memory.c 14.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * drivers/base/memory.c - basic Memory class support
 *
 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
 *            Dave Hansen <haveblue@us.ibm.com>
 *
 * This file provides the necessary infrastructure to represent
 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
 * All arch-independent code that assumes MEMORY_HOTPLUG requires
 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
 */

#include <linux/sysdev.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/topology.h>
17
#include <linux/capability.h>
18 19 20 21 22
#include <linux/device.h>
#include <linux/memory.h>
#include <linux/kobject.h>
#include <linux/memory_hotplug.h>
#include <linux/mm.h>
23
#include <linux/mutex.h>
24
#include <linux/stat.h>
25
#include <linux/slab.h>
26

27 28 29 30 31 32
#include <asm/atomic.h>
#include <asm/uaccess.h>

#define MEMORY_CLASS_NAME	"memory"

static struct sysdev_class memory_sysdev_class = {
33
	.name = MEMORY_CLASS_NAME,
34 35
};

36
static const char *memory_uevent_name(struct kset *kset, struct kobject *kobj)
37 38 39 40
{
	return MEMORY_CLASS_NAME;
}

41
static int memory_uevent(struct kset *kset, struct kobject *obj, struct kobj_uevent_env *env)
42 43 44 45 46 47
{
	int retval = 0;

	return retval;
}

48
static const struct kset_uevent_ops memory_uevent_ops = {
49 50
	.name		= memory_uevent_name,
	.uevent		= memory_uevent,
51 52
};

53
static BLOCKING_NOTIFIER_HEAD(memory_chain);
54

55
int register_memory_notifier(struct notifier_block *nb)
56
{
57
        return blocking_notifier_chain_register(&memory_chain, nb);
58
}
59
EXPORT_SYMBOL(register_memory_notifier);
60

61
void unregister_memory_notifier(struct notifier_block *nb)
62
{
63
        blocking_notifier_chain_unregister(&memory_chain, nb);
64
}
65
EXPORT_SYMBOL(unregister_memory_notifier);
66

67 68 69 70 71 72 73 74 75 76 77 78 79 80
static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);

int register_memory_isolate_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(register_memory_isolate_notifier);

void unregister_memory_isolate_notifier(struct notifier_block *nb)
{
	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(unregister_memory_isolate_notifier);

81 82 83
/*
 * register_memory - Setup a sysfs device for a memory block
 */
84 85
static
int register_memory(struct memory_block *memory, struct mem_section *section)
86 87 88 89 90 91 92 93 94 95 96
{
	int error;

	memory->sysdev.cls = &memory_sysdev_class;
	memory->sysdev.id = __section_nr(section);

	error = sysdev_register(&memory->sysdev);
	return error;
}

static void
97
unregister_memory(struct memory_block *memory, struct mem_section *section)
98 99 100 101
{
	BUG_ON(memory->sysdev.cls != &memory_sysdev_class);
	BUG_ON(memory->sysdev.id != __section_nr(section));

102 103
	/* drop the ref. we got in remove_memory_block() */
	kobject_put(&memory->sysdev.kobj);
104 105 106 107 108 109 110 111
	sysdev_unregister(&memory->sysdev);
}

/*
 * use this as the physical section index that this memsection
 * uses.
 */

112 113
static ssize_t show_mem_phys_index(struct sys_device *dev,
			struct sysdev_attribute *attr, char *buf)
114 115 116 117 118 119
{
	struct memory_block *mem =
		container_of(dev, struct memory_block, sysdev);
	return sprintf(buf, "%08lx\n", mem->phys_index);
}

120 121 122
/*
 * Show whether the section of memory is likely to be hot-removable
 */
123 124
static ssize_t show_mem_removable(struct sys_device *dev,
			struct sysdev_attribute *attr, char *buf)
125 126 127 128 129 130 131 132 133 134 135
{
	unsigned long start_pfn;
	int ret;
	struct memory_block *mem =
		container_of(dev, struct memory_block, sysdev);

	start_pfn = section_nr_to_pfn(mem->phys_index);
	ret = is_mem_section_removable(start_pfn, PAGES_PER_SECTION);
	return sprintf(buf, "%d\n", ret);
}

136 137 138
/*
 * online, offline, going offline, etc.
 */
139 140
static ssize_t show_mem_state(struct sys_device *dev,
			struct sysdev_attribute *attr, char *buf)
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
{
	struct memory_block *mem =
		container_of(dev, struct memory_block, sysdev);
	ssize_t len = 0;

