Commit 2b144498 authored by Srikar Dronamraju's avatar Srikar Dronamraju Committed by Ingo Molnar
Browse files

uprobes, mm, x86: Add the ability to install and remove uprobes breakpoints



Add uprobes support to the core kernel, with x86 support.

This commit adds the kernel facilities, the actual uprobes
user-space ABI and perf probe support comes in later commits.

General design:

Uprobes are maintained in an rb-tree indexed by inode and offset
(the offset here is from the start of the mapping). For a unique
(inode, offset) tuple, there can be at most one uprobe in the
rb-tree.

Since the (inode, offset) tuple identifies a unique uprobe, more
than one user may be interested in the same uprobe. This provides
the ability to connect multiple 'consumers' to the same uprobe.

Each consumer defines a handler and a filter (optional). The
'handler' is run every time the uprobe is hit, if it matches the
'filter' criteria.

The first consumer of a uprobe causes the breakpoint to be
inserted at the specified address and subsequent consumers are
appended to this list.  On subsequent probes, the consumer gets
appended to the existing list of consumers. The breakpoint is
removed when the last consumer unregisters. For all other
unregisterations, the consumer is removed from the list of
consumers.

Given a inode, we get a list of the mms that have mapped the
inode. Do the actual registration if mm maps the page where a
probe needs to be inserted/removed.

We use a temporary list to walk through the vmas that map the
inode.

- The number of maps that map the inode, is not known before we
  walk the rmap and keeps changing.
- extending vm_area_struct wasn't recommended, it's a
  size-critical data structure.
- There can be more than one maps of the inode in the same mm.

We add callbacks to the mmap methods to keep an eye on text vmas
that are of interest to uprobes.  When a vma of interest is mapped,
we insert the breakpoint at the right address.

Uprobe works by replacing the instruction at the address defined
by (inode, offset) with the arch specific breakpoint
instruction. We save a copy of the original instruction at the
uprobed address.

This is needed for:

 a. executing the instruction out-of-line (xol).
 b. instruction analysis for any subsequent fixups.
 c. restoring the instruction back when the uprobe is unregistered.

We insert or delete a breakpoint instruction, and this
breakpoint instruction is assumed to be the smallest instruction
available on the platform. For fixed size instruction platforms
this is trivially true, for variable size instruction platforms
the breakpoint instruction is typically the smallest (often a
single byte).

Writing the instruction is done by COWing the page and changing
the instruction during the copy, this even though most platforms
allow atomic writes of the breakpoint instruction. This also
mirrors the behaviour of a ptrace() memory write to a PRIVATE
file map.

The core worker is derived from KSM's replace_page() logic.

In essence, similar to KSM:

 a. allocate a new page and copy over contents of the page that
    has the uprobed vaddr
 b. modify the copy and insert the breakpoint at the required
    address
 c. switch the original page with the copy containing the
    breakpoint
 d. flush page tables.

replace_page() is being replicated here because of some minor
changes in the type of pages and also because Hugh Dickins had
plans to improve replace_page() for KSM specific work.

Instruction analysis on x86 is based on instruction decoder and
determines if an instruction can be probed and determines the
necessary fixups after singlestep.  Instruction analysis is done
at probe insertion time so that we avoid having to repeat the
same analysis every time a probe is hit.

A lot of code here is due to the improvement/suggestions/inputs
from Peter Zijlstra.

Changelog:

(v10):
 - Add code to clear REX.B prefix as suggested by Denys Vlasenko
   and Masami Hiramatsu.

(v9):
 - Use insn_offset_modrm as suggested by Masami Hiramatsu.

(v7):

 Handle comments from Peter Zijlstra:

 - Dont take reference to inode. (expect inode to uprobe_register to be sane).
 - Use PTR_ERR to set the return value.
 - No need to take reference to inode.
 - use PTR_ERR to return error value.
 - register and uprobe_unregister share code.

