diff --git a/virt/kvm/arm/vgic/vgic-mmio.c b/virt/kvm/arm/vgic/vgic-mmio.c
index 2b450d49a0467a93776d814d9e6fc4a8e82c45ec..7c2231950c339eaff7c67c87394a882062dae272 100644
--- a/virt/kvm/arm/vgic/vgic-mmio.c
+++ b/virt/kvm/arm/vgic/vgic-mmio.c
@@ -313,27 +313,6 @@ static void vgic_mmio_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
 
 	spin_lock_irqsave(&irq->irq_lock, flags);
 
-	/*
-	 * If this virtual IRQ was written into a list register, we
-	 * have to make sure the CPU that runs the VCPU thread has
-	 * synced back the LR state to the struct vgic_irq.
-	 *
-	 * As long as the conditions below are true, we know the VCPU thread
-	 * may be on its way back from the guest (we kicked the VCPU thread in
-	 * vgic_change_active_prepare)  and still has to sync back this IRQ,
-	 * so we release and re-acquire the spin_lock to let the other thread
-	 * sync back the IRQ.
-	 *
-	 * When accessing VGIC state from user space, requester_vcpu is
-	 * NULL, which is fine, because we guarantee that no VCPUs are running
-	 * when accessing VGIC state from user space so irq->vcpu->cpu is
-	 * always -1.
-	 */
-	while (irq->vcpu && /* IRQ may have state in an LR somewhere */
-	       irq->vcpu != requester_vcpu && /* Current thread is not the VCPU thread */
-	       irq->vcpu->cpu != -1) /* VCPU thread is running */
-		cond_resched_lock(&irq->irq_lock);
-
 	if (irq->hw) {
 		vgic_hw_irq_change_active(vcpu, irq, active, !requester_vcpu);
 	} else {