hpet.c 28.6 KB
Newer Older
1
#include <linux/clocksource.h>
2
#include <linux/clockchips.h>
3
#include <linux/interrupt.h>
4
#include <linux/export.h>
5
#include <linux/delay.h>
6
#include <linux/errno.h>
7
#include <linux/i8253.h>
8
#include <linux/slab.h>
9
10
#include <linux/hpet.h>
#include <linux/init.h>
11
#include <linux/cpu.h>
12
13
#include <linux/pm.h>
#include <linux/io.h>
14

15
#include <asm/fixmap.h>
16
#include <asm/hpet.h>
17
#include <asm/time.h>
18

19
#define HPET_MASK			CLOCKSOURCE_MASK(32)
20

21
22
/* FSEC = 10^-15
   NSEC = 10^-9 */
23
#define FSEC_PER_NSEC			1000000L
24

25
26
27
28
29
30
#define HPET_DEV_USED_BIT		2
#define HPET_DEV_USED			(1 << HPET_DEV_USED_BIT)
#define HPET_DEV_VALID			0x8
#define HPET_DEV_FSB_CAP		0x1000
#define HPET_DEV_PERI_CAP		0x2000

31
32
33
#define HPET_MIN_CYCLES			128
#define HPET_MIN_PROG_DELTA		(HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))

34
35
36
/*
 * HPET address is set in acpi/boot.c, when an ACPI entry exists
 */
37
unsigned long				hpet_address;
38
u8					hpet_blockid; /* OS timer block num */
39
40
u8					hpet_msi_disable;

41
#ifdef CONFIG_PCI_MSI
Hannes Eder's avatar
Hannes Eder committed
42
static unsigned long			hpet_num_timers;
43
#endif
44
static void __iomem			*hpet_virt_address;
45

46
struct hpet_dev {
47
48
49
50
51
52
	struct clock_event_device	evt;
	unsigned int			num;
	int				cpu;
	unsigned int			irq;
	unsigned int			flags;
	char				name[10];
53
54
};

55
56
57
58
59
inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
{
	return container_of(evtdev, struct hpet_dev, evt);
}

60
inline unsigned int hpet_readl(unsigned int a)
61
62
63
64
{
	return readl(hpet_virt_address + a);
}

65
static inline void hpet_writel(unsigned int d, unsigned int a)
66
67
68
69
{
	writel(d, hpet_virt_address + a);
}

70
71
#ifdef CONFIG_X86_64
#include <asm/pgtable.h>
72
#endif
73

74
75
76
77
78
79
80
81
82
83
84
static inline void hpet_set_mapping(void)
{
	hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
}

static inline void hpet_clear_mapping(void)
{
	iounmap(hpet_virt_address);
	hpet_virt_address = NULL;
}

85
86
87
88
/*
 * HPET command line enable / disable
 */
static int boot_hpet_disable;
89
int hpet_force_user;
90
static int hpet_verbose;
91

92
static int __init hpet_setup(char *str)
93
{
94
95
96
97
98
	while (str) {
		char *next = strchr(str, ',');

		if (next)
			*next++ = 0;
99
100
		if (!strncmp("disable", str, 7))
			boot_hpet_disable = 1;
101
102
		if (!strncmp("force", str, 5))
			hpet_force_user = 1;
103
104
		if (!strncmp("verbose", str, 7))
			hpet_verbose = 1;
105
		str = next;
106
107
108
109
110
	}
	return 1;
}
__setup("hpet=", hpet_setup);

111
112
113
114
115
116
117
static int __init disable_hpet(char *str)
{
	boot_hpet_disable = 1;
	return 1;
}
__setup("nohpet", disable_hpet);

118
119
static inline int is_hpet_capable(void)
{
120
	return !boot_hpet_disable && hpet_address;
121
122
123
124
125
126
127
128
129
130
131
132
133
134
}

/*
 * HPET timer interrupt enable / disable
 */
static int hpet_legacy_int_enabled;

/**
 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
 */
int is_hpet_enabled(void)
{
	return is_hpet_capable() && hpet_legacy_int_enabled;
}
135
EXPORT_SYMBOL_GPL(is_hpet_enabled);
136

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
static void _hpet_print_config(const char *function, int line)
{
	u32 i, timers, l, h;
	printk(KERN_INFO "hpet: %s(%d):\n", function, line);
	l = hpet_readl(HPET_ID);
	h = hpet_readl(HPET_PERIOD);
	timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
	printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
	l = hpet_readl(HPET_CFG);
	h = hpet_readl(HPET_STATUS);
	printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
	l = hpet_readl(HPET_COUNTER);
	h = hpet_readl(HPET_COUNTER+4);
	printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);

	for (i = 0; i < timers; i++) {
		l = hpet_readl(HPET_Tn_CFG(i));
		h = hpet_readl(HPET_Tn_CFG(i)+4);
		printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
		       i, l, h);
		l = hpet_readl(HPET_Tn_CMP(i));
		h = hpet_readl(HPET_Tn_CMP(i)+4);
		printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
		       i, l, h);
		l = hpet_readl(HPET_Tn_ROUTE(i));
		h = hpet_readl(HPET_Tn_ROUTE(i)+4);
		printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
		       i, l, h);
	}
}