(v5):

 - Modified del_consumer as per comments from Peter.
 - Drop reference to inode before dropping reference to uprobe.
 - Use i_size_read(inode) instead of inode->i_size.
 - Ensure uprobe->consumers is NULL, before __uprobe_unregister() is called.
 - Includes errno.h as recommended by Stephen Rothwell to fix a build issue
   on sparc defconfig
 - Remove restrictions while unregistering.
 - Earlier code leaked inode references under some conditions while
   registering/unregistering.
 - Continue the vma-rmap walk even if the intermediate vma doesnt
   meet the requirements.
 - Validate the vma found by find_vma before inserting/removing the
   breakpoint
 - Call del_consumer under mutex_lock.
 - Use hash locks.
 - Handle mremap.
 - Introduce find_least_offset_node() instead of close match logic in
   find_uprobe
 - Uprobes no more depends on MM_OWNER; No reference to task_structs
   while inserting/removing a probe.
 - Uses read_mapping_page instead of grab_cache_page so that the pages
   have valid content.
 - pass NULL to get_user_pages for the task parameter.
 - call SetPageUptodate on the new page allocated in write_opcode.
 - fix leaking a reference to the new page under certain conditions.
 - Include Instruction Decoder if Uprobes gets defined.
 - Remove const attributes for instruction prefix arrays.
 - Uses mm_context to know if the application is 32 bit.
Signed-off-by: default avatarSrikar Dronamraju <srikar@linux.vnet.ibm.com>
Also-written-by: default avatarJim Keniston <jkenisto@us.ibm.com>
Reviewed-by: default avatarPeter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Roland McGrath <roland@hack.frob.com>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Anton Arapov <anton@redhat.com>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Denys Vlasenko <vda.linux@googlemail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linux-mm <linux-mm@kvack.org>
Link: http://lkml.kernel.org/r/20120209092642.GE16600@linux.vnet.ibm.com


