memory.c 19.7 KB
Newer Older
1
/*
2
 * Memory subsystem support
3
4
5
6
7
8
9
10
11
12
13
14
15
 *
 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
 *            Dave Hansen <haveblue@us.ibm.com>
 *
 * This file provides the necessary infrastructure to represent
 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
 * All arch-independent code that assumes MEMORY_HOTPLUG requires
 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/topology.h>
16
#include <linux/capability.h>
17
18
19
20
#include <linux/device.h>
#include <linux/memory.h>
#include <linux/memory_hotplug.h>
#include <linux/mm.h>
21
#include <linux/mutex.h>
22
#include <linux/stat.h>
23
#include <linux/slab.h>
24

Arun Sharma's avatar
Arun Sharma committed
25
#include <linux/atomic.h>
26
27
#include <asm/uaccess.h>

28
29
static DEFINE_MUTEX(mem_sysfs_mutex);

30
#define MEMORY_CLASS_NAME	"memory"
31

32
33
#define to_memory_block(dev) container_of(dev, struct memory_block, dev)

34
35
36
37
38
39
static int sections_per_block;

static inline int base_memory_block_id(int section_nr)
{
	return section_nr / sections_per_block;
}
40

41
42
43
static int memory_subsys_online(struct device *dev);
static int memory_subsys_offline(struct device *dev);

44
static struct bus_type memory_subsys = {
45
	.name = MEMORY_CLASS_NAME,
46
	.dev_name = MEMORY_CLASS_NAME,
47
48
	.online = memory_subsys_online,
	.offline = memory_subsys_offline,
49
50
};

51
static BLOCKING_NOTIFIER_HEAD(memory_chain);
52

53
int register_memory_notifier(struct notifier_block *nb)
54
{
55
	return blocking_notifier_chain_register(&memory_chain, nb);
56
}
57
EXPORT_SYMBOL(register_memory_notifier);
58

59
void unregister_memory_notifier(struct notifier_block *nb)
60
{
61
	blocking_notifier_chain_unregister(&memory_chain, nb);
62
}
63
EXPORT_SYMBOL(unregister_memory_notifier);
64

65
66
67
68
69
70
71
72
73
74
75
76
77
78
static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);

int register_memory_isolate_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(register_memory_isolate_notifier);

void unregister_memory_isolate_notifier(struct notifier_block *nb)
{
	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(unregister_memory_isolate_notifier);

79
80
static void memory_block_release(struct device *dev)
{
81
	struct memory_block *mem = to_memory_block(dev);
82
83
84
85

	kfree(mem);
}

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
unsigned long __weak memory_block_size_bytes(void)
{
	return MIN_MEMORY_BLOCK_SIZE;
}

static unsigned long get_memory_block_size(void)
{
	unsigned long block_sz;

	block_sz = memory_block_size_bytes();

	/* Validate blk_sz is a power of 2 and not less than section size */
	if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
		WARN_ON(1);
		block_sz = MIN_MEMORY_BLOCK_SIZE;
	}

	return block_sz;
}

106
107
108
109
110
/*
 * use this as the physical section index that this memsection
 * uses.
 */

111
112
static ssize_t show_mem_start_phys_index(struct device *dev,
			struct device_attribute *attr, char *buf)
113
{
114
	struct memory_block *mem = to_memory_block(dev);
115
116
117
118
119
120
	unsigned long phys_index;

	phys_index = mem->start_section_nr / sections_per_block;
	return sprintf(buf, "%08lx\n", phys_index);
}

121
122
123
/*
 * Show whether the section of memory is likely to be hot-removable
 */
124
125
static ssize_t show_mem_removable(struct device *dev,
			struct device_attribute *attr, char *buf)
126
{
127
128
	unsigned long i, pfn;
	int ret = 1;
129
	struct memory_block *mem = to_memory_block(dev);
130

131
	for (i = 0; i < sections_per_block; i++) {
132
133
		if (!present_section_nr(mem->start_section_nr + i))
			continue;
134
		pfn = section_nr_to_pfn(mem->start_section_nr + i);
135
136
137
		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
	}

