util.c 19 KB
Newer Older
1
#include <linux/mm.h>
2 3
#include <linux/slab.h>
#include <linux/string.h>
4
#include <linux/compiler.h>
5
#include <linux/export.h>
Davi Arnaut's avatar
Davi Arnaut committed
6
#include <linux/err.h>
7
#include <linux/sched.h>
8
#include <linux/sched/mm.h>
9
#include <linux/sched/task_stack.h>
Al Viro's avatar
Al Viro committed
10
#include <linux/security.h>
Shaohua Li's avatar
Shaohua Li committed
11
#include <linux/swap.h>
12
#include <linux/swapops.h>
13 14
#include <linux/mman.h>
#include <linux/hugetlb.h>
Al Viro's avatar
Al Viro committed
15
#include <linux/vmalloc.h>
16
#include <linux/userfaultfd_k.h>
17

Andrzej Hajda's avatar
Andrzej Hajda committed
18
#include <asm/sections.h>
19
#include <linux/uaccess.h>
20

21 22
#include "internal.h"

Andrzej Hajda's avatar
Andrzej Hajda committed
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
static inline int is_kernel_rodata(unsigned long addr)
{
	return addr >= (unsigned long)__start_rodata &&
		addr < (unsigned long)__end_rodata;
}

/**
 * kfree_const - conditionally free memory
 * @x: pointer to the memory
 *
 * Function calls kfree only if @x is not in .rodata section.
 */
void kfree_const(const void *x)
{
	if (!is_kernel_rodata((unsigned long)x))
		kfree(x);
}
EXPORT_SYMBOL(kfree_const);

42 43 44 45 46 47 48 49 50 51 52 53 54 55
/**
 * kstrdup - allocate space for and copy an existing string
 * @s: the string to duplicate
 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 */
char *kstrdup(const char *s, gfp_t gfp)
{
	size_t len;
	char *buf;

	if (!s)
		return NULL;

	len = strlen(s) + 1;
56
	buf = kmalloc_track_caller(len, gfp);
57 58 59 60 61
	if (buf)
		memcpy(buf, s, len);
	return buf;
}
EXPORT_SYMBOL(kstrdup);
Davi Arnaut's avatar
Davi Arnaut committed
62

Andrzej Hajda's avatar
Andrzej Hajda committed
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
/**
 * kstrdup_const - conditionally duplicate an existing const string
 * @s: the string to duplicate
 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 *
 * Function returns source string if it is in .rodata section otherwise it
 * fallbacks to kstrdup.
 * Strings allocated by kstrdup_const should be freed by kfree_const.
 */
const char *kstrdup_const(const char *s, gfp_t gfp)
{
	if (is_kernel_rodata((unsigned long)s))
		return s;

	return kstrdup(s, gfp);
}
EXPORT_SYMBOL(kstrdup_const);

Jeremy Fitzhardinge's avatar
Jeremy Fitzhardinge committed
81 82 83 84 85
/**
 * kstrndup - allocate space for and copy an existing string
 * @s: the string to duplicate
 * @max: read at most @max chars from @s
 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
86 87
 *
 * Note: Use kmemdup_nul() instead if the size is known exactly.
Jeremy Fitzhardinge's avatar
Jeremy Fitzhardinge committed
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
 */
char *kstrndup(const char *s, size_t max, gfp_t gfp)
{
	size_t len;
	char *buf;

	if (!s)
		return NULL;

	len = strnlen(s, max);
	buf = kmalloc_track_caller(len+1, gfp);
	if (buf) {
		memcpy(buf, s, len);
		buf[len] = '\0';
	}
	return buf;
}
EXPORT_SYMBOL(kstrndup);

Alexey Dobriyan's avatar
Alexey Dobriyan committed
107 108 109 110 111 112 113 114 115 116 117
/**
 * kmemdup - duplicate region of memory
 *
 * @src: memory region to duplicate
 * @len: memory region length
 * @gfp: GFP mask to use
 */
void *kmemdup(const void *src, size_t len, gfp_t gfp)
{
	void *p;

