  /* flags & FOLL_SPLIT_PMD */
			spin_unlock(ptl);
			split_huge_pmd(vma, pmd, address);
			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
427 428 429
		}

		return ret ? ERR_PTR(ret) :
430
			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
431
	}
432 433
	page = follow_trans_huge_pmd(vma, address, pmd, flags);
	spin_unlock(ptl);
434
	ctx->page_mask = HPAGE_PMD_NR - 1;
435
	return page;
436 437
}

438 439
static struct page *follow_pud_mask(struct vm_area_struct *vma,
				    unsigned long address, p4d_t *p4dp,
440 441
				    unsigned int flags,
				    struct follow_page_context *ctx)
442 443 444 445 446 447 448 449 450
{
	pud_t *pud;
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

	pud = pud_offset(p4dp, address);
	if (pud_none(*pud))
		return no_page_table(vma, flags);
451
	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
452 453 454 455 456
		page = follow_huge_pud(mm, address, pud, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
457 458 459 460 461 462 463 464
	if (is_hugepd(__hugepd(pud_val(*pud)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pud_val(*pud)), flags,
				      PUD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
465 466
	if (pud_devmap(*pud)) {
		ptl = pud_lock(mm, pud);
467
		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
468 469 470 471 472 473 474
		spin_unlock(ptl);
		if (page)
			return page;
	}
	if (unlikely(pud_bad(*pud)))
		return no_page_table(vma, flags);

475
	return follow_pmd_mask(vma, address, pud, flags, ctx);
476 477 478 479
}

static struct page *follow_p4d_mask(struct vm_area_struct *vma,
				    unsigned long address, pgd_t *pgdp,
480 481
				    unsigned int flags,
				    struct follow_page_context *ctx)
482 483
{
	p4d_t *p4d;
484
	struct page *page;
485 486 487 488 489 490 491 492

	p4d = p4d_offset(pgdp, address);
	if (p4d_none(*p4d))
		return no_page_table(vma, flags);
	BUILD_BUG_ON(p4d_huge(*p4d));
	if (unlikely(p4d_bad(*p4d)))
		return no_page_table(vma, flags);

493 494 495 496 497 498 499 500
	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(p4d_val(*p4d)), flags,
				      P4D_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
501
	return follow_pud_mask(vma, address, p4d, flags, ctx);
502 503 504 505 506 507 508
}

/**
 * follow_page_mask - look up a page descriptor from a user-virtual address
 * @vma: vm_area_struct mapping @address
 * @address: virtual address to look up
 * @flags: flags modifying lookup behaviour
509 510
 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
 *       pointer to output page_mask
511 512 513
 *
 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
 *
514 515 516 517 518 519
 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
 *
 * On output, the @ctx->page_mask is set according to the size of the page.
 *
 * Return: the mapped (struct page *), %NULL if no mapping exists, or
520 521 522
 * an error pointer if there is a mapping to something not represented
 * by a page descriptor (see also vm_normal_page()).
 */
523
static struct page *follow_page_mask(struct vm_area_struct *vma,
524
			      unsigned long address, unsigned int flags,
525
			      struct follow_page_context *ctx)
526 527 528 529 530
{
	pgd_t *pgd;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

531
	ctx->page_mask = 0;
532 533 534 535 536 537 538 539 540 541 542 543 544

	/* make this handle hugepd */
	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
	if (!IS_ERR(page)) {
		BUG_ON(flags & FOLL_GET);
		return page;
	}

	pgd = pgd_offset(mm, address);

	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
		return no_page_table(vma, flags);

545 546 547 548 549 550
	if (pgd_huge(*pgd)) {
		page = follow_huge_pgd(mm, address, pgd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
551 552 553 554 555 556 557 558
	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pgd_val(*pgd)), flags,
				      PGDIR_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
559

560 561 562 563 564 565 566 567 568 569 570 571 572
	return follow_p4d_mask(vma, address, pgd, flags, ctx);
}

struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
			 unsigned int foll_flags)
{
	struct follow_page_context ctx = { NULL };
	struct page *page;

	page = follow_page_mask(vma, address, foll_flags, &ctx);
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return page;
573 574
}