[ Made various small edits to the commit log ]
Signed-off-by: default avatarIngo Molnar <mingo@elte.hu>
parent d1e169da
......@@ -65,6 +65,17 @@ config OPTPROBES
depends on KPROBES && HAVE_OPTPROBES
depends on !PREEMPT
config UPROBES
bool "User-space probes (EXPERIMENTAL)"
depends on ARCH_SUPPORTS_UPROBES
default n
help
Uprobes enables kernel subsystems to establish probepoints
in user applications and execute handler functions when
the probepoints are hit.
If in doubt, say "N".
config HAVE_EFFICIENT_UNALIGNED_ACCESS
bool
help
......
......@@ -84,7 +84,7 @@ config X86
select GENERIC_IOMAP
config INSTRUCTION_DECODER
def_bool (KPROBES || PERF_EVENTS)
def_bool (KPROBES || PERF_EVENTS || UPROBES)
config OUTPUT_FORMAT
string
......@@ -240,6 +240,9 @@ config ARCH_CPU_PROBE_RELEASE
def_bool y
depends on HOTPLUG_CPU
config ARCH_SUPPORTS_UPROBES
def_bool y
source "init/Kconfig"
source "kernel/Kconfig.freezer"
......
#ifndef _ASM_UPROBES_H
#define _ASM_UPROBES_H
/*
* Userspace Probes (UProbes) for x86
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright (C) IBM Corporation, 2008-2011
* Authors:
* Srikar Dronamraju
* Jim Keniston
*/
typedef u8 uprobe_opcode_t;
#define MAX_UINSN_BYTES 16
#define UPROBES_XOL_SLOT_BYTES 128 /* to keep it cache aligned */
#define UPROBES_BKPT_INSN 0xcc
#define UPROBES_BKPT_INSN_SIZE 1
struct uprobe_arch_info {
u16 fixups;
#ifdef CONFIG_X86_64
unsigned long rip_rela_target_address;
#endif
};
struct uprobe;
extern int analyze_insn(struct mm_struct *mm, struct uprobe *uprobe);
#endif /* _ASM_UPROBES_H */
......@@ -100,6 +100,7 @@ obj-$(CONFIG_X86_CHECK_BIOS_CORRUPTION) += check.o
obj-$(CONFIG_SWIOTLB) += pci-swiotlb.o
obj-$(CONFIG_OF) += devicetree.o
obj-$(CONFIG_UPROBES) += uprobes.o
###
# 64 bit specific files
......
/*
* Userspace Probes (UProbes) for x86
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright (C) IBM Corporation, 2008-2011
* Authors:
* Srikar Dronamraju
* Jim Keniston
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/ptrace.h>
#include <linux/uprobes.h>
#include <linux/kdebug.h>
#include <asm/insn.h>
/* Post-execution fixups. */
/* No fixup needed */
#define UPROBES_FIX_NONE 0x0
/* Adjust IP back to vicinity of actual insn */
#define UPROBES_FIX_IP 0x1
/* Adjust the return address of a call insn */
#define UPROBES_FIX_CALL 0x2
#define UPROBES_FIX_RIP_AX 0x8000
#define UPROBES_FIX_RIP_CX 0x4000
/* Adaptations for mhiramat x86 decoder v14. */
#define OPCODE1(insn) ((insn)->opcode.bytes[0])
#define OPCODE2(insn) ((insn)->opcode.bytes[1])
#define OPCODE3(insn) ((insn)->opcode.bytes[2])
#define MODRM_REG(insn) X86_MODRM_REG(insn->modrm.value)
#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
(b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
(b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
(bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
<< (row % 32))
#ifdef CONFIG_X86_64
static volatile u32 good_insns_64[256 / 32] = {
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
/* ---------------------------------------------- */
W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 00 */
W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
W(0x20, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 20 */
W(0x30, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 30 */
W(0x40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 40 */
W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
W(0x60, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
W(0xc0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
/* ---------------------------------------------- */
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
};
#endif
/* Good-instruction tables for 32-bit apps */
static volatile u32 good_insns_32[256 / 32] = {
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
/* ---------------------------------------------- */
W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 00 */
W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
W(0x20, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* 20 */
W(0x30, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) , /* 30 */
W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
W(0x60, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
W(0xd0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
/* ---------------------------------------------- */
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
};
/* Using this for both 64-bit and 32-bit apps */
static volatile u32 good_2byte_insns[256 / 32] = {
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
/* ---------------------------------------------- */
W(0x00, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) | /* 00 */
W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
W(0x30, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
W(0xa0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
W(0xd0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
W(0xf0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0) /* f0 */