118
	p = kmalloc_track_caller(len, gfp);
Alexey Dobriyan's avatar
Alexey Dobriyan committed
119 120 121 122 123 124
	if (p)
		memcpy(p, src, len);
	return p;
}
EXPORT_SYMBOL(kmemdup);

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
/**
 * kmemdup_nul - Create a NUL-terminated string from unterminated data
 * @s: The data to stringify
 * @len: The size of the data
 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 */
char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
{
	char *buf;

	if (!s)
		return NULL;

	buf = kmalloc_track_caller(len + 1, gfp);
	if (buf) {
		memcpy(buf, s, len);
		buf[len] = '\0';
	}
	return buf;
}
EXPORT_SYMBOL(kmemdup_nul);

Li Zefan's avatar
Li Zefan committed
147 148 149 150 151 152
/**
 * memdup_user - duplicate memory region from user space
 *
 * @src: source address in user space
 * @len: number of bytes to copy
 *
Al Viro's avatar
Al Viro committed
153 154
 * Returns an ERR_PTR() on failure.  Result is physically
 * contiguous, to be freed by kfree().
Li Zefan's avatar
Li Zefan committed
155 156 157 158 159
 */
void *memdup_user(const void __user *src, size_t len)
{
	void *p;

Al Viro's avatar
Al Viro committed
160
	p = kmalloc_track_caller(len, GFP_USER);
Li Zefan's avatar
Li Zefan committed
161 162 163 164 165 166 167 168 169 170 171 172
	if (!p)
		return ERR_PTR(-ENOMEM);

	if (copy_from_user(p, src, len)) {
		kfree(p);
		return ERR_PTR(-EFAULT);
	}

	return p;
}
EXPORT_SYMBOL(memdup_user);

Al Viro's avatar
Al Viro committed
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
/**
 * vmemdup_user - duplicate memory region from user space
 *
 * @src: source address in user space
 * @len: number of bytes to copy
 *
 * Returns an ERR_PTR() on failure.  Result may be not
 * physically contiguous.  Use kvfree() to free.
 */
void *vmemdup_user(const void __user *src, size_t len)
{
	void *p;

	p = kvmalloc(len, GFP_USER);
	if (!p)
		return ERR_PTR(-ENOMEM);

	if (copy_from_user(p, src, len)) {
		kvfree(p);
		return ERR_PTR(-EFAULT);
	}

	return p;
}
EXPORT_SYMBOL(vmemdup_user);

Davi Arnaut's avatar
Davi Arnaut committed
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
/*
 * strndup_user - duplicate an existing string from user space
 * @s: The string to duplicate
 * @n: Maximum number of bytes to copy, including the trailing NUL.
 */
char *strndup_user(const char __user *s, long n)
{
	char *p;
	long length;

	length = strnlen_user(s, n);

	if (!length)
		return ERR_PTR(-EFAULT);

	if (length > n)
		return ERR_PTR(-EINVAL);

Julia Lawall's avatar
Julia Lawall committed
217
	p = memdup_user(s, length);
Davi Arnaut's avatar
Davi Arnaut committed
218

Julia Lawall's avatar
Julia Lawall committed
219 220
	if (IS_ERR(p))
		return p;
Davi Arnaut's avatar
Davi Arnaut committed
221 222 223 224 225 226

	p[length - 1] = '\0';

	return p;
}
EXPORT_SYMBOL(strndup_user);
227

Al Viro's avatar
Al Viro committed
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
/**
 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
 *
 * @src: source address in user space
 * @len: number of bytes to copy
 *
 * Returns an ERR_PTR() on failure.
 */
void *memdup_user_nul(const void __user *src, size_t len)
{
	char *p;

	/*
	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
	 * cause pagefault, which makes it pointless to use GFP_NOFS
	 * or GFP_ATOMIC.
	 */
	p = kmalloc_track_caller(len + 1, GFP_KERNEL);
	if (!p)
		return ERR_PTR(-ENOMEM);

	if (copy_from_user(p, src, len)) {
		kfree(p);
		return ERR_PTR(-EFAULT);
	}
	p[len] = '\0';

	return p;
}
EXPORT_SYMBOL(memdup_user_nul);