575 576 577 578 579
static int get_gate_page(struct mm_struct *mm, unsigned long address,
		unsigned int gup_flags, struct vm_area_struct **vma,
		struct page **page)
{
	pgd_t *pgd;
580
	p4d_t *p4d;
581 582 583 584 585 586 587 588 589 590 591 592
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	int ret = -EFAULT;

	/* user gate pages are read-only */
	if (gup_flags & FOLL_WRITE)
		return -EFAULT;
	if (address > TASK_SIZE)
		pgd = pgd_offset_k(address);
	else
		pgd = pgd_offset_gate(mm, address);
593 594
	if (pgd_none(*pgd))
		return -EFAULT;
595
	p4d = p4d_offset(pgd, address);
596 597
	if (p4d_none(*p4d))
		return -EFAULT;
598
	pud = pud_offset(p4d, address);
599 600
	if (pud_none(*pud))
		return -EFAULT;
601
	pmd = pmd_offset(pud, address);
602
	if (!pmd_present(*pmd))
603 604 605 606 607 608 609 610 611 612 613 614 615 616
		return -EFAULT;
	VM_BUG_ON(pmd_trans_huge(*pmd));
	pte = pte_offset_map(pmd, address);
	if (pte_none(*pte))
		goto unmap;
	*vma = get_gate_vma(mm);
	if (!page)
		goto out;
	*page = vm_normal_page(*vma, address, *pte);
	if (!*page) {
		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
			goto unmap;
		*page = pte_page(*pte);
	}
617 618 619 620
	if (unlikely(!try_get_page(*page))) {
		ret = -ENOMEM;
		goto unmap;
	}
621 622 623 624 625 626 627
out:
	ret = 0;
unmap:
	pte_unmap(pte);
	return ret;
}

628 629 630 631 632
/*
 * mmap_sem must be held on entry.  If @nonblocking != NULL and
 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
 */
633 634 635 636
static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
		unsigned long address, unsigned int *flags, int *nonblocking)
{
	unsigned int fault_flags = 0;
637
	vm_fault_t ret;
638

Eric B Munson's avatar
Eric B Munson committed
639 640 641
	/* mlock all present pages, but do not fault in new pages */
	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
		return -ENOENT;
642 643
	if (*flags & FOLL_WRITE)
		fault_flags |= FAULT_FLAG_WRITE;
644 645
	if (*flags & FOLL_REMOTE)
		fault_flags |= FAULT_FLAG_REMOTE;
646 647 648 649
	if (nonblocking)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
	if (*flags & FOLL_NOWAIT)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
650 651 652 653
	if (*flags & FOLL_TRIED) {
		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
		fault_flags |= FAULT_FLAG_TRIED;
	}
654

655
	ret = handle_mm_fault(vma, address, fault_flags);
656
	if (ret & VM_FAULT_ERROR) {
657 658 659 660
		int err = vm_fault_to_errno(ret, *flags);

		if (err)
			return err;
661 662 663 664 665 666 667 668 669 670 671
		BUG();
	}

	if (tsk) {
		if (ret & VM_FAULT_MAJOR)
			tsk->maj_flt++;
		else
			tsk->min_flt++;
	}

	if (ret & VM_FAULT_RETRY) {
672
		if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
673 674 675 676 677 678 679 680 681 682 683 684 685 686
			*nonblocking = 0;
		return -EBUSY;
	}

	/*
	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
	 * can thus safely do subsequent page lookups as if they were reads.
	 * But only do so when looping for pte_write is futile: in some cases
	 * userspace may also be wanting to write to the gotten user page,
	 * which a read fault here might prevent (a readonly page might get
	 * reCOWed by userspace write).
	 */
	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
687
		*flags |= FOLL_COW;
688 689 690
	return 0;
}

691 692 693
static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
{
	vm_flags_t vm_flags = vma->vm_flags;
694 695
	int write = (gup_flags & FOLL_WRITE);
	int foreign = (gup_flags & FOLL_REMOTE);
696 697 698 699

	if (vm_flags & (VM_IO | VM_PFNMAP))
		return -EFAULT;