/* ---------------------------------------------- */
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
};
#undef W
/*
* opcodes we'll probably never support:
* 6c-6d, e4-e5, ec-ed - in
* 6e-6f, e6-e7, ee-ef - out
* cc, cd - int3, int
* cf - iret
* d6 - illegal instruction
* f1 - int1/icebp
* f4 - hlt
* fa, fb - cli, sti
* 0f - lar, lsl, syscall, clts, sysret, sysenter, sysexit, invd, wbinvd, ud2
*
* invalid opcodes in 64-bit mode:
* 06, 0e, 16, 1e, 27, 2f, 37, 3f, 60-62, 82, c4-c5, d4-d5
*
* 63 - we support this opcode in x86_64 but not in i386.
*
* opcodes we may need to refine support for:
* 0f - 2-byte instructions: For many of these instructions, the validity
* depends on the prefix and/or the reg field. On such instructions, we
* just consider the opcode combination valid if it corresponds to any
* valid instruction.
* 8f - Group 1 - only reg = 0 is OK
* c6-c7 - Group 11 - only reg = 0 is OK
* d9-df - fpu insns with some illegal encodings
* f2, f3 - repnz, repz prefixes. These are also the first byte for
* certain floating-point instructions, such as addsd.
* fe - Group 4 - only reg = 0 or 1 is OK
* ff - Group 5 - only reg = 0-6 is OK
*
* others -- Do we need to support these?
* 0f - (floating-point?) prefetch instructions
* 07, 17, 1f - pop es, pop ss, pop ds
* 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
* but 64 and 65 (fs: and gs:) seem to be used, so we support them
* 67 - addr16 prefix
* ce - into
* f0 - lock prefix
*/
/*
* TODO:
* - Where necessary, examine the modrm byte and allow only valid instructions
* in the different Groups and fpu instructions.
*/
static bool is_prefix_bad(struct insn *insn)
{
int i;
for (i = 0; i < insn->prefixes.nbytes; i++) {
switch (insn->prefixes.bytes[i]) {
case 0x26: /*INAT_PFX_ES */
case 0x2E: /*INAT_PFX_CS */
case 0x36: /*INAT_PFX_DS */
case 0x3E: /*INAT_PFX_SS */
case 0xF0: /*INAT_PFX_LOCK */
return true;
}
}
return false;
}
static int validate_insn_32bits(struct uprobe *uprobe, struct insn *insn)
{
insn_init(insn, uprobe->insn, false);
/* Skip good instruction prefixes; reject "bad" ones. */
insn_get_opcode(insn);
if (is_prefix_bad(insn))
return -ENOTSUPP;
if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_32))
return 0;
if (insn->opcode.nbytes == 2) {
if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
return 0;
}
return -ENOTSUPP;
}
/*
* Figure out which fixups post_xol() will need to perform, and annotate
* uprobe->arch_info.fixups accordingly. To start with,
* uprobe->arch_info.fixups is either zero or it reflects rip-related
* fixups.
*/
static void prepare_fixups(struct uprobe *uprobe, struct insn *insn)
{
bool fix_ip = true, fix_call = false; /* defaults */
int reg;
insn_get_opcode(insn); /* should be a nop */
switch (OPCODE1(insn)) {
case 0xc3: /* ret/lret */
case 0xcb:
case 0xc2:
case 0xca:
/* ip is correct */
fix_ip = false;
break;
case 0xe8: /* call relative - Fix return addr */
fix_call = true;
break;
case 0x9a: /* call absolute - Fix return addr, not ip */
fix_call = true;
fix_ip = false;
break;
case 0xff:
insn_get_modrm(insn);
reg = MODRM_REG(insn);
if (reg == 2 || reg == 3) {
/* call or lcall, indirect */
/* Fix return addr; ip is correct. */
fix_call = true;
fix_ip = false;
} else if (reg == 4 || reg == 5) {
/* jmp or ljmp, indirect */
/* ip is correct. */
fix_ip = false;
}
break;
case 0xea: /* jmp absolute -- ip is correct */
fix_ip = false;
break;
default:
break;
}
if (fix_ip)
uprobe->arch_info.fixups |= UPROBES_FIX_IP;
if (fix_call)
uprobe->arch_info.fixups |= UPROBES_FIX_CALL;
}
#ifdef CONFIG_X86_64
/*
* If uprobe->insn doesn't use rip-relative addressing, return
* immediately. Otherwise, rewrite the instruction so that it accesses
* its memory operand indirectly through a scratch register. Set
* uprobe->arch_info.fixups and uprobe->arch_info.rip_rela_target_address
* accordingly. (The contents of the scratch register will be saved
* before we single-step the modified instruction, and restored
* afterward.)
*
* We do this because a rip-relative instruction can access only a
* relatively small area (+/- 2 GB from the instruction), and the XOL
* area typically lies beyond that area. At least for instructions
* that store to memory, we can't execute the original instruction
* and "fix things up" later, because the misdirected store could be
* disastrous.
*
* Some useful facts about rip-relative instructions:
* - There's always a modrm byte.
* - There's never a SIB byte.
* - The displacement is always 4 bytes.
*/
static void handle_riprel_insn(struct mm_struct *mm, struct uprobe *uprobe,
struct insn *insn)
{
u8 *cursor;
u8 reg;
if (mm->context.ia32_compat)
return;
uprobe->arch_info.rip_rela_target_address = 0x0;
if (!insn_rip_relative(insn))
return;
/*
* insn_rip_relative() would have decoded rex_prefix, modrm.
* Clear REX.b bit (extension of MODRM.rm field):
* we want to encode rax/rcx, not r8/r9.
*/
if (insn->rex_prefix.nbytes) {
cursor = uprobe->insn + insn_offset_rex_prefix(insn);