	/*
	 * We can probably put these states in a nice little array
	 * so that they're not open-coded
	 */
	switch (mem->state) {
		case MEM_ONLINE:
			len = sprintf(buf, "online\n");
			break;
		case MEM_OFFLINE:
			len = sprintf(buf, "offline\n");
			break;
		case MEM_GOING_OFFLINE:
			len = sprintf(buf, "going-offline\n");
			break;
		default:
			len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
					mem->state);
			WARN_ON(1);
			break;
	}

	return len;
}

170
int memory_notify(unsigned long val, void *v)
171
{
172
	return blocking_notifier_call_chain(&memory_chain, val, v);
173 174
}

175 176 177 178 179
int memory_isolate_notify(unsigned long val, void *v)
{
	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
}

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
/*
 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
 * OK to have direct references to sparsemem variables in here.
 */
static int
memory_block_action(struct memory_block *mem, unsigned long action)
{
	int i;
	unsigned long psection;
	unsigned long start_pfn, start_paddr;
	struct page *first_page;
	int ret;
	int old_state = mem->state;

	psection = mem->phys_index;
	first_page = pfn_to_page(psection << PFN_SECTION_SHIFT);

	/*
	 * The probe routines leave the pages reserved, just
	 * as the bootmem code does.  Make sure they're still
	 * that way.
	 */
	if (action == MEM_ONLINE) {
		for (i = 0; i < PAGES_PER_SECTION; i++) {
			if (PageReserved(first_page+i))
				continue;

			printk(KERN_WARNING "section number %ld page number %d "
				"not reserved, was it already online? \n",
				psection, i);
			return -EBUSY;
		}
	}

	switch (action) {
		case MEM_ONLINE:
			start_pfn = page_to_pfn(first_page);
			ret = online_pages(start_pfn, PAGES_PER_SECTION);
			break;
		case MEM_OFFLINE:
			mem->state = MEM_GOING_OFFLINE;
			start_paddr = page_to_pfn(first_page) << PAGE_SHIFT;
			ret = remove_memory(start_paddr,
					    PAGES_PER_SECTION << PAGE_SHIFT);
			if (ret) {
				mem->state = old_state;
				break;
			}
			break;
		default:
Arjan van de Ven's avatar
Arjan van de Ven committed
230
			WARN(1, KERN_WARNING "%s(%p, %ld) unknown action: %ld\n",
231
					__func__, mem, action, action);
232 233 234 235 236 237 238 239 240 241
			ret = -EINVAL;
	}

	return ret;
}

static int memory_block_change_state(struct memory_block *mem,
		unsigned long to_state, unsigned long from_state_req)
{
	int ret = 0;
242
	mutex_lock(&mem->state_mutex);
243 244 245 246 247 248 249 250 251 252 253

	if (mem->state != from_state_req) {
		ret = -EINVAL;
		goto out;
	}

	ret = memory_block_action(mem, to_state);
	if (!ret)
		mem->state = to_state;

out:
254
	mutex_unlock(&mem->state_mutex);
255 256 257 258
	return ret;
}

static ssize_t
259 260
store_mem_state(struct sys_device *dev,
		struct sysdev_attribute *attr, const char *buf, size_t count)
261 262 263 264 265 266 267 268
{
	struct memory_block *mem;
	unsigned int phys_section_nr;
	int ret = -EINVAL;

	mem = container_of(dev, struct memory_block, sysdev);
	phys_section_nr = mem->phys_index;

269
	if (!present_section_nr(phys_section_nr))
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
		goto out;

	if (!strncmp(buf, "online", min((int)count, 6)))
		ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
	else if(!strncmp(buf, "offline", min((int)count, 7)))
		ret = memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
out:
	if (ret)
		return ret;
	return count;
}

/*
 * phys_device is a bad name for this.  What I really want
 * is a way to differentiate between memory ranges that
 * are part of physical devices that constitute
 * a complete removable unit or fru.
 * i.e. do these ranges belong to the same physical device,
 * s.t. if I offline all of these sections I can then
 * remove the physical device?
 */
291 292
static ssize_t show_phys_device(struct sys_device *dev,
				struct sysdev_attribute *attr, char *buf)
293 294 295 296 297 298 299 300 301
{
	struct memory_block *mem =
		container_of(dev, struct memory_block, sysdev);
	return sprintf(buf, "%d\n", mem->phys_device);
}

static SYSDEV_ATTR(phys_index, 0444, show_mem_phys_index, NULL);
static SYSDEV_ATTR(state, 0644, show_mem_state, store_mem_state);
static SYSDEV_ATTR(phys_device, 0444, show_phys_device, NULL);
302
static SYSDEV_ATTR(removable, 0444, show_mem_removable, NULL);
303 304 305 306 307 308 309 310 311 312