700 701 702
	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
		return -EFAULT;

703
	if (write) {
704 705 706 707 708 709 710 711 712 713 714 715
		if (!(vm_flags & VM_WRITE)) {
			if (!(gup_flags & FOLL_FORCE))
				return -EFAULT;
			/*
			 * We used to let the write,force case do COW in a
			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
			 * set a breakpoint in a read-only mapping of an
			 * executable, without corrupting the file (yet only
			 * when that file had been opened for writing!).
			 * Anon pages in shared mappings are surprising: now
			 * just reject it.
			 */
716
			if (!is_cow_mapping(vm_flags))
717 718 719 720 721 722 723 724 725 726 727 728
				return -EFAULT;
		}
	} else if (!(vm_flags & VM_READ)) {
		if (!(gup_flags & FOLL_FORCE))
			return -EFAULT;
		/*
		 * Is there actually any vma we can reach here which does not
		 * have VM_MAYREAD set?
		 */
		if (!(vm_flags & VM_MAYREAD))
			return -EFAULT;
	}
729 730 731 732 733
	/*
	 * gups are always data accesses, not instruction
	 * fetches, so execute=false here
	 */
	if (!arch_vma_access_permitted(vma, write, false, foreign))
734
		return -EFAULT;
735 736 737
	return 0;
}

738 739 740 741 742 743 744 745 746 747 748 749 750 751
/**
 * __get_user_pages() - pin user pages in memory
 * @tsk:	task_struct of target task
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying pin behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 * @nonblocking: whether waiting for disk IO or mmap_sem contention
 *
752 753 754 755 756 757 758 759 760 761 762
 * Returns either number of pages pinned (which may be less than the
 * number requested), or an error. Details about the return value:
 *
 * -- If nr_pages is 0, returns 0.
 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
 * -- If nr_pages is >0, and some pages were pinned, returns the number of
 *    pages pinned. Again, this may be less than nr_pages.
 *
 * The caller is responsible for releasing returned @pages, via put_page().
 *
 * @vmas are valid only as long as mmap_sem is held.
763
 *
764
 * Must be called with mmap_sem held.  It may be released.  See below.
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
 *
 * __get_user_pages walks a process's page tables and takes a reference to
 * each struct page that each user address corresponds to at a given
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
 * __get_user_pages returns, and there may even be a completely different
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
 * appropriate) must be called after the page is finished with, and
 * before put_page is called.
 *
 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
 * or mmap_sem contention, and if waiting is needed to pin all pages,
787 788 789 790 791 792 793 794
 * *@nonblocking will be set to 0.  Further, if @gup_flags does not
 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
 * this case.
 *
 * A caller using such a combination of @nonblocking and @gup_flags
 * must therefore hold the mmap_sem for reading only, and recognize
 * when it's been released.  Otherwise, it must be held for either
 * reading or writing and will not be released.
795 796 797 798 799
 *
 * In most cases, get_user_pages or get_user_pages_fast should be used
 * instead of __get_user_pages. __get_user_pages should be used only if
 * you need some special @gup_flags.
 */
800
static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
801 802 803 804
		unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas, int *nonblocking)
{
805
	long ret = 0, i = 0;
806
	struct vm_area_struct *vma = NULL;
807
	struct follow_page_context ctx = { NULL };
808 809 810 811

	if (!nr_pages)
		return 0;

812 813
	start = untagged_addr(start);

814 815 816 817 818 819 820 821 822 823 824
	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));

	/*
	 * If FOLL_FORCE is set then do not force a full fault as the hinting
	 * fault information is unrelated to the reference behaviour of a task
	 * using the address space
	 */
	if (!(gup_flags & FOLL_FORCE))
		gup_flags |= FOLL_NUMA;

	do {
825 826 827 828 829 830 831 832 833 834 835 836
		struct page *page;
		unsigned int foll_flags = gup_flags;
		unsigned int page_increm;

