Skip to main content
Sign in
Snippets Groups Projects
Select Git revision
  • 27c89341f355630fae3a28abc22e6334fa3ded56
  • rk3288-encoder-wip default
  • master
  • v1p-20210224
4 results

rk_vepu_interface.h

Blame
  • file.c 15.28 KiB
    /* -*- mode: c; c-basic-offset: 8; -*-
     * vim: noexpandtab sw=8 ts=8 sts=0:
     *
     * file.c - operations for regular (text) files.
     *
     * This program is free software; you can redistribute it and/or
     * modify it under the terms of the GNU General Public
     * License as published by the Free Software Foundation; either
     * version 2 of the License, or (at your option) any later version.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * General Public License for more details.
     *
     * You should have received a copy of the GNU General Public
     * License along with this program; if not, write to the
     * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
     * Boston, MA 021110-1307, USA.
     *
     * Based on sysfs:
     * 	sysfs is Copyright (C) 2001, 2002, 2003 Patrick Mochel
     *
     * configfs Copyright (C) 2005 Oracle.  All rights reserved.
     */
    
    #include <linux/fs.h>
    #include <linux/module.h>
    #include <linux/slab.h>
    #include <linux/mutex.h>
    #include <linux/vmalloc.h>
    #include <asm/uaccess.h>
    
    #include <linux/configfs.h>
    #include "configfs_internal.h"
    
    /*
     * A simple attribute can only be 4096 characters.  Why 4k?  Because the
     * original code limited it to PAGE_SIZE.  That's a bad idea, though,
     * because an attribute of 16k on ia64 won't work on x86.  So we limit to
     * 4k, our minimum common page size.
     */
    #define SIMPLE_ATTR_SIZE 4096
    
    struct configfs_buffer {
    	size_t			count;
    	loff_t			pos;
    	char			* page;
    	struct configfs_item_operations	* ops;
    	struct mutex		mutex;
    	int			needs_read_fill;
    	bool			read_in_progress;
    	bool			write_in_progress;
    	char			*bin_buffer;
    	int			bin_buffer_size;
    };
    
    
    /**
     *	fill_read_buffer - allocate and fill buffer from item.
     *	@dentry:	dentry pointer.
     *	@buffer:	data buffer for file.
     *
     *	Allocate @buffer->page, if it hasn't been already, then call the
     *	config_item's show() method to fill the buffer with this attribute's
     *	data.
     *	This is called only once, on the file's first read.
     */
    static int fill_read_buffer(struct dentry * dentry, struct configfs_buffer * buffer)
    {
    	struct configfs_attribute * attr = to_attr(dentry);
    	struct config_item * item = to_item(dentry->d_parent);
    	int ret = 0;
    	ssize_t count;
    
    	if (!buffer->page)
    		buffer->page = (char *) get_zeroed_page(GFP_KERNEL);
    	if (!buffer->page)
    		return -ENOMEM;
    
    	count = attr->show(item, buffer->page);
    
    	BUG_ON(count > (ssize_t)SIMPLE_ATTR_SIZE);
    	if (count >= 0) {
    		buffer->needs_read_fill = 0;
    		buffer->count = count;
    	} else
    		ret = count;
    	return ret;
    }
    
    /**
     *	configfs_read_file - read an attribute.
     *	@file:	file pointer.
     *	@buf:	buffer to fill.
     *	@count:	number of bytes to read.
     *	@ppos:	starting offset in file.
     *
     *	Userspace wants to read an attribute file. The attribute descriptor
     *	is in the file's ->d_fsdata. The target item is in the directory's
     *	->d_fsdata.
     *
     *	We call fill_read_buffer() to allocate and fill the buffer from the
     *	item's show() method exactly once (if the read is happening from
     *	the beginning of the file). That should fill the entire buffer with
     *	all the data the item has to offer for that attribute.
     *	We then call flush_read_buffer() to copy the buffer to userspace
     *	in the increments specified.
     */
    