138
139
140
	return sprintf(buf, "%d\n", ret);
}

141
142
143
/*
 * online, offline, going offline, etc.
 */
144
145
static ssize_t show_mem_state(struct device *dev,
			struct device_attribute *attr, char *buf)
146
{
147
	struct memory_block *mem = to_memory_block(dev);
148
149
150
151
152
153
154
	ssize_t len = 0;

	/*
	 * We can probably put these states in a nice little array
	 * so that they're not open-coded
	 */
	switch (mem->state) {
155
156
157
158
159
160
161
162
163
164
165
166
167
168
	case MEM_ONLINE:
		len = sprintf(buf, "online\n");
		break;
	case MEM_OFFLINE:
		len = sprintf(buf, "offline\n");
		break;
	case MEM_GOING_OFFLINE:
		len = sprintf(buf, "going-offline\n");
		break;
	default:
		len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
				mem->state);
		WARN_ON(1);
		break;
169
170
171
172
173
	}

	return len;
}

174
int memory_notify(unsigned long val, void *v)
175
{
176
	return blocking_notifier_call_chain(&memory_chain, val, v);
177
178
}

179
180
181
182
183
int memory_isolate_notify(unsigned long val, void *v)
{
	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
}

184
185
186
187
/*
 * The probe routines leave the pages reserved, just as the bootmem code does.
 * Make sure they're still that way.
 */
188
static bool pages_correctly_reserved(unsigned long start_pfn)
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
{
	int i, j;
	struct page *page;
	unsigned long pfn = start_pfn;

	/*
	 * memmap between sections is not contiguous except with
	 * SPARSEMEM_VMEMMAP. We lookup the page once per section
	 * and assume memmap is contiguous within each section
	 */
	for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
		if (WARN_ON_ONCE(!pfn_valid(pfn)))
			return false;
		page = pfn_to_page(pfn);

		for (j = 0; j < PAGES_PER_SECTION; j++) {
			if (PageReserved(page + j))
				continue;

			printk(KERN_WARNING "section number %ld page number %d "
				"not reserved, was it already online?\n",
				pfn_to_section_nr(pfn), j);

			return false;
		}
	}

	return true;
}

219
220
221
/*
 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
 * OK to have direct references to sparsemem variables in here.
222
 * Must already be protected by mem_hotplug_begin().
223
224
 */
static int
225
memory_block_action(unsigned long phys_index, unsigned long action, int online_type)
226
{
227
	unsigned long start_pfn;
228
	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
229
	struct page *first_page;
230
231
	int ret;

232
	start_pfn = section_nr_to_pfn(phys_index);
233
	first_page = pfn_to_page(start_pfn);
234

235
	switch (action) {
236
237
238
239
240
241
242
243
244
245
246
247
248
	case MEM_ONLINE:
		if (!pages_correctly_reserved(start_pfn))
			return -EBUSY;

		ret = online_pages(start_pfn, nr_pages, online_type);
		break;
	case MEM_OFFLINE:
		ret = offline_pages(start_pfn, nr_pages);
		break;
	default:
		WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
		     "%ld\n", __func__, phys_index, action, action);
		ret = -EINVAL;
249
250
251
252
253
	}

	return ret;
}

254
int memory_block_change_state(struct memory_block *mem,
255
		unsigned long to_state, unsigned long from_state_req)
256
{
257
	int ret = 0;
258

259
260
	if (mem->state != from_state_req)
		return -EINVAL;
261

262
263
264
	if (to_state == MEM_OFFLINE)
		mem->state = MEM_GOING_OFFLINE;

265
266
267
	ret = memory_block_action(mem->start_section_nr, to_state,
				mem->online_type);

268
	mem->state = ret ? from_state_req : to_state;
269

270
271
	return ret;
}
272

273
/* The device lock serializes operations on memory_subsys_[online|offline] */
274
275
static int memory_subsys_online(struct device *dev)
{
276
	struct memory_block *mem = to_memory_block(dev);
277
	int ret;
278

279
280
	if (mem->state == MEM_ONLINE)
		return 0;
281

282
283
284
285
286
287
	/*
	 * If we are called from store_mem_state(), online_type will be
	 * set >= 0 Otherwise we were called from the device online
	 * attribute and need to set the online_type.
	 */
	if (mem->online_type < 0)
288
		mem->online_type = MMOP_ONLINE_KEEP;
289