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
		struct vm_area_struct *prev, struct rb_node *rb_parent)
{
	struct vm_area_struct *next;

	vma->vm_prev = prev;
	if (prev) {
		next = prev->vm_next;
		prev->vm_next = vma;
	} else {
		mm->mmap = vma;
		if (rb_parent)
			next = rb_entry(rb_parent,
					struct vm_area_struct, vm_rb);
		else
			next = NULL;
	}
	vma->vm_next = next;
	if (next)
		next->vm_prev = vma;
}

281
/* Check if the vma is being used as a stack by this task */
282
int vma_is_stack_for_current(struct vm_area_struct *vma)
283
{
284 285
	struct task_struct * __maybe_unused t = current;

286 287 288
	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
}

289
#if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
290 291 292 293 294 295
void arch_pick_mmap_layout(struct mm_struct *mm)
{
	mm->mmap_base = TASK_UNMAPPED_BASE;
	mm->get_unmapped_area = arch_get_unmapped_area;
}
#endif
296

297 298 299
/*
 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
 * back to the regular GUP.
Lucas De Marchi's avatar
Lucas De Marchi committed
300
 * If the architecture not support this function, simply return with no
301 302
 * page pinned
 */
303
int __weak __get_user_pages_fast(unsigned long start,
304 305 306 307 308 309
				 int nr_pages, int write, struct page **pages)
{
	return 0;
}
EXPORT_SYMBOL_GPL(__get_user_pages_fast);

310 311 312 313 314 315 316 317 318 319 320
/**
 * get_user_pages_fast() - pin user pages in memory
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @write:	whether pages will be written to
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long.
 *
 * Returns number of pages pinned. This may be fewer than the number
 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 * were pinned, returns -errno.
321 322 323 324 325 326 327 328 329 330 331 332
 *
 * get_user_pages_fast provides equivalent functionality to get_user_pages,
 * operating on current and current->mm, with force=0 and vma=NULL. However
 * unlike get_user_pages, it must be called without mmap_sem held.
 *
 * get_user_pages_fast may take mmap_sem and page table locks, so no
 * assumptions can be made about lack of locking. get_user_pages_fast is to be
 * implemented in a way that is advantageous (vs get_user_pages()) when the
 * user memory area is already faulted in and present in ptes. However if the
 * pages have to be faulted in, it may turn out to be slightly slower so
 * callers need to carefully consider what to use. On many architectures,
 * get_user_pages_fast simply falls back to get_user_pages.
333
 */
334
int __weak get_user_pages_fast(unsigned long start,
335 336
				int nr_pages, int write, struct page **pages)
{
337 338
	return get_user_pages_unlocked(start, nr_pages, pages,
				       write ? FOLL_WRITE : 0);
339 340
}
EXPORT_SYMBOL_GPL(get_user_pages_fast);
341

Al Viro's avatar
Al Viro committed
342 343
unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
	unsigned long len, unsigned long prot,
Michal Hocko's avatar
Michal Hocko committed
344
	unsigned long flag, unsigned long pgoff)
Al Viro's avatar
Al Viro committed
345 346 347
{
	unsigned long ret;
	struct mm_struct *mm = current->mm;
348
	unsigned long populate;
349
	LIST_HEAD(uf);
Al Viro's avatar
Al Viro committed
350 351 352

	ret = security_mmap_file(file, prot, flag);
	if (!ret) {
Michal Hocko's avatar
Michal Hocko committed
353 354
		if (down_write_killable(&mm->mmap_sem))
			return -EINTR;
355
		ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
356
				    &populate, &uf);
Al Viro's avatar
Al Viro committed
357
		up_write(&mm->mmap_sem);
358
		userfaultfd_unmap_complete(mm, &uf);
359 360
		if (populate)
			mm_populate(ret, populate);
Al Viro's avatar
Al Viro committed
361 362 363 364 365 366 367 368 369 370
	}
	return ret;
}

unsigned long vm_mmap(struct file *file, unsigned long addr,
	unsigned long len, unsigned long prot,
	unsigned long flag, unsigned long offset)
{
	if (unlikely(offset + PAGE_ALIGN(len) < offset))
		return -EINVAL;
371
	if (unlikely(offset_in_page(offset)))
Al Viro's avatar
Al Viro committed
372 373
		return -EINVAL;