#define mem_create_simple_file(mem, attr_name)	\
	sysdev_create_file(&mem->sysdev, &attr_##attr_name)
#define mem_remove_simple_file(mem, attr_name)	\
	sysdev_remove_file(&mem->sysdev, &attr_##attr_name)

/*
 * Block size attribute stuff
 */
static ssize_t
313 314
print_block_size(struct sysdev_class *class, struct sysdev_class_attribute *attr,
		 char *buf)
315
{
316
	return sprintf(buf, "%lx\n", (unsigned long)PAGES_PER_SECTION * PAGE_SIZE);
317 318
}

319
static SYSDEV_CLASS_ATTR(block_size_bytes, 0444, print_block_size, NULL);
320 321 322

static int block_size_init(void)
{
323
	return sysfs_create_file(&memory_sysdev_class.kset.kobj,
324
				&attr_block_size_bytes.attr);
325 326 327 328 329 330 331 332 333 334
}

/*
 * Some architectures will have custom drivers to do this, and
 * will not need to do it from userspace.  The fake hot-add code
 * as well as ppc64 will do all of their discovery in userspace
 * and will require this interface.
 */
#ifdef CONFIG_ARCH_MEMORY_PROBE
static ssize_t
335 336
memory_probe_store(struct class *class, struct class_attribute *attr,
		   const char *buf, size_t count)
337 338
{
	u64 phys_addr;
339
	int nid;
340 341 342 343
	int ret;

	phys_addr = simple_strtoull(buf, NULL, 0);

344 345
	nid = memory_add_physaddr_to_nid(phys_addr);
	ret = add_memory(nid, phys_addr, PAGES_PER_SECTION << PAGE_SHIFT);
346 347 348 349 350 351

	if (ret)
		count = ret;

	return count;
}
352
static CLASS_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
353 354 355

static int memory_probe_init(void)
{
356
	return sysfs_create_file(&memory_sysdev_class.kset.kobj,
357
				&class_attr_probe.attr);
358 359
}
#else
360 361 362 363
static inline int memory_probe_init(void)
{
	return 0;
}
364 365
#endif

366 367 368 369 370 371 372
#ifdef CONFIG_MEMORY_FAILURE
/*
 * Support for offlining pages of memory
 */

/* Soft offline a page */
static ssize_t
373 374 375
store_soft_offline_page(struct class *class,
			struct class_attribute *attr,
			const char *buf, size_t count)
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
{
	int ret;
	u64 pfn;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
	if (strict_strtoull(buf, 0, &pfn) < 0)
		return -EINVAL;
	pfn >>= PAGE_SHIFT;
	if (!pfn_valid(pfn))
		return -ENXIO;
	ret = soft_offline_page(pfn_to_page(pfn), 0);
	return ret == 0 ? count : ret;
}

/* Forcibly offline a page, including killing processes. */
static ssize_t
392 393 394
store_hard_offline_page(struct class *class,
			struct class_attribute *attr,
			const char *buf, size_t count)
395 396 397 398 399 400 401 402 403 404 405 406
{
	int ret;
	u64 pfn;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
	if (strict_strtoull(buf, 0, &pfn) < 0)
		return -EINVAL;
	pfn >>= PAGE_SHIFT;
	ret = __memory_failure(pfn, 0, 0);
	return ret ? ret : count;
}

407 408
static CLASS_ATTR(soft_offline_page, 0644, NULL, store_soft_offline_page);
static CLASS_ATTR(hard_offline_page, 0644, NULL, store_hard_offline_page);
409 410 411 412 413 414

static __init int memory_fail_init(void)
{
	int err;

	err = sysfs_create_file(&memory_sysdev_class.kset.kobj,
415
				&class_attr_soft_offline_page.attr);
416 417
	if (!err)
		err = sysfs_create_file(&memory_sysdev_class.kset.kobj,
418
				&class_attr_hard_offline_page.attr);
419 420 421 422 423 424 425 426 427
	return err;
}
#else
static inline int memory_fail_init(void)
{
	return 0;
}
#endif

428 429 430 431 432
/*
 * Note that phys_device is optional.  It is here to allow for
 * differentiation between which *physical* devices each
 * section belongs to...
 */
433 434 435 436
int __weak arch_get_memory_phys_device(unsigned long start_pfn)
{
	return 0;
}
437