		/* first iteration or cross vma bound */
		if (!vma || start >= vma->vm_end) {
			vma = find_extend_vma(mm, start);
			if (!vma && in_gate_area(mm, start)) {
				ret = get_gate_page(mm, start & PAGE_MASK,
						gup_flags, &vma,
						pages ? &pages[i] : NULL);
				if (ret)
837
					goto out;
838
				ctx.page_mask = 0;
839 840
				goto next_page;
			}
841

842 843 844 845
			if (!vma || check_vma_flags(vma, gup_flags)) {
				ret = -EFAULT;
				goto out;
			}
846 847 848
			if (is_vm_hugetlb_page(vma)) {
				i = follow_hugetlb_page(mm, vma, pages, vmas,
						&start, &nr_pages, i,
849
						gup_flags, nonblocking);
850
				continue;
851
			}
852 853 854 855 856 857
		}
retry:
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
858
		if (fatal_signal_pending(current)) {
859 860 861
			ret = -ERESTARTSYS;
			goto out;
		}
862
		cond_resched();
863 864

		page = follow_page_mask(vma, start, foll_flags, &ctx);
865 866 867 868 869 870
		if (!page) {
			ret = faultin_page(tsk, vma, start, &foll_flags,
					nonblocking);
			switch (ret) {
			case 0:
				goto retry;
871 872 873
			case -EBUSY:
				ret = 0;
				/* FALLTHRU */
874 875 876
			case -EFAULT:
			case -ENOMEM:
			case -EHWPOISON:
877
				goto out;
878 879
			case -ENOENT:
				goto next_page;
880
			}
881
			BUG();
882 883 884 885 886 887 888
		} else if (PTR_ERR(page) == -EEXIST) {
			/*
			 * Proper page table entry exists, but no corresponding
			 * struct page.
			 */
			goto next_page;
		} else if (IS_ERR(page)) {
889 890
			ret = PTR_ERR(page);
			goto out;
891
		}
892 893 894 895
		if (pages) {
			pages[i] = page;
			flush_anon_page(vma, page, start);
			flush_dcache_page(page);
896
			ctx.page_mask = 0;
897 898
		}
next_page:
899 900
		if (vmas) {
			vmas[i] = vma;
901
			ctx.page_mask = 0;
902
		}
903
		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
904 905 906 907 908
		if (page_increm > nr_pages)
			page_increm = nr_pages;
		i += page_increm;
		start += page_increm * PAGE_SIZE;
		nr_pages -= page_increm;
909
	} while (nr_pages);
910 911 912 913
out:
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return i ? i : ret;
914 915
}

916 917
static bool vma_permits_fault(struct vm_area_struct *vma,
			      unsigned int fault_flags)
918
{
919 920
	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
921
	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
922 923 924 925

	if (!(vm_flags & vma->vm_flags))
		return false;

926 927
	/*
	 * The architecture might have a hardware protection
928
	 * mechanism other than read/write that can deny access.
929 930 931
	 *
	 * gup always represents data access, not instruction
	 * fetches, so execute=false here:
932
	 */
933
	if (!arch_vma_access_permitted(vma, write, false, foreign))
934 935
		return false;

936 937 938
	return true;
}

939 940 941 942 943 944 945
/*
 * fixup_user_fault() - manually resolve a user page fault
 * @tsk:	the task_struct to use for page fault accounting, or
 *		NULL if faults are not to be recorded.
 * @mm:		mm_struct of target mm
 * @address:	user address
 * @fault_flags:flags to pass down to handle_mm_fault()
946 947
 * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
 *		does not allow retry
948 949 950 951 952 953 954 955 956 957 958
 *
 * This is meant to be called in the specific scenario where for locking reasons
 * we try to access user memory in atomic context (within a pagefault_disable()
 * section), this returns -EFAULT, and we want to resolve the user fault before
 * trying again.
 *
 * Typically this is meant to be used by the futex code.
 *
 * The main difference with get_user_pages() is that this function will
 * unconditionally call handle_mm_fault() which will in turn perform all the
 * necessary SW fixup of the dirty and young bits in the PTE, while
959
 * get_user_pages() only guarantees to update these in the struct page.
960 961 962 963 964 965
 *
 * This is important for some architectures where those bits also gate the
 * access permission to the page because they are maintained in software.  On
 * such architectures, gup() will not be enough to make a subsequent access
 * succeed.
 *
966 967
 * This function will not return with an unlocked mmap_sem. So it has not the
 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
968 969
 */
int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
970 971
		     unsigned long address, unsigned int fault_flags,
		     bool *unlocked)
972 973
{
	struct vm_area_struct *vma;
974
	vm_fault_t ret, major = 0;
975