Michal Hocko's avatar
Michal Hocko committed
374
	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
Al Viro's avatar
Al Viro committed
375 376 377
}
EXPORT_SYMBOL(vm_mmap);

378 379 380 381 382 383 384 385 386 387
/**
 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
 * failure, fall back to non-contiguous (vmalloc) allocation.
 * @size: size of the request.
 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
 * @node: numa node to allocate from
 *
 * Uses kmalloc to get the memory but if the allocation fails then falls back
 * to the vmalloc allocator. Use kvfree for freeing the memory.
 *
388 389 390
 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
 * preferable to the vmalloc fallback, due to visible performance drawbacks.
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
 *
 * Any use of gfp flags outside of GFP_KERNEL should be consulted with mm people.
 */
void *kvmalloc_node(size_t size, gfp_t flags, int node)
{
	gfp_t kmalloc_flags = flags;
	void *ret;

	/*
	 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
	 * so the given set of flags has to be compatible.
	 */
	WARN_ON_ONCE((flags & GFP_KERNEL) != GFP_KERNEL);

	/*
406 407 408 409 410
	 * We want to attempt a large physically contiguous block first because
	 * it is less likely to fragment multiple larger blocks and therefore
	 * contribute to a long term fragmentation less than vmalloc fallback.
	 * However make sure that larger requests are not too disruptive - no
	 * OOM killer and no allocation failure warnings as we have a fallback.
411
	 */
412 413 414
	if (size > PAGE_SIZE) {
		kmalloc_flags |= __GFP_NOWARN;

415
		if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
416 417
			kmalloc_flags |= __GFP_NORETRY;
	}
418 419 420 421 422 423 424 425 426 427

	ret = kmalloc_node(size, kmalloc_flags, node);

	/*
	 * It doesn't really make sense to fallback to vmalloc for sub page
	 * requests
	 */
	if (ret || size <= PAGE_SIZE)
		return ret;

428 429
	return __vmalloc_node_flags_caller(size, node, flags,
			__builtin_return_address(0));
430 431 432
}
EXPORT_SYMBOL(kvmalloc_node);

Al Viro's avatar
Al Viro committed
433 434 435 436 437 438 439 440 441
void kvfree(const void *addr)
{
	if (is_vmalloc_addr(addr))
		vfree(addr);
	else
		kfree(addr);
}
EXPORT_SYMBOL(kvfree);

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
static inline void *__page_rmapping(struct page *page)
{
	unsigned long mapping;

	mapping = (unsigned long)page->mapping;
	mapping &= ~PAGE_MAPPING_FLAGS;

	return (void *)mapping;
}

/* Neutral page->mapping pointer to address_space or anon_vma or other */
void *page_rmapping(struct page *page)
{
	page = compound_head(page);
	return __page_rmapping(page);
}

Andrew Morton's avatar
Andrew Morton committed
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
/*
 * Return true if this page is mapped into pagetables.
 * For compound page it returns true if any subpage of compound page is mapped.
 */
bool page_mapped(struct page *page)
{
	int i;

	if (likely(!PageCompound(page)))
		return atomic_read(&page->_mapcount) >= 0;
	page = compound_head(page);
	if (atomic_read(compound_mapcount_ptr(page)) >= 0)
		return true;
	if (PageHuge(page))
		return false;
	for (i = 0; i < hpage_nr_pages(page); i++) {
		if (atomic_read(&page[i]._mapcount) >= 0)
			return true;
	}
	return false;
}
EXPORT_SYMBOL(page_mapped);