#define hpet_print_config()					\
do {								\
	if (hpet_verbose)					\
		_hpet_print_config(__FUNCTION__, __LINE__);	\
} while (0)

174
175
176
177
178
/*
 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
 * timer 0 and timer 1 in case of RTC emulation.
 */
#ifdef CONFIG_HPET
179

Venki Pallipadi's avatar
Venki Pallipadi committed
180
static void hpet_reserve_msi_timers(struct hpet_data *hd);
181

182
static void hpet_reserve_platform_timers(unsigned int id)
183
184
{
	struct hpet __iomem *hpet = hpet_virt_address;
185
186
	struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
	unsigned int nrtimers, i;
187
188
189
190
	struct hpet_data hd;

	nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;

191
192
193
194
	memset(&hd, 0, sizeof(hd));
	hd.hd_phys_address	= hpet_address;
	hd.hd_address		= hpet;
	hd.hd_nirqs		= nrtimers;
195
196
197
198
199
	hpet_reserve_timer(&hd, 0);

#ifdef CONFIG_HPET_EMULATE_RTC
	hpet_reserve_timer(&hd, 1);
#endif
200

201
202
203
204
205
	/*
	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers
	 * don't bother configuring *any* comparator interrupts.
	 */
206
207
208
	hd.hd_irq[0] = HPET_LEGACY_8254;
	hd.hd_irq[1] = HPET_LEGACY_RTC;

Ingo Molnar's avatar
Ingo Molnar committed
209
	for (i = 2; i < nrtimers; timer++, i++) {
210
211
		hd.hd_irq[i] = (readl(&timer->hpet_config) &
			Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
Ingo Molnar's avatar
Ingo Molnar committed
212
	}
213

214
	hpet_reserve_msi_timers(&hd);
215

216
	hpet_alloc(&hd);
217

218
219
}
#else
220
static void hpet_reserve_platform_timers(unsigned int id) { }
221
222
223
224
225
#endif

/*
 * Common hpet info
 */
226
static unsigned long hpet_freq;
227

228
static void hpet_legacy_set_mode(enum clock_event_mode mode,
229
			  struct clock_event_device *evt);
230
static int hpet_legacy_next_event(unsigned long delta,
231
232
233
234
235
236
237
238
			   struct clock_event_device *evt);

/*
 * The hpet clock event device
 */
static struct clock_event_device hpet_clockevent = {
	.name		= "hpet",
	.features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
239
240
	.set_mode	= hpet_legacy_set_mode,
	.set_next_event = hpet_legacy_next_event,
241
	.irq		= 0,
242
	.rating		= 50,
243
244
};

245
static void hpet_stop_counter(void)
246
247
248
249
{
	unsigned long cfg = hpet_readl(HPET_CFG);
	cfg &= ~HPET_CFG_ENABLE;
	hpet_writel(cfg, HPET_CFG);
250
251
252
253
}

static void hpet_reset_counter(void)
{
254
255
	hpet_writel(0, HPET_COUNTER);
	hpet_writel(0, HPET_COUNTER + 4);
256
257
258
259
}

static void hpet_start_counter(void)
{
260
	unsigned int cfg = hpet_readl(HPET_CFG);
261
262
263
264
	cfg |= HPET_CFG_ENABLE;
	hpet_writel(cfg, HPET_CFG);
}

265
266
267
static void hpet_restart_counter(void)
{
	hpet_stop_counter();
268
	hpet_reset_counter();
269
270
271
	hpet_start_counter();
}

272
273
static void hpet_resume_device(void)
{
274
	force_hpet_resume();
275
276
}

277
static void hpet_resume_counter(struct clocksource *cs)
278
279
{
	hpet_resume_device();
280
	hpet_restart_counter();
281
282
}

283
static void hpet_enable_legacy_int(void)
284
{
285
	unsigned int cfg = hpet_readl(HPET_CFG);
286
287
288
289
290
291

	cfg |= HPET_CFG_LEGACY;
	hpet_writel(cfg, HPET_CFG);
	hpet_legacy_int_enabled = 1;
}

292
293
294
295
296
297
298
299
300
static void hpet_legacy_clockevent_register(void)
{
	/* Start HPET legacy interrupts */
	hpet_enable_legacy_int();