290
	/* Already under protection of mem_hotplug_begin() */
291
	ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
292

293
294
	/* clear online_type */
	mem->online_type = -1;
295
296
297
298
299

	return ret;
}

static int memory_subsys_offline(struct device *dev)
300
{
301
	struct memory_block *mem = to_memory_block(dev);
302

303
304
	if (mem->state == MEM_OFFLINE)
		return 0;
305

306
307
308
309
	/* Can't offline block with non-present sections */
	if (mem->section_count != sections_per_block)
		return -EINVAL;

310
	return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
311
}
312

313
static ssize_t
314
315
store_mem_state(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t count)
316
{
317
	struct memory_block *mem = to_memory_block(dev);
318
	int ret, online_type;
319

320
321
322
	ret = lock_device_hotplug_sysfs();
	if (ret)
		return ret;
323

324
	if (sysfs_streq(buf, "online_kernel"))
325
		online_type = MMOP_ONLINE_KERNEL;
326
	else if (sysfs_streq(buf, "online_movable"))
327
		online_type = MMOP_ONLINE_MOVABLE;
328
	else if (sysfs_streq(buf, "online"))
329
		online_type = MMOP_ONLINE_KEEP;
330
	else if (sysfs_streq(buf, "offline"))
331
		online_type = MMOP_OFFLINE;
332
333
334
335
	else {
		ret = -EINVAL;
		goto err;
	}
336

337
338
339
340
341
342
343
344
345
	/*
	 * Memory hotplug needs to hold mem_hotplug_begin() for probe to find
	 * the correct memory block to online before doing device_online(dev),
	 * which will take dev->mutex.  Take the lock early to prevent an
	 * inversion, memory_subsys_online() callbacks will be implemented by
	 * assuming it's already protected.
	 */
	mem_hotplug_begin();

346
	switch (online_type) {
347
348
349
	case MMOP_ONLINE_KERNEL:
	case MMOP_ONLINE_MOVABLE:
	case MMOP_ONLINE_KEEP:
350
351
352
		mem->online_type = online_type;
		ret = device_online(&mem->dev);
		break;
353
	case MMOP_OFFLINE:
354
355
356
357
		ret = device_offline(&mem->dev);
		break;
	default:
		ret = -EINVAL; /* should never happen */
358
359
	}

360
	mem_hotplug_done();
361
err:
362
	unlock_device_hotplug();
363

364
	if (ret < 0)
365
		return ret;
366
367
368
	if (ret)
		return -EINVAL;

369
370
371
372
373
374
375
376
377
378
379
380
	return count;
}

/*
 * phys_device is a bad name for this.  What I really want
 * is a way to differentiate between memory ranges that
 * are part of physical devices that constitute
 * a complete removable unit or fru.
 * i.e. do these ranges belong to the same physical device,
 * s.t. if I offline all of these sections I can then
 * remove the physical device?
 */
381
382
static ssize_t show_phys_device(struct device *dev,
				struct device_attribute *attr, char *buf)
383
{
384
	struct memory_block *mem = to_memory_block(dev);
385
386
387
	return sprintf(buf, "%d\n", mem->phys_device);
}

388
389
390
391
392
393
394
395
396
#ifdef CONFIG_MEMORY_HOTREMOVE
static ssize_t show_valid_zones(struct device *dev,
				struct device_attribute *attr, char *buf)
{
	struct memory_block *mem = to_memory_block(dev);
	unsigned long start_pfn, end_pfn;
	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
	struct page *first_page;
	struct zone *zone;
397
	int zone_shift = 0;
398
399
400
401
402
403
404
405
406
407
408

	start_pfn = section_nr_to_pfn(mem->start_section_nr);
	end_pfn = start_pfn + nr_pages;
	first_page = pfn_to_page(start_pfn);

	/* The block contains more than one zone can not be offlined. */
	if (!test_pages_in_a_zone(start_pfn, end_pfn))
		return sprintf(buf, "none\n");

	zone = page_zone(first_page);

409
410
411
412
413
414
415
416
	/* MMOP_ONLINE_KEEP */
	sprintf(buf, "%s", zone->name);