482 483 484 485 486 487 488 489 490 491 492
struct anon_vma *page_anon_vma(struct page *page)
{
	unsigned long mapping;

	page = compound_head(page);
	mapping = (unsigned long)page->mapping;
	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
		return NULL;
	return __page_rmapping(page);
}

Shaohua Li's avatar
Shaohua Li committed
493 494
struct address_space *page_mapping(struct page *page)
{
495 496 497
	struct address_space *mapping;

	page = compound_head(page);
Shaohua Li's avatar
Shaohua Li committed
498

499 500 501 502
	/* This happens if someone calls flush_dcache_page on slab page */
	if (unlikely(PageSlab(page)))
		return NULL;

503 504 505 506
	if (unlikely(PageSwapCache(page))) {
		swp_entry_t entry;

		entry.val = page_private(page);
507 508 509
		return swap_address_space(entry);
	}

510
	mapping = page->mapping;
511
	if ((unsigned long)mapping & PAGE_MAPPING_ANON)
512
		return NULL;
513 514

	return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
Shaohua Li's avatar
Shaohua Li committed
515
}
516
EXPORT_SYMBOL(page_mapping);
Shaohua Li's avatar
Shaohua Li committed
517

518 519 520 521 522 523 524 525 526 527
/*
 * For file cache pages, return the address_space, otherwise return NULL
 */
struct address_space *page_mapping_file(struct page *page)
{
	if (unlikely(PageSwapCache(page)))
		return NULL;
	return page_mapping(page);
}

528 529 530 531 532 533
/* Slow path of page_mapcount() for compound pages */
int __page_mapcount(struct page *page)
{
	int ret;

	ret = atomic_read(&page->_mapcount) + 1;
Kirill A. Shutemov's avatar
Kirill A. Shutemov committed
534 535 536 537 538 539
	/*
	 * For file THP page->_mapcount contains total number of mapping
	 * of the page: no need to look into compound_mapcount.
	 */
	if (!PageAnon(page) && !PageHuge(page))
		return ret;
540 541 542 543 544 545 546 547
	page = compound_head(page);
	ret += atomic_read(compound_mapcount_ptr(page)) + 1;
	if (PageDoubleMap(page))
		ret--;
	return ret;
}
EXPORT_SYMBOL_GPL(__page_mapcount);

548 549 550 551 552 553 554
int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
int sysctl_overcommit_ratio __read_mostly = 50;
unsigned long sysctl_overcommit_kbytes __read_mostly;
int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
int overcommit_ratio_handler(struct ctl_table *table, int write,
			     void __user *buffer, size_t *lenp,
			     loff_t *ppos)
{
	int ret;

	ret = proc_dointvec(table, write, buffer, lenp, ppos);
	if (ret == 0 && write)
		sysctl_overcommit_kbytes = 0;
	return ret;
}

int overcommit_kbytes_handler(struct ctl_table *table, int write,
			     void __user *buffer, size_t *lenp,
			     loff_t *ppos)
{
	int ret;

	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
	if (ret == 0 && write)
		sysctl_overcommit_ratio = 0;
	return ret;
}

579 580 581 582 583
/*
 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
 */
unsigned long vm_commit_limit(void)
{
584 585 586 587 588 589 590 591 592 593
	unsigned long allowed;

	if (sysctl_overcommit_kbytes)
		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
	else
		allowed = ((totalram_pages - hugetlb_total_pages())
			   * sysctl_overcommit_ratio / 100);
	allowed += total_swap_pages;

	return allowed;
594 595
}

596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
/*
 * Make sure vm_committed_as in one cacheline and not cacheline shared with
 * other variables. It can be updated by several CPUs frequently.
 */
struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;

/*
 * The global memory commitment made in the system can be a metric
 * that can be used to drive ballooning decisions when Linux is hosted
 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
 * balancing memory across competing virtual machines that are hosted.
 * Several metrics drive this policy engine including the guest reported
 * memory commitment.
 */
unsigned long vm_memory_committed(void)
{
	return percpu_counter_read_positive(&vm_committed_as);
}
EXPORT_SYMBOL_GPL(vm_memory_committed);