438 439
struct memory_block *find_memory_block_hinted(struct mem_section *section,
					      struct memory_block *hint)
440 441 442 443 444 445
{
	struct kobject *kobj;
	struct sys_device *sysdev;
	struct memory_block *mem;
	char name[sizeof(MEMORY_CLASS_NAME) + 9 + 1];

446 447
	kobj = hint ? &hint->sysdev.kobj : NULL;

448 449 450 451 452 453
	/*
	 * This only works because we know that section == sysdev->id
	 * slightly redundant with sysdev_register()
	 */
	sprintf(&name[0], "%s%d", MEMORY_CLASS_NAME, __section_nr(section));

454
	kobj = kset_find_obj_hinted(&memory_sysdev_class.kset, name, kobj);
455 456 457 458 459 460 461 462 463
	if (!kobj)
		return NULL;

	sysdev = container_of(kobj, struct sys_device, kobj);
	mem = container_of(sysdev, struct memory_block, sysdev);

	return mem;
}

464 465 466 467 468 469 470 471 472 473 474 475 476
/*
 * For now, we have a linear search to go find the appropriate
 * memory_block corresponding to a particular phys_index. If
 * this gets to be a real problem, we can always use a radix
 * tree or something here.
 *
 * This could be made generic for all sysdev classes.
 */
struct memory_block *find_memory_block(struct mem_section *section)
{
	return find_memory_block_hinted(section, NULL);
}

477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
static int add_memory_block(int nid, struct mem_section *section,
			unsigned long state, enum mem_add_context context)
{
	struct memory_block *mem = kzalloc(sizeof(*mem), GFP_KERNEL);
	unsigned long start_pfn;
	int ret = 0;

	if (!mem)
		return -ENOMEM;

	mem->phys_index = __section_nr(section);
	mem->state = state;
	mutex_init(&mem->state_mutex);
	start_pfn = section_nr_to_pfn(mem->phys_index);
	mem->phys_device = arch_get_memory_phys_device(start_pfn);

	ret = register_memory(mem, section);
	if (!ret)
		ret = mem_create_simple_file(mem, phys_index);
	if (!ret)
		ret = mem_create_simple_file(mem, state);
	if (!ret)
		ret = mem_create_simple_file(mem, phys_device);
	if (!ret)
		ret = mem_create_simple_file(mem, removable);
	if (!ret) {
		if (context == HOTPLUG)
			ret = register_mem_sect_under_node(mem, nid);
	}

	return ret;
}

510 511 512 513 514 515
int remove_memory_block(unsigned long node_id, struct mem_section *section,
		int phys_device)
{
	struct memory_block *mem;

	mem = find_memory_block(section);
516
	unregister_mem_sect_under_nodes(mem);
517 518 519
	mem_remove_simple_file(mem, phys_index);
	mem_remove_simple_file(mem, state);
	mem_remove_simple_file(mem, phys_device);
520
	mem_remove_simple_file(mem, removable);
521
	unregister_memory(mem, section);
522 523 524 525 526 527 528 529

	return 0;
}

/*
 * need an interface for the VM to add new memory regions,
 * but without onlining it.
 */
530
int register_new_memory(int nid, struct mem_section *section)
531
{
532
	return add_memory_block(nid, section, MEM_OFFLINE, HOTPLUG);
533 534 535 536
}

int unregister_memory_section(struct mem_section *section)
{
537
	if (!present_section(section))
538 539 540 541 542 543 544 545 546 547 548 549
		return -EINVAL;

	return remove_memory_block(0, section, 0);
}

/*
 * Initialize the sysfs support for memory devices...
 */
int __init memory_dev_init(void)
{
	unsigned int i;
	int ret;
550
	int err;
551

552
	memory_sysdev_class.kset.uevent_ops = &memory_uevent_ops;
553
	ret = sysdev_class_register(&memory_sysdev_class);
554 555
	if (ret)
		goto out;
556 557 558 559 560 561

	/*
	 * Create entries for memory sections that were found
	 * during boot and have been initialized
	 */
	for (i = 0; i < NR_MEM_SECTIONS; i++) {
562
		if (!present_section_nr(i))
563
			continue;
564
		err = add_memory_block(0, __nr_to_section(i), MEM_ONLINE,
565
				       BOOT);
566 567
		if (!ret)
			ret = err;
568 569
	}

570
	err = memory_probe_init();
571 572 573
	if (!ret)
		ret = err;
	err = memory_fail_init();
574 575 576 577 578 579 580
	if (!ret)
		ret = err;
	err = block_size_init();
	if (!ret)
		ret = err;
out:
	if (ret)
581
		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
582 583
	return ret;
}