	/*
	 * Start hpet with the boot cpu mask and make it
	 * global after the IO_APIC has been initialized.
	 */
301
	hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
302
303
	clockevents_config_and_register(&hpet_clockevent, hpet_freq,
					HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
304
305
306
307
	global_clock_event = &hpet_clockevent;
	printk(KERN_DEBUG "hpet clockevent registered\n");
}

308
309
static int hpet_setup_msi_irq(unsigned int irq);

310
311
static void hpet_set_mode(enum clock_event_mode mode,
			  struct clock_event_device *evt, int timer)
312
{
313
	unsigned int cfg, cmp, now;
314
315
	uint64_t delta;

316
	switch (mode) {
317
	case CLOCK_EVT_MODE_PERIODIC:
318
		hpet_stop_counter();
319
320
		delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
		delta >>= evt->shift;
321
		now = hpet_readl(HPET_COUNTER);
322
		cmp = now + (unsigned int) delta;
323
		cfg = hpet_readl(HPET_Tn_CFG(timer));
324
325
		cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
		       HPET_TN_SETVAL | HPET_TN_32BIT;
326
		hpet_writel(cfg, HPET_Tn_CFG(timer));
327
328
329
330
331
332
333
334
335
		hpet_writel(cmp, HPET_Tn_CMP(timer));
		udelay(1);
		/*
		 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
		 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
		 * bit is automatically cleared after the first write.
		 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
		 * Publication # 24674)
		 */
336
		hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
337
		hpet_start_counter();
338
		hpet_print_config();
339
340
341
		break;

	case CLOCK_EVT_MODE_ONESHOT:
342
		cfg = hpet_readl(HPET_Tn_CFG(timer));
343
344
		cfg &= ~HPET_TN_PERIODIC;
		cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
345
		hpet_writel(cfg, HPET_Tn_CFG(timer));
346
347
348
349
		break;

	case CLOCK_EVT_MODE_UNUSED:
	case CLOCK_EVT_MODE_SHUTDOWN:
350
		cfg = hpet_readl(HPET_Tn_CFG(timer));
351
		cfg &= ~HPET_TN_ENABLE;
352
		hpet_writel(cfg, HPET_Tn_CFG(timer));
353
		break;
354
355

	case CLOCK_EVT_MODE_RESUME:
356
357
358
359
360
361
		if (timer == 0) {
			hpet_enable_legacy_int();
		} else {
			struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
			hpet_setup_msi_irq(hdev->irq);
			disable_irq(hdev->irq);
362
			irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
363
364
			enable_irq(hdev->irq);
		}
365
		hpet_print_config();
366
		break;
367
368
369
	}
}

370
371
static int hpet_next_event(unsigned long delta,
			   struct clock_event_device *evt, int timer)
372
{
373
	u32 cnt;
374
	s32 res;
375
376

	cnt = hpet_readl(HPET_COUNTER);
377
	cnt += (u32) delta;
378
	hpet_writel(cnt, HPET_Tn_CMP(timer));
379

380
	/*
381
382
383
384
385
386
	 * HPETs are a complete disaster. The compare register is
	 * based on a equal comparison and neither provides a less
	 * than or equal functionality (which would require to take
	 * the wraparound into account) nor a simple count down event
	 * mode. Further the write to the comparator register is
	 * delayed internally up to two HPET clock cycles in certain
387
388
389
390
391
392
	 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
	 * longer delays. We worked around that by reading back the
	 * compare register, but that required another workaround for
	 * ICH9,10 chips where the first readout after write can
	 * return the old stale value. We already had a minimum
	 * programming delta of 5us enforced, but a NMI or SMI hitting
393
394
395
396
	 * between the counter readout and the comparator write can
	 * move us behind that point easily. Now instead of reading
	 * the compare register back several times, we make the ETIME
	 * decision based on the following: Return ETIME if the
397
	 * counter value after the write is less than HPET_MIN_CYCLES
398
	 * away from the event or if the counter is already ahead of
399
400
	 * the event. The minimum programming delta for the generic
	 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
401
	 */
402
	res = (s32)(cnt - hpet_readl(HPET_COUNTER));
403

404
	return res < HPET_MIN_CYCLES ? -ETIME : 0;
405
406
}

407
408
409
410
411
412
413
414
415
416
417
418
static void hpet_legacy_set_mode(enum clock_event_mode mode,
			struct clock_event_device *evt)
{
	hpet_set_mode(mode, evt, 0);
}

static int hpet_legacy_next_event(unsigned long delta,
			struct clock_event_device *evt)
{
	return hpet_next_event(delta, evt, 0);
}

419
420
421
/*
 * HPET MSI Support
 */
422
#ifdef CONFIG_PCI_MSI
Venki Pallipadi's avatar
Venki Pallipadi committed
423
424
425
426

static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
static struct hpet_dev	*hpet_devs;