    static ssize_t
    configfs_read_file(struct file *file, char __user *buf, size_t count, loff_t *ppos)
    {
    	struct configfs_buffer * buffer = file->private_data;
    	ssize_t retval = 0;
    
    	mutex_lock(&buffer->mutex);
    	if (buffer->needs_read_fill) {
    		if ((retval = fill_read_buffer(file->f_path.dentry,buffer)))
    			goto out;
    	}
    	pr_debug("%s: count = %zd, ppos = %lld, buf = %s\n",
    		 __func__, count, *ppos, buffer->page);
    	retval = simple_read_from_buffer(buf, count, ppos, buffer->page,
    					 buffer->count);
    out:
    	mutex_unlock(&buffer->mutex);
    	return retval;
    }
    
    /**
     *	configfs_read_bin_file - read a binary attribute.
     *	@file:	file pointer.
     *	@buf:	buffer to fill.
     *	@count:	number of bytes to read.
     *	@ppos:	starting offset in file.
     *
     *	Userspace wants to read a binary attribute file. The attribute
     *	descriptor is in the file's ->d_fsdata. The target item is in the
     *	directory's ->d_fsdata.
     *
     *	We check whether we need to refill the buffer. If so we will
     *	call the attributes' attr->read() twice. The first time we
     *	will pass a NULL as a buffer pointer, which the attributes' method
     *	will use to return the size of the buffer required. If no error
     *	occurs we will allocate the buffer using vmalloc and call
     *	attr->read() again passing that buffer as an argument.
     *	Then we just copy to user-space using simple_read_from_buffer.
     */
    
    static ssize_t
    configfs_read_bin_file(struct file *file, char __user *buf,
    		       size_t count, loff_t *ppos)
    {
    	struct configfs_buffer *buffer = file->private_data;
    	struct dentry *dentry = file->f_path.dentry;
    	struct config_item *item = to_item(dentry->d_parent);
    	struct configfs_bin_attribute *bin_attr = to_bin_attr(dentry);
    	ssize_t retval = 0;
    	ssize_t len = min_t(size_t, count, PAGE_SIZE);
    
    	mutex_lock(&buffer->mutex);
    
    	/* we don't support switching read/write modes */
    	if (buffer->write_in_progress) {
    		retval = -ETXTBSY;
    		goto out;
    	}
    	buffer->read_in_progress = 1;
    
    	if (buffer->needs_read_fill) {
    		/* perform first read with buf == NULL to get extent */
    		len = bin_attr->read(item, NULL, 0);
    		if (len <= 0) {
    			retval = len;
    			goto out;
    		}
    
    		/* do not exceed the maximum value */
    		if (bin_attr->cb_max_size && len > bin_attr->cb_max_size) {
    			retval = -EFBIG;
    			goto out;
    		}
    
    		buffer->bin_buffer = vmalloc(len);
    		if (buffer->bin_buffer == NULL) {
    			retval = -ENOMEM;
    			goto out;
    		}
    		buffer->bin_buffer_size = len;
    
    		/* perform second read to fill buffer */
    		len = bin_attr->read(item, buffer->bin_buffer, len);
    		if (len < 0) {
    			retval = len;
    			vfree(buffer->bin_buffer);
    			buffer->bin_buffer_size = 0;
    			buffer->bin_buffer = NULL;
    			goto out;
    		}
    
    		buffer->needs_read_fill = 0;
    	}
    
    	retval = simple_read_from_buffer(buf, count, ppos, buffer->bin_buffer,
    					buffer->bin_buffer_size);
    out:
    	mutex_unlock(&buffer->mutex);
    	return retval;
    }
    