976 977
	address = untagged_addr(address);

978 979
	if (unlocked)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
980

981
retry:
982 983 984 985
	vma = find_extend_vma(mm, address);
	if (!vma || address < vma->vm_start)
		return -EFAULT;

986
	if (!vma_permits_fault(vma, fault_flags))
987 988
		return -EFAULT;

989
	ret = handle_mm_fault(vma, address, fault_flags);
990
	major |= ret & VM_FAULT_MAJOR;
991
	if (ret & VM_FAULT_ERROR) {
992 993 994 995
		int err = vm_fault_to_errno(ret, 0);

		if (err)
			return err;
996 997
		BUG();
	}
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008

	if (ret & VM_FAULT_RETRY) {
		down_read(&mm->mmap_sem);
		if (!(fault_flags & FAULT_FLAG_TRIED)) {
			*unlocked = true;
			fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
			fault_flags |= FAULT_FLAG_TRIED;
			goto retry;
		}
	}

1009
	if (tsk) {
1010
		if (major)
1011 1012 1013 1014 1015 1016
			tsk->maj_flt++;
		else
			tsk->min_flt++;
	}
	return 0;
}
1017
EXPORT_SYMBOL_GPL(fixup_user_fault);
1018

1019 1020 1021 1022 1023 1024
static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
						struct mm_struct *mm,
						unsigned long start,
						unsigned long nr_pages,
						struct page **pages,
						struct vm_area_struct **vmas,
1025
						int *locked,
1026
						unsigned int flags)
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
{
	long ret, pages_done;
	bool lock_dropped;

	if (locked) {
		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
		BUG_ON(vmas);
		/* check caller initialized locked */
		BUG_ON(*locked != 1);
	}

	if (pages)
		flags |= FOLL_GET;

	pages_done = 0;
	lock_dropped = false;
	for (;;) {
		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
				       vmas, locked);
		if (!locked)
			/* VM_FAULT_RETRY couldn't trigger, bypass */
			return ret;

		/* VM_FAULT_RETRY cannot return errors */
		if (!*locked) {
			BUG_ON(ret < 0);
			BUG_ON(ret >= nr_pages);
		}

		if (ret > 0) {
			nr_pages -= ret;
			pages_done += ret;
			if (!nr_pages)
				break;
		}
		if (*locked) {
1063 1064 1065 1066
			/*
			 * VM_FAULT_RETRY didn't trigger or it was a
			 * FOLL_NOWAIT.
			 */
1067 1068 1069 1070
			if (!pages_done)
				pages_done = ret;
			break;
		}
1071 1072 1073 1074 1075 1076
		/*
		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
		 * For the prefault case (!pages) we only update counts.
		 */
		if (likely(pages))
			pages += ret;
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
		start += ret << PAGE_SHIFT;

		/*
		 * Repeat on the address that fired VM_FAULT_RETRY
		 * without FAULT_FLAG_ALLOW_RETRY but with
		 * FAULT_FLAG_TRIED.
		 */
		*locked = 1;
		lock_dropped = true;
		down_read(&mm->mmap_sem);
		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
				       pages, NULL, NULL);
		if (ret != 1) {
			BUG_ON(ret > 1);
			if (!pages_done)
				pages_done = ret;
			break;
		}
		nr_pages--;
		pages_done++;
		if (!nr_pages)
			break;
1099 1100
		if (likely(pages))
			pages++;
1101 1102
		start += PAGE_SIZE;
	}
1103
	if (lock_dropped && *locked) {
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
		/*
		 * We must let the caller know we temporarily dropped the lock
		 * and so the critical section protected by it was lost.
		 */
		up_read(&mm->mmap_sem);
		*locked = 0;
	}
	return pages_done;
}

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208