427
void hpet_msi_unmask(struct irq_data *data)
428
{
429
	struct hpet_dev *hdev = data->handler_data;
430
	unsigned int cfg;
431
432
433

	/* unmask it */
	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
434
	cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
435
436
437
	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
}

438
void hpet_msi_mask(struct irq_data *data)
439
{
440
	struct hpet_dev *hdev = data->handler_data;
441
	unsigned int cfg;
442
443
444

	/* mask it */
	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
445
	cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
446
447
448
	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
}

449
void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
450
451
452
453
454
{
	hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
}

455
void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
456
457
458
459
460
461
{
	msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
	msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
	msg->address_hi = 0;
}

462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
static void hpet_msi_set_mode(enum clock_event_mode mode,
				struct clock_event_device *evt)
{
	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
	hpet_set_mode(mode, evt, hdev->num);
}

static int hpet_msi_next_event(unsigned long delta,
				struct clock_event_device *evt)
{
	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
	return hpet_next_event(delta, evt, hdev->num);
}

static int hpet_setup_msi_irq(unsigned int irq)
{
478
	if (x86_msi.setup_hpet_msi(irq, hpet_blockid)) {
479
480
481
482
483
484
485
486
487
488
		destroy_irq(irq);
		return -EINVAL;
	}
	return 0;
}

static int hpet_assign_irq(struct hpet_dev *dev)
{
	unsigned int irq;

489
	irq = create_irq_nr(0, -1);
490
491
492
	if (!irq)
		return -EINVAL;

493
	irq_set_handler_data(irq, dev);
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520

	if (hpet_setup_msi_irq(irq))
		return -EINVAL;

	dev->irq = irq;
	return 0;
}

static irqreturn_t hpet_interrupt_handler(int irq, void *data)
{
	struct hpet_dev *dev = (struct hpet_dev *)data;
	struct clock_event_device *hevt = &dev->evt;

	if (!hevt->event_handler) {
		printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
				dev->num);
		return IRQ_HANDLED;
	}

	hevt->event_handler(hevt);
	return IRQ_HANDLED;
}

static int hpet_setup_irq(struct hpet_dev *dev)
{

	if (request_irq(dev->irq, hpet_interrupt_handler,
521
			IRQF_TIMER | IRQF_NOBALANCING,
522
			dev->name, dev))
523
524
525
		return -1;

	disable_irq(dev->irq);
526
	irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
527
528
	enable_irq(dev->irq);

529
530
531
	printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
			 dev->name, dev->irq);

532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
	return 0;
}

/* This should be called in specific @cpu */
static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
{
	struct clock_event_device *evt = &hdev->evt;

	WARN_ON(cpu != smp_processor_id());
	if (!(hdev->flags & HPET_DEV_VALID))
		return;

	if (hpet_setup_msi_irq(hdev->irq))
		return;

	hdev->cpu = cpu;
	per_cpu(cpu_hpet_dev, cpu) = hdev;
	evt->name = hdev->name;
	hpet_setup_irq(hdev);
	evt->irq = hdev->irq;

	evt->rating = 110;
	evt->features = CLOCK_EVT_FEAT_ONESHOT;
	if (hdev->flags & HPET_DEV_PERI_CAP)
		evt->features |= CLOCK_EVT_FEAT_PERIODIC;

	evt->set_mode = hpet_msi_set_mode;
	evt->set_next_event = hpet_msi_next_event;
560
	evt->cpumask = cpumask_of(hdev->cpu);
561
562
563

	clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
					0x7FFFFFFF);
564
565
566
567
568
569
570
571
}

#ifdef CONFIG_HPET
/* Reserve at least one timer for userspace (/dev/hpet) */
#define RESERVE_TIMERS 1
#else
#define RESERVE_TIMERS 0
#endif
Venki Pallipadi's avatar
Venki Pallipadi committed
572
573

static void hpet_msi_capability_lookup(unsigned int start_timer)
574
575
576
577
578
579
{
	unsigned int id;
	unsigned int num_timers;
	unsigned int num_timers_used = 0;
	int i;

580
581
582
	if (hpet_msi_disable)
		return;

583
584
	if (boot_cpu_has(X86_FEATURE_ARAT))
		return;
585
586
587
588
	id = hpet_readl(HPET_ID);

	num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
	num_timers++; /* Value read out starts from 0 */
589
	hpet_print_config();
590
591
592
593
594
595
596
597
598

	hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
	if (!hpet_devs)
		return;

	hpet_num_timers = num_timers;

	for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
		struct hpet_dev *hdev = &hpet_devs[num_timers_used];
599
		unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624