	/* MMOP_ONLINE_KERNEL */
	zone_shift = zone_can_shift(start_pfn, nr_pages, ZONE_NORMAL);
	if (zone_shift) {
		strcat(buf, " ");
		strcat(buf, (zone + zone_shift)->name);
417
418
	}

419
420
421
422
423
	/* MMOP_ONLINE_MOVABLE */
	zone_shift = zone_can_shift(start_pfn, nr_pages, ZONE_MOVABLE);
	if (zone_shift) {
		strcat(buf, " ");
		strcat(buf, (zone + zone_shift)->name);
424
425
	}

426
427
428
	strcat(buf, "\n");

	return strlen(buf);
429
430
431
432
}
static DEVICE_ATTR(valid_zones, 0444, show_valid_zones, NULL);
#endif

433
434
435
436
static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
437
438
439
440
441

/*
 * Block size attribute stuff
 */
static ssize_t
442
print_block_size(struct device *dev, struct device_attribute *attr,
443
		 char *buf)
444
{
445
	return sprintf(buf, "%lx\n", get_memory_block_size());
446
447
}

448
static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
449

450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
/*
 * Memory auto online policy.
 */

static ssize_t
show_auto_online_blocks(struct device *dev, struct device_attribute *attr,
			char *buf)
{
	if (memhp_auto_online)
		return sprintf(buf, "online\n");
	else
		return sprintf(buf, "offline\n");
}

static ssize_t
store_auto_online_blocks(struct device *dev, struct device_attribute *attr,
			 const char *buf, size_t count)
{
	if (sysfs_streq(buf, "online"))
		memhp_auto_online = true;
	else if (sysfs_streq(buf, "offline"))
		memhp_auto_online = false;
	else
		return -EINVAL;

	return count;
}

static DEVICE_ATTR(auto_online_blocks, 0644, show_auto_online_blocks,
		   store_auto_online_blocks);

481
482
483
484
485
486
487
488
/*
 * Some architectures will have custom drivers to do this, and
 * will not need to do it from userspace.  The fake hot-add code
 * as well as ppc64 will do all of their discovery in userspace
 * and will require this interface.
 */
#ifdef CONFIG_ARCH_MEMORY_PROBE
static ssize_t
489
memory_probe_store(struct device *dev, struct device_attribute *attr,
490
		   const char *buf, size_t count)
491
492
{
	u64 phys_addr;
493
	int nid, ret;
494
	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
495

496
497
498
	ret = kstrtoull(buf, 0, &phys_addr);
	if (ret)
		return ret;
499

500
501
502
	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
		return -EINVAL;

503
504
505
	nid = memory_add_physaddr_to_nid(phys_addr);
	ret = add_memory(nid, phys_addr,
			 MIN_MEMORY_BLOCK_SIZE * sections_per_block);
506

507
508
	if (ret)
		goto out;
509

510
511
512
	ret = count;
out:
	return ret;
513
514
}

515
static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
516
517
#endif

518
519
520
521
522
523
524
#ifdef CONFIG_MEMORY_FAILURE
/*
 * Support for offlining pages of memory
 */

/* Soft offline a page */
static ssize_t
525
526
store_soft_offline_page(struct device *dev,
			struct device_attribute *attr,
527
			const char *buf, size_t count)
528
529
530
531
532
{
	int ret;
	u64 pfn;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
533
	if (kstrtoull(buf, 0, &pfn) < 0)
534
535
536
537
538
539
540
541
542
543
		return -EINVAL;
	pfn >>= PAGE_SHIFT;
	if (!pfn_valid(pfn))
		return -ENXIO;
	ret = soft_offline_page(pfn_to_page(pfn), 0);
	return ret == 0 ? count : ret;
}

/* Forcibly offline a page, including killing processes. */
static ssize_t
544
545
store_hard_offline_page(struct device *dev,
			struct device_attribute *attr,
546
			const char *buf, size_t count)
547
548
549
550
551
{
	int ret;
	u64 pfn;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
552
	if (kstrtoull(buf, 0, &pfn) < 0)
553
554
		return -EINVAL;
	pfn >>= PAGE_SHIFT;
555
	ret = memory_failure(pfn, 0, 0);
556
557
558
	return ret ? ret : count;
}