    
    /**
     *	fill_write_buffer - copy buffer from userspace.
     *	@buffer:	data buffer for file.
     *	@buf:		data from user.
     *	@count:		number of bytes in @userbuf.
     *
     *	Allocate @buffer->page if it hasn't been already, then
     *	copy the user-supplied buffer into it.
     */
    
    static int
    fill_write_buffer(struct configfs_buffer * buffer, const char __user * buf, size_t count)
    {
    	int error;
    
    	if (!buffer->page)
    		buffer->page = (char *)__get_free_pages(GFP_KERNEL, 0);
    	if (!buffer->page)
    		return -ENOMEM;
    
    	if (count >= SIMPLE_ATTR_SIZE)
    		count = SIMPLE_ATTR_SIZE - 1;
    	error = copy_from_user(buffer->page,buf,count);
    	buffer->needs_read_fill = 1;
    	/* if buf is assumed to contain a string, terminate it by \0,
    	 * so e.g. sscanf() can scan the string easily */
    	buffer->page[count] = 0;
    	return error ? -EFAULT : count;
    }
    
    
    /**
     *	flush_write_buffer - push buffer to config_item.
     *	@dentry:	dentry to the attribute
     *	@buffer:	data buffer for file.
     *	@count:		number of bytes
     *
     *	Get the correct pointers for the config_item and the attribute we're
     *	dealing with, then call the store() method for the attribute,
     *	passing the buffer that we acquired in fill_write_buffer().
     */
    
    static int
    flush_write_buffer(struct dentry * dentry, struct configfs_buffer * buffer, size_t count)
    {
    	struct configfs_attribute * attr = to_attr(dentry);
    	struct config_item * item = to_item(dentry->d_parent);
    
    	return attr->store(item, buffer->page, count);
    }
    
    
    /**
     *	configfs_write_file - write an attribute.
     *	@file:	file pointer
     *	@buf:	data to write
     *	@count:	number of bytes
     *	@ppos:	starting offset
     *
     *	Similar to configfs_read_file(), though working in the opposite direction.
     *	We allocate and fill the data from the user in fill_write_buffer(),
     *	then push it to the config_item in flush_write_buffer().
     *	There is no easy way for us to know if userspace is only doing a partial
     *	write, so we don't support them. We expect the entire buffer to come
     *	on the first write.
     *	Hint: if you're writing a value, first read the file, modify only the
     *	the value you're changing, then write entire buffer back.
     */
    
    static ssize_t
    configfs_write_file(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
    {
    	struct configfs_buffer * buffer = file->private_data;
    	ssize_t len;
    
    	mutex_lock(&buffer->mutex);
    	len = fill_write_buffer(buffer, buf, count);
    	if (len > 0)
    		len = flush_write_buffer(file->f_path.dentry, buffer, len);
    	if (len > 0)
    		*ppos += len;
    	mutex_unlock(&buffer->mutex);
    	return len;
    }
    
    /**
     *	configfs_write_bin_file - write a binary attribute.
     *	@file:	file pointer
     *	@buf:	data to write
     *	@count:	number of bytes
     *	@ppos:	starting offset
     *
     *	Writing to a binary attribute file is similar to a normal read.
     *	We buffer the consecutive writes (binary attribute files do not
     *	support lseek) in a continuously growing buffer, but we don't
     *	commit until the close of the file.
     */
    
    static ssize_t
    configfs_write_bin_file(struct file *file, const char __user *buf,
    			size_t count, loff_t *ppos)
    {
    	struct configfs_buffer *buffer = file->private_data;
    	struct dentry *dentry = file->f_path.dentry;
    	struct configfs_bin_attribute *bin_attr = to_bin_attr(dentry);
    	void *tbuf = NULL;
    	ssize_t len;
    
    	mutex_lock(&buffer->mutex);
    
    	/* we don't support switching read/write modes */
    	if (buffer->read_in_progress) {
    		len = -ETXTBSY;
    		goto out;
    	}
    	buffer->write_in_progress = 1;
    
    	/* buffer grows? */
    	if (*ppos + count > buffer->bin_buffer_size) {
    
    		if (bin_attr->cb_max_size &&
    			*ppos + count > bin_attr->cb_max_size) {
    			len = -EFBIG;
    			goto out;
    		}
    
    		tbuf = vmalloc(*ppos + count);
    		if (tbuf == NULL) {
    			len = -ENOMEM;
    			goto out;
    		}
    