		/* Only consider HPET timer with MSI support */
		if (!(cfg & HPET_TN_FSB_CAP))
			continue;

		hdev->flags = 0;
		if (cfg & HPET_TN_PERIODIC_CAP)
			hdev->flags |= HPET_DEV_PERI_CAP;
		hdev->num = i;

		sprintf(hdev->name, "hpet%d", i);
		if (hpet_assign_irq(hdev))
			continue;

		hdev->flags |= HPET_DEV_FSB_CAP;
		hdev->flags |= HPET_DEV_VALID;
		num_timers_used++;
		if (num_timers_used == num_possible_cpus())
			break;
	}

	printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
		num_timers, num_timers_used);
}

Venki Pallipadi's avatar
Venki Pallipadi committed
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
#ifdef CONFIG_HPET
static void hpet_reserve_msi_timers(struct hpet_data *hd)
{
	int i;

	if (!hpet_devs)
		return;

	for (i = 0; i < hpet_num_timers; i++) {
		struct hpet_dev *hdev = &hpet_devs[i];

		if (!(hdev->flags & HPET_DEV_VALID))
			continue;

		hd->hd_irq[hdev->num] = hdev->irq;
		hpet_reserve_timer(hd, hdev->num);
	}
}
#endif

645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
static struct hpet_dev *hpet_get_unused_timer(void)
{
	int i;

	if (!hpet_devs)
		return NULL;

	for (i = 0; i < hpet_num_timers; i++) {
		struct hpet_dev *hdev = &hpet_devs[i];

		if (!(hdev->flags & HPET_DEV_VALID))
			continue;
		if (test_and_set_bit(HPET_DEV_USED_BIT,
			(unsigned long *)&hdev->flags))
			continue;
		return hdev;
	}
	return NULL;
}

struct hpet_work_struct {
	struct delayed_work work;
	struct completion complete;
};

static void hpet_work(struct work_struct *w)
{
	struct hpet_dev *hdev;
	int cpu = smp_processor_id();
	struct hpet_work_struct *hpet_work;

	hpet_work = container_of(w, struct hpet_work_struct, work.work);

	hdev = hpet_get_unused_timer();
	if (hdev)
		init_one_hpet_msi_clockevent(hdev, cpu);

	complete(&hpet_work->complete);
}

static int hpet_cpuhp_notify(struct notifier_block *n,
		unsigned long action, void *hcpu)
{
	unsigned long cpu = (unsigned long)hcpu;
	struct hpet_work_struct work;
	struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);

	switch (action & 0xf) {
	case CPU_ONLINE:
694
		INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
695
696
697
698
		init_completion(&work.complete);
		/* FIXME: add schedule_work_on() */
		schedule_delayed_work_on(cpu, &work.work, 0);
		wait_for_completion(&work.complete);
699
		destroy_delayed_work_on_stack(&work.work);
700
701
702
703
704
705
706
707
708
709
710
711
712
		break;
	case CPU_DEAD:
		if (hdev) {
			free_irq(hdev->irq, hdev);
			hdev->flags &= ~HPET_DEV_USED;
			per_cpu(cpu_hpet_dev, cpu) = NULL;
		}
		break;
	}
	return NOTIFY_OK;
}
#else

713
714
715
716
static int hpet_setup_msi_irq(unsigned int irq)
{
	return 0;
}
Venki Pallipadi's avatar
Venki Pallipadi committed
717
718
719
720
721
722
723
static void hpet_msi_capability_lookup(unsigned int start_timer)
{
	return;
}

#ifdef CONFIG_HPET
static void hpet_reserve_msi_timers(struct hpet_data *hd)
724
725
726
{
	return;
}
Venki Pallipadi's avatar
Venki Pallipadi committed
727
#endif
728
729
730
731
732
733
734
735
736

static int hpet_cpuhp_notify(struct notifier_block *n,
		unsigned long action, void *hcpu)
{
	return NOTIFY_OK;
}

#endif

737
738
739
/*
 * Clock source related code
 */
740
static cycle_t read_hpet(struct clocksource *cs)
741
742
743
744
745
746
747
748
749
750
{
	return (cycle_t)hpet_readl(HPET_COUNTER);
}

static struct clocksource clocksource_hpet = {
	.name		= "hpet",
	.rating		= 250,
	.read		= read_hpet,
	.mask		= HPET_MASK,
	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
751
	.resume		= hpet_resume_counter,
752
	.archdata	= { .vclock_mode = VCLOCK_HPET },
753
754
};

755
static int hpet_clocksource_register(void)
756
{
757
	u64 start, now;
758
	cycle_t t1;
759
760

	/* Start the counter */
761
	hpet_restart_counter();
762

763
	/* Verify whether hpet counter works */
764
	t1 = hpet_readl(HPET_COUNTER);
765
766
767
768
769
770
771
772
773
774
775
776
777
	rdtscll(start);