559
560
static DEVICE_ATTR(soft_offline_page, S_IWUSR, NULL, store_soft_offline_page);
static DEVICE_ATTR(hard_offline_page, S_IWUSR, NULL, store_hard_offline_page);
561
562
#endif

563
564
565
566
567
/*
 * Note that phys_device is optional.  It is here to allow for
 * differentiation between which *physical* devices each
 * section belongs to...
 */
568
569
570
571
int __weak arch_get_memory_phys_device(unsigned long start_pfn)
{
	return 0;
}
572

573
574
575
576
/*
 * A reference for the returned object is held and the reference for the
 * hinted object is released.
 */
577
578
struct memory_block *find_memory_block_hinted(struct mem_section *section,
					      struct memory_block *hint)
579
{
580
	int block_id = base_memory_block_id(__section_nr(section));
581
582
	struct device *hintdev = hint ? &hint->dev : NULL;
	struct device *dev;
583

584
585
586
587
	dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
	if (hint)
		put_device(&hint->dev);
	if (!dev)
588
		return NULL;
589
	return to_memory_block(dev);
590
591
}

592
593
594
595
596
597
/*
 * For now, we have a linear search to go find the appropriate
 * memory_block corresponding to a particular phys_index. If
 * this gets to be a real problem, we can always use a radix
 * tree or something here.
 *
598
 * This could be made generic for all device subsystems.
599
600
601
602
603
604
 */
struct memory_block *find_memory_block(struct mem_section *section)
{
	return find_memory_block_hinted(section, NULL);
}

605
606
607
608
609
static struct attribute *memory_memblk_attrs[] = {
	&dev_attr_phys_index.attr,
	&dev_attr_state.attr,
	&dev_attr_phys_device.attr,
	&dev_attr_removable.attr,
610
611
612
#ifdef CONFIG_MEMORY_HOTREMOVE
	&dev_attr_valid_zones.attr,
#endif
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
	NULL
};

static struct attribute_group memory_memblk_attr_group = {
	.attrs = memory_memblk_attrs,
};

static const struct attribute_group *memory_memblk_attr_groups[] = {
	&memory_memblk_attr_group,
	NULL,
};

/*
 * register_memory - Setup a sysfs device for a memory block
 */
static
int register_memory(struct memory_block *memory)
{
	memory->dev.bus = &memory_subsys;
	memory->dev.id = memory->start_section_nr / sections_per_block;
	memory->dev.release = memory_block_release;
	memory->dev.groups = memory_memblk_attr_groups;
635
	memory->dev.offline = memory->state == MEM_OFFLINE;
636

637
	return device_register(&memory->dev);
638
639
}

640
641
static int init_memory_block(struct memory_block **memory,
			     struct mem_section *section, unsigned long state)
642
{
643
	struct memory_block *mem;
644
	unsigned long start_pfn;
645
	int scn_nr;
646
647
	int ret = 0;

648
	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
649
650
651
	if (!mem)
		return -ENOMEM;

652
	scn_nr = __section_nr(section);
653
654
655
	mem->start_section_nr =
			base_memory_block_id(scn_nr) * sections_per_block;
	mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
656
	mem->state = state;
657
	start_pfn = section_nr_to_pfn(mem->start_section_nr);
658
659
	mem->phys_device = arch_get_memory_phys_device(start_pfn);

660
661
662
663
664
665
	ret = register_memory(mem);

	*memory = mem;
	return ret;
}

666
static int add_memory_block(int base_section_nr)
667
{
668
669
	struct memory_block *mem;
	int i, ret, section_count = 0, section_nr;
670

671
672
673
674
675
676
677
678
	for (i = base_section_nr;
	     (i < base_section_nr + sections_per_block) && i < NR_MEM_SECTIONS;
	     i++) {
		if (!present_section_nr(i))
			continue;
		if (section_count == 0)
			section_nr = i;
		section_count++;
679
680
	}

681
682
683
684
685
686
687
	if (section_count == 0)
		return 0;
	ret = init_memory_block(&mem, __nr_to_section(section_nr), MEM_ONLINE);
	if (ret)
		return ret;
	mem->section_count = section_count;
	return 0;
688
689
}

690
691
692
693
694
695
696
static bool is_zone_device_section(struct mem_section *ms)
{
	struct page *page;

	page = sparse_decode_mem_map(ms->section_mem_map, __section_nr(ms));
	return is_zone_device_page(page);
}
697