    		/* copy old contents */
    		if (buffer->bin_buffer) {
    			memcpy(tbuf, buffer->bin_buffer,
    				buffer->bin_buffer_size);
    			vfree(buffer->bin_buffer);
    		}
    
    		/* clear the new area */
    		memset(tbuf + buffer->bin_buffer_size, 0,
    			*ppos + count - buffer->bin_buffer_size);
    		buffer->bin_buffer = tbuf;
    		buffer->bin_buffer_size = *ppos + count;
    	}
    
    	len = simple_write_to_buffer(buffer->bin_buffer,
    			buffer->bin_buffer_size, ppos, buf, count);
    out:
    	mutex_unlock(&buffer->mutex);
    	return len;
    }
    
    static int check_perm(struct inode * inode, struct file * file, int type)
    {
    	struct config_item *item = configfs_get_config_item(file->f_path.dentry->d_parent);
    	struct configfs_attribute * attr = to_attr(file->f_path.dentry);
    	struct configfs_bin_attribute *bin_attr = NULL;
    	struct configfs_buffer * buffer;
    	struct configfs_item_operations * ops = NULL;
    	int error = 0;
    
    	if (!item || !attr)
    		goto Einval;
    
    	if (type & CONFIGFS_ITEM_BIN_ATTR)
    		bin_attr = to_bin_attr(file->f_path.dentry);
    
    	/* Grab the module reference for this attribute if we have one */
    	if (!try_module_get(attr->ca_owner)) {
    		error = -ENODEV;
    		goto Done;
    	}
    
    	if (item->ci_type)
    		ops = item->ci_type->ct_item_ops;
    	else
    		goto Eaccess;
    
    	/* File needs write support.
    	 * The inode's perms must say it's ok,
    	 * and we must have a store method.
    	 */
    	if (file->f_mode & FMODE_WRITE) {
    		if (!(inode->i_mode & S_IWUGO))
    			goto Eaccess;
    
    		if ((type & CONFIGFS_ITEM_ATTR) && !attr->store)
    			goto Eaccess;
    
    		if ((type & CONFIGFS_ITEM_BIN_ATTR) && !bin_attr->write)
    			goto Eaccess;
    	}
    
    	/* File needs read support.
    	 * The inode's perms must say it's ok, and we there
    	 * must be a show method for it.
    	 */
    	if (file->f_mode & FMODE_READ) {
    		if (!(inode->i_mode & S_IRUGO))
    			goto Eaccess;
    
    		if ((type & CONFIGFS_ITEM_ATTR) && !attr->show)
    			goto Eaccess;
    
    		if ((type & CONFIGFS_ITEM_BIN_ATTR) && !bin_attr->read)
    			goto Eaccess;
    	}
    
    	/* No error? Great, allocate a buffer for the file, and store it
    	 * it in file->private_data for easy access.
    	 */
    	buffer = kzalloc(sizeof(struct configfs_buffer),GFP_KERNEL);
    	if (!buffer) {
    		error = -ENOMEM;
    		goto Enomem;
    	}
    	mutex_init(&buffer->mutex);
    	buffer->needs_read_fill = 1;
    	buffer->read_in_progress = 0;
    	buffer->write_in_progress = 0;
    	buffer->ops = ops;
    	file->private_data = buffer;
    	goto Done;
    
     Einval:
    	error = -EINVAL;
    	goto Done;
     Eaccess:
    	error = -EACCES;
     Enomem:
    	module_put(attr->ca_owner);
     Done:
    	if (error && item)
    		config_item_put(item);
    	return error;
    }
    
    static int configfs_release(struct inode *inode, struct file *filp)
    {
    	struct config_item * item = to_item(filp->f_path.dentry->d_parent);
    	struct configfs_attribute * attr = to_attr(filp->f_path.dentry);
    	struct module * owner = attr->ca_owner;
    	struct configfs_buffer * buffer = filp->private_data;
    