	/*
	 * We don't know the TSC frequency yet, but waiting for
	 * 200000 TSC cycles is safe:
	 * 4 GHz == 50us
	 * 1 GHz == 200us
	 */
	do {
		rep_nop();
		rdtscll(now);
	} while ((now - start) < 200000UL);

778
	if (t1 == hpet_readl(HPET_COUNTER)) {
779
780
		printk(KERN_WARNING
		       "HPET counter not counting. HPET disabled\n");
781
		return -ENODEV;
782
783
	}

784
	clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
785
786
787
	return 0;
}

788
789
static u32 *hpet_boot_cfg;

Pavel Machek's avatar
Pavel Machek committed
790
791
/**
 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
792
793
794
 */
int __init hpet_enable(void)
{
795
	u32 hpet_period, cfg, id;
796
	u64 freq;
797
	unsigned int i, last;
798
799
800
801
802
803
804
805
806
807

	if (!is_hpet_capable())
		return 0;

	hpet_set_mapping();

	/*
	 * Read the period and check for a sane value:
	 */
	hpet_period = hpet_readl(HPET_PERIOD);
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830

	/*
	 * AMD SB700 based systems with spread spectrum enabled use a
	 * SMM based HPET emulation to provide proper frequency
	 * setting. The SMM code is initialized with the first HPET
	 * register access and takes some time to complete. During
	 * this time the config register reads 0xffffffff. We check
	 * for max. 1000 loops whether the config register reads a non
	 * 0xffffffff value to make sure that HPET is up and running
	 * before we go further. A counting loop is safe, as the HPET
	 * access takes thousands of CPU cycles. On non SB700 based
	 * machines this check is only done once and has no side
	 * effects.
	 */
	for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
		if (i == 1000) {
			printk(KERN_WARNING
			       "HPET config register value = 0xFFFFFFFF. "
			       "Disabling HPET\n");
			goto out_nohpet;
		}
	}

831
832
833
	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
		goto out_nohpet;

834
835
836
837
838
839
840
841
	/*
	 * The period is a femto seconds value. Convert it to a
	 * frequency.
	 */
	freq = FSEC_PER_SEC;
	do_div(freq, hpet_period);
	hpet_freq = freq;

842
843
844
845
846
	/*
	 * Read the HPET ID register to retrieve the IRQ routing
	 * information and the number of channels
	 */
	id = hpet_readl(HPET_ID);
847
	hpet_print_config();
848

849
850
	last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;

851
852
853
854
855
#ifdef CONFIG_HPET_EMULATE_RTC
	/*
	 * The legacy routing mode needs at least two channels, tick timer
	 * and the rtc emulation channel.
	 */
856
	if (!last)
857
858
859
		goto out_nohpet;
#endif

860
861
862
863
864
865
866
867
	cfg = hpet_readl(HPET_CFG);
	hpet_boot_cfg = kmalloc((last + 2) * sizeof(*hpet_boot_cfg),
				GFP_KERNEL);
	if (hpet_boot_cfg)
		*hpet_boot_cfg = cfg;
	else
		pr_warn("HPET initial state will not be saved\n");
	cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
868
	hpet_writel(cfg, HPET_CFG);
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
	if (cfg)
		pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
			cfg);

	for (i = 0; i <= last; ++i) {
		cfg = hpet_readl(HPET_Tn_CFG(i));
		if (hpet_boot_cfg)
			hpet_boot_cfg[i + 1] = cfg;
		cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
		hpet_writel(cfg, HPET_Tn_CFG(i));
		cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
			 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
			 | HPET_TN_FSB | HPET_TN_FSB_CAP);
		if (cfg)
			pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
				cfg, i);
	}
	hpet_print_config();

888
889
890
	if (hpet_clocksource_register())
		goto out_nohpet;

891
	if (id & HPET_ID_LEGSUP) {
892
		hpet_legacy_clockevent_register();
893
894
895
		return 1;
	}
	return 0;
896

897
out_nohpet:
898
	hpet_clear_mapping();
899
	hpet_address = 0;
900
901
902
	return 0;
}

903
904
905
906
907
908
909
910
/*
 * Needs to be late, as the reserve_timer code calls kalloc !
 *
 * Not a problem on i386 as hpet_enable is called from late_time_init,
 * but on x86_64 it is necessary !
 */
static __init int hpet_late_init(void)
{
911
912
	int cpu;

913
	if (boot_hpet_disable)
914
915
		return -ENODEV;

916
917
918
919
920
921
922
923
	if (!hpet_address) {
		if (!force_hpet_address)
			return -ENODEV;

		hpet_address = force_hpet_address;
		hpet_enable();
	}

924
925
926
	if (!hpet_virt_address)
		return -ENODEV;

927
928
929
930
931
	if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
		hpet_msi_capability_lookup(2);
	else
		hpet_msi_capability_lookup(0);