*cursor &= 0xfe; /* Clearing REX.B bit */
}
/*
* Point cursor at the modrm byte. The next 4 bytes are the
* displacement. Beyond the displacement, for some instructions,
* is the immediate operand.
*/
cursor = uprobe->insn + insn_offset_modrm(insn);
insn_get_length(insn);
/*
* Convert from rip-relative addressing to indirect addressing
* via a scratch register. Change the r/m field from 0x5 (%rip)
* to 0x0 (%rax) or 0x1 (%rcx), and squeeze out the offset field.
*/
reg = MODRM_REG(insn);
if (reg == 0) {
/*
* The register operand (if any) is either the A register
* (%rax, %eax, etc.) or (if the 0x4 bit is set in the
* REX prefix) %r8. In any case, we know the C register
* is NOT the register operand, so we use %rcx (register
* #1) for the scratch register.
*/
uprobe->arch_info.fixups = UPROBES_FIX_RIP_CX;
/* Change modrm from 00 000 101 to 00 000 001. */
*cursor = 0x1;
} else {
/* Use %rax (register #0) for the scratch register. */
uprobe->arch_info.fixups = UPROBES_FIX_RIP_AX;
/* Change modrm from 00 xxx 101 to 00 xxx 000 */
*cursor = (reg << 3);
}
/* Target address = address of next instruction + (signed) offset */
uprobe->arch_info.rip_rela_target_address = (long)insn->length
+ insn->displacement.value;
/* Displacement field is gone; slide immediate field (if any) over. */
if (insn->immediate.nbytes) {
cursor++;
memmove(cursor, cursor + insn->displacement.nbytes,
insn->immediate.nbytes);
}
return;
}
static int validate_insn_64bits(struct uprobe *uprobe, struct insn *insn)
{
insn_init(insn, uprobe->insn, true);
/* Skip good instruction prefixes; reject "bad" ones. */
insn_get_opcode(insn);
if (is_prefix_bad(insn))
return -ENOTSUPP;
if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_64))
return 0;
if (insn->opcode.nbytes == 2) {
if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
return 0;
}
return -ENOTSUPP;
}
static int validate_insn_bits(struct mm_struct *mm, struct uprobe *uprobe,
struct insn *insn)
{
if (mm->context.ia32_compat)
return validate_insn_32bits(uprobe, insn);
return validate_insn_64bits(uprobe, insn);
}
#else
static void handle_riprel_insn(struct mm_struct *mm, struct uprobe *uprobe,
struct insn *insn)
{
return;
}
static int validate_insn_bits(struct mm_struct *mm, struct uprobe *uprobe,
struct insn *insn)
{
return validate_insn_32bits(uprobe, insn);
}
#endif /* CONFIG_X86_64 */
/**
* analyze_insn - instruction analysis including validity and fixups.
* @mm: the probed address space.
* @uprobe: the probepoint information.
* Return 0 on success or a -ve number on error.
*/
int analyze_insn(struct mm_struct *mm, struct uprobe *uprobe)
{
int ret;
struct insn insn;
uprobe->arch_info.fixups = 0;
ret = validate_insn_bits(mm, uprobe, &insn);
if (ret != 0)
return ret;
handle_riprel_insn(mm, uprobe, &insn);
prepare_fixups(uprobe, &insn);
return 0;
}
#ifndef _LINUX_UPROBES_H
#define _LINUX_UPROBES_H
/*
* Userspace Probes (UProbes)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright (C) IBM Corporation, 2008-2011
* Authors:
* Srikar Dronamraju
* Jim Keniston
*/
#include <linux/errno.h>
#include <linux/rbtree.h>
struct vm_area_struct;
#ifdef CONFIG_ARCH_SUPPORTS_UPROBES
#include <asm/uprobes.h>
#else
typedef u8 uprobe_opcode_t;
struct uprobe_arch_info {};
#define MAX_UINSN_BYTES 4
#endif
#define uprobe_opcode_sz sizeof(uprobe_opcode_t)
/* flags that denote/change uprobes behaviour */
/* Have a copy of original instruction */
#define UPROBES_COPY_INSN 0x1
/* Dont run handlers when first register/ last unregister in progress*/
#define UPROBES_RUN_HANDLER 0x2
struct uprobe_consumer {
int (*handler)(struct uprobe_consumer *self, struct pt_regs *regs);
/*
* filter is optional; If a filter exists, handler is run
* if and only if filter returns true.
*/
bool (*filter)(struct uprobe_consumer *self, struct task_struct *task);
struct uprobe_consumer *next;
};
struct uprobe {
struct rb_node rb_node; /* node in the rb tree */
atomic_t ref;
struct rw_semaphore consumer_rwsem;
struct list_head pending_list;
struct uprobe_arch_info arch_info;
struct uprobe_consumer *consumers;
struct inode *inode; /* Also hold a ref to inode */
loff_t offset;
int flags;
u8 insn[MAX_UINSN_BYTES];
};
#ifdef CONFIG_UPROBES
extern int __weak set_bkpt(struct mm_struct *mm, struct uprobe *uprobe,
unsigned long vaddr);
extern int __weak set_orig_insn(struct mm_struct *mm, struct uprobe *uprobe,
unsigned long vaddr, bool verify);
extern bool __weak is_bkpt_insn(uprobe_opcode_t *insn);
extern int register_uprobe(struct inode *inode, loff_t offset,
struct uprobe_consumer *consumer);
extern void unregister_uprobe(struct inode *inode, loff_t offset,
struct uprobe_consumer *consumer);
extern int mmap_uprobe(struct vm_area_struct *vma);
#else /* CONFIG_UPROBES is not defined */
static inline int register_uprobe(struct inode *inode, loff_t offset,
struct uprobe_consumer *consumer)
{
return -ENOSYS;
}
static inline void unregister_uprobe(struct inode *inode, loff_t offset,
struct uprobe_consumer *consumer)
{