    	if (item)
    		config_item_put(item);
    	/* After this point, attr should not be accessed. */
    	module_put(owner);
    
    	if (buffer) {
    		if (buffer->page)
    			free_page((unsigned long)buffer->page);
    		mutex_destroy(&buffer->mutex);
    		kfree(buffer);
    	}
    	return 0;
    }
    
    static int configfs_open_file(struct inode *inode, struct file *filp)
    {
    	return check_perm(inode, filp, CONFIGFS_ITEM_ATTR);
    }
    
    static int configfs_open_bin_file(struct inode *inode, struct file *filp)
    {
    	return check_perm(inode, filp, CONFIGFS_ITEM_BIN_ATTR);
    }
    
    static int configfs_release_bin_file(struct inode *inode, struct file *filp)
    {
    	struct configfs_buffer *buffer = filp->private_data;
    	struct dentry *dentry = filp->f_path.dentry;
    	struct config_item *item = to_item(dentry->d_parent);
    	struct configfs_bin_attribute *bin_attr = to_bin_attr(dentry);
    	ssize_t len = 0;
    	int ret;
    
    	buffer->read_in_progress = 0;
    
    	if (buffer->write_in_progress) {
    		buffer->write_in_progress = 0;
    
    		len = bin_attr->write(item, buffer->bin_buffer,
    				buffer->bin_buffer_size);
    
    		/* vfree on NULL is safe */
    		vfree(buffer->bin_buffer);
    		buffer->bin_buffer = NULL;
    		buffer->bin_buffer_size = 0;
    		buffer->needs_read_fill = 1;
    	}
    
    	ret = configfs_release(inode, filp);
    	if (len < 0)
    		return len;
    	return ret;
    }
    
    
    const struct file_operations configfs_file_operations = {
    	.read		= configfs_read_file,
    	.write		= configfs_write_file,
    	.llseek		= generic_file_llseek,
    	.open		= configfs_open_file,
    	.release	= configfs_release,
    };
    
    const struct file_operations configfs_bin_file_operations = {
    	.read		= configfs_read_bin_file,
    	.write		= configfs_write_bin_file,
    	.llseek		= NULL,		/* bin file is not seekable */
    	.open		= configfs_open_bin_file,
    	.release	= configfs_release_bin_file,
    };
    
    /**
     *	configfs_create_file - create an attribute file for an item.
     *	@item:	item we're creating for.
     *	@attr:	atrribute descriptor.
     */
    
    int configfs_create_file(struct config_item * item, const struct configfs_attribute * attr)
    {
    	struct dentry *dir = item->ci_dentry;
    	struct configfs_dirent *parent_sd = dir->d_fsdata;
    	umode_t mode = (attr->ca_mode & S_IALLUGO) | S_IFREG;
    	int error = 0;
    
    	inode_lock_nested(d_inode(dir), I_MUTEX_NORMAL);
    	error = configfs_make_dirent(parent_sd, NULL, (void *) attr, mode,
    				     CONFIGFS_ITEM_ATTR);
    	inode_unlock(d_inode(dir));
    
    	return error;
    }
    
    /**
     *	configfs_create_bin_file - create a binary attribute file for an item.
     *	@item:	item we're creating for.
     *	@attr:	atrribute descriptor.
     */
    
    int configfs_create_bin_file(struct config_item *item,
    		const struct configfs_bin_attribute *bin_attr)
    {
    	struct dentry *dir = item->ci_dentry;
    	struct configfs_dirent *parent_sd = dir->d_fsdata;
    	umode_t mode = (bin_attr->cb_attr.ca_mode & S_IALLUGO) | S_IFREG;
    	int error = 0;
    
    	inode_lock_nested(dir->d_inode, I_MUTEX_NORMAL);
    	error = configfs_make_dirent(parent_sd, NULL, (void *) bin_attr, mode,
    				     CONFIGFS_ITEM_BIN_ATTR);
    	inode_unlock(dir->d_inode);
    
    	return error;
    }