698
699
700
701
702
703
/*
 * need an interface for the VM to add new memory regions,
 * but without onlining it.
 */
int register_new_memory(int nid, struct mem_section *section)
{
704
705
	int ret = 0;
	struct memory_block *mem;
706

707
708
709
	if (is_zone_device_section(section))
		return 0;

710
711
	mutex_lock(&mem_sysfs_mutex);

712
713
714
715
716
717
718
719
	mem = find_memory_block(section);
	if (mem) {
		mem->section_count++;
		put_device(&mem->dev);
	} else {
		ret = init_memory_block(&mem, section, MEM_OFFLINE);
		if (ret)
			goto out;
720
		mem->section_count++;
721
722
723
724
725
726
	}

	if (mem->section_count == sections_per_block)
		ret = register_mem_sect_under_node(mem, nid);
out:
	mutex_unlock(&mem_sysfs_mutex);
727
	return ret;
728
729
730
731
732
733
734
735
736
}

#ifdef CONFIG_MEMORY_HOTREMOVE
static void
unregister_memory(struct memory_block *memory)
{
	BUG_ON(memory->dev.bus != &memory_subsys);

	/* drop the ref. we got in remove_memory_block() */
737
	put_device(&memory->dev);
738
739
740
	device_unregister(&memory->dev);
}

741
static int remove_memory_section(unsigned long node_id,
742
			       struct mem_section *section, int phys_device)
743
744
745
{
	struct memory_block *mem;

746
747
748
	if (is_zone_device_section(section))
		return 0;

749
	mutex_lock(&mem_sysfs_mutex);
750
	mem = find_memory_block(section);
751
	unregister_mem_sect_under_nodes(mem, __section_nr(section));
752
753

	mem->section_count--;
754
	if (mem->section_count == 0)
755
		unregister_memory(mem);
756
	else
757
		put_device(&mem->dev);
758

759
	mutex_unlock(&mem_sysfs_mutex);
760
761
762
763
764
	return 0;
}

int unregister_memory_section(struct mem_section *section)
{
765
	if (!present_section(section))
766
767
		return -EINVAL;

768
	return remove_memory_section(0, section, 0);
769
}
770
#endif /* CONFIG_MEMORY_HOTREMOVE */
771

772
773
774
775
776
777
/* return true if the memory block is offlined, otherwise, return false */
bool is_memblock_offlined(struct memory_block *mem)
{
	return mem->state == MEM_OFFLINE;
}

778
779
780
781
782
783
784
785
786
787
788
static struct attribute *memory_root_attrs[] = {
#ifdef CONFIG_ARCH_MEMORY_PROBE
	&dev_attr_probe.attr,
#endif

#ifdef CONFIG_MEMORY_FAILURE
	&dev_attr_soft_offline_page.attr,
	&dev_attr_hard_offline_page.attr,
#endif

	&dev_attr_block_size_bytes.attr,
789
	&dev_attr_auto_online_blocks.attr,
790
791
792
793
794
795
796
797
798
799
800
801
	NULL
};

static struct attribute_group memory_root_attr_group = {
	.attrs = memory_root_attrs,
};

static const struct attribute_group *memory_root_attr_groups[] = {
	&memory_root_attr_group,
	NULL,
};

802
803
804
805
806
807
808
/*
 * Initialize the sysfs support for memory devices...
 */
int __init memory_dev_init(void)
{
	unsigned int i;
	int ret;
809
	int err;
810
	unsigned long block_sz;
811

812
	ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
813
814
	if (ret)
		goto out;
815

816
817
818
	block_sz = get_memory_block_size();
	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;

819
820
821
822
	/*
	 * Create entries for memory sections that were found
	 * during boot and have been initialized
	 */
823
	mutex_lock(&mem_sysfs_mutex);
824
825
	for (i = 0; i < NR_MEM_SECTIONS; i += sections_per_block) {
		err = add_memory_block(i);
826
827
		if (!ret)
			ret = err;
828
	}
829
	mutex_unlock(&mem_sysfs_mutex);
830

831
832
out:
	if (ret)
833
		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
834
835
	return ret;
}