932
	hpet_reserve_platform_timers(hpet_readl(HPET_ID));
933
	hpet_print_config();
934

935
936
937
	if (hpet_msi_disable)
		return 0;

938
939
940
	if (boot_cpu_has(X86_FEATURE_ARAT))
		return 0;

941
	cpu_notifier_register_begin();
942
943
944
945
946
	for_each_online_cpu(cpu) {
		hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
	}

	/* This notifier should be called after workqueue is ready */
947
948
	__hotcpu_notifier(hpet_cpuhp_notify, -20);
	cpu_notifier_register_done();
949

950
951
952
953
	return 0;
}
fs_initcall(hpet_late_init);

OGAWA Hirofumi's avatar
OGAWA Hirofumi committed
954
955
void hpet_disable(void)
{
956
	if (is_hpet_capable() && hpet_virt_address) {
957
		unsigned int cfg = hpet_readl(HPET_CFG), id, last;
OGAWA Hirofumi's avatar
OGAWA Hirofumi committed
958

959
960
961
		if (hpet_boot_cfg)
			cfg = *hpet_boot_cfg;
		else if (hpet_legacy_int_enabled) {
OGAWA Hirofumi's avatar
OGAWA Hirofumi committed
962
963
964
965
966
			cfg &= ~HPET_CFG_LEGACY;
			hpet_legacy_int_enabled = 0;
		}
		cfg &= ~HPET_CFG_ENABLE;
		hpet_writel(cfg, HPET_CFG);
967
968
969
970
971
972
973
974
975
976
977
978

		if (!hpet_boot_cfg)
			return;

		id = hpet_readl(HPET_ID);
		last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);

		for (id = 0; id <= last; ++id)
			hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));

		if (*hpet_boot_cfg & HPET_CFG_ENABLE)
			hpet_writel(*hpet_boot_cfg, HPET_CFG);
OGAWA Hirofumi's avatar
OGAWA Hirofumi committed
979
980
981
	}
}

982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
#ifdef CONFIG_HPET_EMULATE_RTC

/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
 * is enabled, we support RTC interrupt functionality in software.
 * RTC has 3 kinds of interrupts:
 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
 *    is updated
 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
 *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
 * (1) and (2) above are implemented using polling at a frequency of
 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
 * overhead. (DEFAULT_RTC_INT_FREQ)
 * For (3), we use interrupts at 64Hz or user specified periodic
 * frequency, whichever is higher.
 */
#include <linux/mc146818rtc.h>
#include <linux/rtc.h>
1000
#include <asm/rtc.h>
1001
1002
1003
1004
1005
1006

#define DEFAULT_RTC_INT_FREQ	64
#define DEFAULT_RTC_SHIFT	6
#define RTC_NUM_INTS		1

static unsigned long hpet_rtc_flags;
David Brownell's avatar
David Brownell committed
1007
static int hpet_prev_update_sec;
1008
1009
static struct rtc_time hpet_alarm_time;
static unsigned long hpet_pie_count;
1010
static u32 hpet_t1_cmp;
1011
1012
static u32 hpet_default_delta;
static u32 hpet_pie_delta;
1013
1014
static unsigned long hpet_pie_limit;

1015
1016
static rtc_irq_handler irq_handler;

1017
1018
1019
1020
1021
1022
1023
1024
/*
 * Check that the hpet counter c1 is ahead of the c2
 */
static inline int hpet_cnt_ahead(u32 c1, u32 c2)
{
	return (s32)(c2 - c1) < 0;
}

1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
/*
 * Registers a IRQ handler.
 */
int hpet_register_irq_handler(rtc_irq_handler handler)
{
	if (!is_hpet_enabled())
		return -ENODEV;
	if (irq_handler)
		return -EBUSY;

	irq_handler = handler;

	return 0;
}
EXPORT_SYMBOL_GPL(hpet_register_irq_handler);

/*
 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
 * and does cleanup.
 */
void hpet_unregister_irq_handler(rtc_irq_handler handler)
{
	if (!is_hpet_enabled())
		return;

	irq_handler = NULL;
	hpet_rtc_flags = 0;
}
EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);

1055
1056
1057
1058
1059
1060
1061
1062
/*
 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
 * is not supported by all HPET implementations for timer 1.
 *
 * hpet_rtc_timer_init() is called when the rtc is initialized.
 */
int hpet_rtc_timer_init(void)
{
1063
1064
	unsigned int cfg, cnt, delta;
	unsigned long flags;
1065
1066
1067
1068
1069
1070
1071
1072
1073

	if (!is_hpet_enabled())
		return 0;

	if (!hpet_default_delta) {
		uint64_t clc;

		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
		clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1074
		hpet_default_delta = clc;
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
	}