/*
 * Check that a process has enough memory to allocate a new virtual
 * mapping. 0 means there is enough memory for the allocation to
 * succeed and -ENOMEM implies there is not.
 *
 * We currently support three overcommit policies, which are set via the
 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
 *
 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
 * Additional code 2002 Jul 20 by Robert Love.
 *
 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
 *
 * Note this is a helper function intended to be used by LSMs which
 * wish to use this logic.
 */
int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
{
	long free, allowed, reserve;

	VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
			-(s64)vm_committed_as_batch * num_online_cpus(),
			"memory commitment underflow");

	vm_acct_memory(pages);

	/*
	 * Sometimes we want to use more memory than we have
	 */
	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
		return 0;

	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
649
		free = global_zone_page_state(NR_FREE_PAGES);
650
		free += global_node_page_state(NR_FILE_PAGES);
651 652 653 654 655 656 657

		/*
		 * shmem pages shouldn't be counted as free in this
		 * case, they can't be purged, only swapped out, and
		 * that won't affect the overall amount of available
		 * memory in the system.
		 */
658
		free -= global_node_page_state(NR_SHMEM);
659 660 661 662 663 664 665 666 667

		free += get_nr_swap_pages();

		/*
		 * Any slabs which are created with the
		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
		 * which are reclaimable, under pressure.  The dentry
		 * cache and most inode caches should fall into this
		 */
668
		free += global_node_page_state(NR_SLAB_RECLAIMABLE);
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712

		/*
		 * Leave reserved pages. The pages are not for anonymous pages.
		 */
		if (free <= totalreserve_pages)
			goto error;
		else
			free -= totalreserve_pages;

		/*
		 * Reserve some for root
		 */
		if (!cap_sys_admin)
			free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);

		if (free > pages)
			return 0;

		goto error;
	}

	allowed = vm_commit_limit();
	/*
	 * Reserve some for root
	 */
	if (!cap_sys_admin)
		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);

	/*
	 * Don't let a single process grow so big a user can't recover
	 */
	if (mm) {
		reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
		allowed -= min_t(long, mm->total_vm / 32, reserve);
	}

	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
		return 0;
error:
	vm_unacct_memory(pages);

	return -ENOMEM;
}

713 714 715 716 717 718 719 720 721 722 723 724 725 726
/**
 * get_cmdline() - copy the cmdline value to a buffer.
 * @task:     the task whose cmdline value to copy.
 * @buffer:   the buffer to copy to.
 * @buflen:   the length of the buffer. Larger cmdline values are truncated
 *            to this length.
 * Returns the size of the cmdline field copied. Note that the copy does
 * not guarantee an ending NULL byte.
 */
int get_cmdline(struct task_struct *task, char *buffer, int buflen)
{
	int res = 0;
	unsigned int len;
	struct mm_struct *mm = get_task_mm(task);
727
	unsigned long arg_start, arg_end, env_start, env_end;
728 729 730 731 732
	if (!mm)
		goto out;
	if (!mm->arg_end)
		goto out_mm;	/* Shh! No looking before we're done */

733 734 735 736 737 738 739 740
	down_read(&mm->mmap_sem);
	arg_start = mm->arg_start;
	arg_end = mm->arg_end;
	env_start = mm->env_start;
	env_end = mm->env_end;
	up_read(&mm->mmap_sem);

	len = arg_end - arg_start;
741 742 743 744

	if (len > buflen)
		len = buflen;

745
	res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
746 747 748 749 750 751 752 753 754 755

	/*
	 * If the nul at the end of args has been overwritten, then
	 * assume application is using setproctitle(3).
	 */
	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
		len = strnlen(buffer, res);
		if (len < res) {
			res = len;
		} else {
756
			len = env_end - env_start;
757 758
			if (len > buflen - res)
				len = buflen - res;
759
			res += access_process_vm(task, env_start,
760 761
						 buffer+res, len,
						 FOLL_FORCE);
762 763 764 765 766 767 768 769
			res = strnlen(buffer, res);
		}
	}
out_mm:
	mmput(mm);
out:
	return res;
}