	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
		delta = hpet_default_delta;
	else
		delta = hpet_pie_delta;

	local_irq_save(flags);

	cnt = delta + hpet_readl(HPET_COUNTER);
	hpet_writel(cnt, HPET_T1_CMP);
	hpet_t1_cmp = cnt;

	cfg = hpet_readl(HPET_T1_CFG);
	cfg &= ~HPET_TN_PERIODIC;
	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
	hpet_writel(cfg, HPET_T1_CFG);

	local_irq_restore(flags);

	return 1;
}
1097
EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1098

1099
1100
1101
1102
1103
1104
1105
1106
static void hpet_disable_rtc_channel(void)
{
	unsigned long cfg;
	cfg = hpet_readl(HPET_T1_CFG);
	cfg &= ~HPET_TN_ENABLE;
	hpet_writel(cfg, HPET_T1_CFG);
}

1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
/*
 * The functions below are called from rtc driver.
 * Return 0 if HPET is not being used.
 * Otherwise do the necessary changes and return 1.
 */
int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
{
	if (!is_hpet_enabled())
		return 0;

	hpet_rtc_flags &= ~bit_mask;
1118
1119
1120
	if (unlikely(!hpet_rtc_flags))
		hpet_disable_rtc_channel();

1121
1122
	return 1;
}
1123
EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

int hpet_set_rtc_irq_bit(unsigned long bit_mask)
{
	unsigned long oldbits = hpet_rtc_flags;

	if (!is_hpet_enabled())
		return 0;

	hpet_rtc_flags |= bit_mask;

David Brownell's avatar
David Brownell committed
1134
1135
1136
	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
		hpet_prev_update_sec = -1;

1137
1138
1139
1140
1141
	if (!oldbits)
		hpet_rtc_timer_init();

	return 1;
}
1142
EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155

int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
			unsigned char sec)
{
	if (!is_hpet_enabled())
		return 0;

	hpet_alarm_time.tm_hour = hrs;
	hpet_alarm_time.tm_min = min;
	hpet_alarm_time.tm_sec = sec;

	return 1;
}
1156
EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170

int hpet_set_periodic_freq(unsigned long freq)
{
	uint64_t clc;

	if (!is_hpet_enabled())
		return 0;

	if (freq <= DEFAULT_RTC_INT_FREQ)
		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
	else {
		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
		do_div(clc, freq);
		clc >>= hpet_clockevent.shift;
1171
		hpet_pie_delta = clc;
1172
		hpet_pie_limit = 0;
1173
1174
1175
	}
	return 1;
}
1176
EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1177
1178
1179
1180
1181

int hpet_rtc_dropped_irq(void)
{
	return is_hpet_enabled();
}
1182
EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1183
1184
1185

static void hpet_rtc_timer_reinit(void)
{
1186
	unsigned int delta;
1187
1188
	int lost_ints = -1;

1189
1190
	if (unlikely(!hpet_rtc_flags))
		hpet_disable_rtc_channel();
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204

	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
		delta = hpet_default_delta;
	else
		delta = hpet_pie_delta;

	/*
	 * Increment the comparator value until we are ahead of the
	 * current count.
	 */
	do {
		hpet_t1_cmp += delta;
		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
		lost_ints++;
1205
	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1206
1207
1208
1209
1210

	if (lost_ints) {
		if (hpet_rtc_flags & RTC_PIE)
			hpet_pie_count += lost_ints;
		if (printk_ratelimit())
David Brownell's avatar
David Brownell committed
1211
			printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
				lost_ints);
	}
}

irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
{
	struct rtc_time curr_time;
	unsigned long rtc_int_flag = 0;

	hpet_rtc_timer_reinit();
1222
	memset(&curr_time, 0, sizeof(struct rtc_time));
1223
1224

	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1225
		get_rtc_time(&curr_time);
1226
1227
1228

	if (hpet_rtc_flags & RTC_UIE &&
	    curr_time.tm_sec != hpet_prev_update_sec) {
David Brownell's avatar
David Brownell committed
1229
1230
		if (hpet_prev_update_sec >= 0)
			rtc_int_flag = RTC_UF;
1231
1232
1233
1234
1235
1236
1237
1238
1239
		hpet_prev_update_sec = curr_time.tm_sec;
	}

	if (hpet_rtc_flags & RTC_PIE &&
	    ++hpet_pie_count >= hpet_pie_limit) {
		rtc_int_flag |= RTC_PF;
		hpet_pie_count = 0;
	}

1240
	if (hpet_rtc_flags & RTC_AIE &&
1241
1242
1243
1244
1245
1246
1247
	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
			rtc_int_flag |= RTC_AF;

	if (rtc_int_flag) {
		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1248
1249
		if (irq_handler)
			irq_handler(rtc_int_flag, dev_id);
1250
1251
1252
	}
	return IRQ_HANDLED;
}
1253
EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1254
#endif