af_can.c 24.9 KB
Newer Older
1
2
3
4
/*
 * af_can.c - Protocol family CAN core module
 *            (used by different CAN protocol modules)
 *
5
 * Copyright (c) 2002-2017 Volkswagen Group Electronic Research
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of Volkswagen nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * Alternatively, provided that this notice is retained in full, this
 * software may be distributed under the terms of the GNU General
 * Public License ("GPL") version 2, in which case the provisions of the
 * GPL apply INSTEAD OF those given above.
 *
 * The provided data structures and external interfaces from this code
 * are not restricted to be used by modules with a GPL compatible license.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
 * DAMAGE.
 *
 */

#include <linux/module.h>
44
#include <linux/stddef.h>
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#include <linux/init.h>
#include <linux/kmod.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/spinlock.h>
#include <linux/rcupdate.h>
#include <linux/uaccess.h>
#include <linux/net.h>
#include <linux/netdevice.h>
#include <linux/socket.h>
#include <linux/if_ether.h>
#include <linux/if_arp.h>
#include <linux/skbuff.h>
#include <linux/can.h>
#include <linux/can/core.h>
60
#include <linux/can/skb.h>
61
#include <linux/ratelimit.h>
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
#include <net/net_namespace.h>
#include <net/sock.h>

#include "af_can.h"

MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
	      "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");

MODULE_ALIAS_NETPROTO(PF_CAN);

static int stats_timer __read_mostly = 1;
module_param(stats_timer, int, S_IRUGO);
MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");

static struct kmem_cache *rcv_cache __read_mostly;

/* table of registered CAN protocols */
81
static const struct can_proto *proto_tab[CAN_NPROTO] __read_mostly;
82
static DEFINE_MUTEX(proto_tab_lock);
83

84
85
static atomic_t skbcounter = ATOMIC_INIT(0);

86
87
88
89
/*
 * af_can socket functions
 */

Oliver Hartkopp's avatar
Oliver Hartkopp committed
90
int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
91
92
93
94
95
96
97
98
99
100
101
102
{
	struct sock *sk = sock->sk;

	switch (cmd) {

	case SIOCGSTAMP:
		return sock_get_timestamp(sk, (struct timeval __user *)arg);

	default:
		return -ENOIOCTLCMD;
	}
}
Oliver Hartkopp's avatar
Oliver Hartkopp committed
103
EXPORT_SYMBOL(can_ioctl);
104
105
106
107
108
109

static void can_sock_destruct(struct sock *sk)
{
	skb_queue_purge(&sk->sk_receive_queue);
}

110
static const struct can_proto *can_get_proto(int protocol)
111
{
112
	const struct can_proto *cp;
113
114
115
116
117
118
119
120
121
122

	rcu_read_lock();
	cp = rcu_dereference(proto_tab[protocol]);
	if (cp && !try_module_get(cp->prot->owner))
		cp = NULL;
	rcu_read_unlock();

	return cp;
}

123
124
125
126
127
static inline void can_put_proto(const struct can_proto *cp)
{
	module_put(cp->prot->owner);
}

128
129
static int can_create(struct net *net, struct socket *sock, int protocol,
		      int kern)
130
131
{
	struct sock *sk;
132
	const struct can_proto *cp;
133
134
135
136
137
138
139
	int err = 0;

	sock->state = SS_UNCONNECTED;

	if (protocol < 0 || protocol >= CAN_NPROTO)
		return -EINVAL;

140
	cp = can_get_proto(protocol);
141

142
#ifdef CONFIG_MODULES
143
144
145
	if (!cp) {
		/* try to load protocol module if kernel is modular */

146
		err = request_module("can-proto-%d", protocol);
147
148
149
150
151
152

		/*
		 * In case of error we only print a message but don't
		 * return the error code immediately.  Below we will
		 * return -EPROTONOSUPPORT
		 */
153
154
		if (err)
			printk_ratelimited(KERN_ERR "can: request_module "
155
			       "(can-proto-%d) failed.\n", protocol);
156

157
		cp = can_get_proto(protocol);
158
	}
159
#endif
160
161
162
163
164
165
166

	/* check for available protocol and correct usage */

	if (!cp)
		return -EPROTONOSUPPORT;

	if (cp->type != sock->type) {
167
		err = -EPROTOTYPE;
168
169
170
171
172
		goto errout;
	}

	sock->ops = cp->ops;

173
	sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot, kern);
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
	if (!sk) {
		err = -ENOMEM;
		goto errout;
	}

	sock_init_data(sock, sk);
	sk->sk_destruct = can_sock_destruct;

	if (sk->sk_prot->init)
		err = sk->sk_prot->init(sk);

	if (err) {
		/* release sk on errors */
		sock_orphan(sk);
		sock_put(sk);
	}

 errout:
192
	can_put_proto(cp);
193
194
195
196
197
198
199
200
201
202
203
204
	return err;
}

/*
 * af_can tx path
 */

/**
 * can_send - transmit a CAN frame (optional with local loopback)
 * @skb: pointer to socket buffer with CAN frame in data section
 * @loop: loopback for listeners on local CAN sockets (recommended default!)
 *
205
206
 * Due to the loopback this routine must not be called from hardirq context.
 *
207
208
209
210
211
212
 * Return:
 *  0 on success
 *  -ENETDOWN when the selected interface is down
 *  -ENOBUFS on full driver queue (see net_xmit_errno())
 *  -ENOMEM when local loopback failed at calling skb_clone()
 *  -EPERM when trying to send on a non-CAN interface
213
 *  -EMSGSIZE CAN frame size is bigger than CAN interface MTU
Oliver Hartkopp's avatar
Oliver Hartkopp committed
214
 *  -EINVAL when the skb->data does not contain a valid CAN frame
215
216
217
 */
int can_send(struct sk_buff *skb, int loop)
{
218
	struct sk_buff *newskb = NULL;
219
	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
220
	struct s_stats *can_stats = dev_net(skb->dev)->can.can_stats;
221
222
223
224
225
226
227
228
229
230
231
232
	int err = -EINVAL;

	if (skb->len == CAN_MTU) {
		skb->protocol = htons(ETH_P_CAN);
		if (unlikely(cfd->len > CAN_MAX_DLEN))
			goto inval_skb;
	} else if (skb->len == CANFD_MTU) {
		skb->protocol = htons(ETH_P_CANFD);
		if (unlikely(cfd->len > CANFD_MAX_DLEN))
			goto inval_skb;
	} else
		goto inval_skb;
233

234
235
236
237
238
239
240
241
	/*
	 * Make sure the CAN frame can pass the selected CAN netdevice.
	 * As structs can_frame and canfd_frame are similar, we can provide
	 * CAN FD frames to legacy CAN drivers as long as the length is <= 8
	 */
	if (unlikely(skb->len > skb->dev->mtu && cfd->len > CAN_MAX_DLEN)) {
		err = -EMSGSIZE;
		goto inval_skb;
Oliver Hartkopp's avatar
Oliver Hartkopp committed
242
243
	}

244
245
246
	if (unlikely(skb->dev->type != ARPHRD_CAN)) {
		err = -EPERM;
		goto inval_skb;
247
248
	}

249
250
251
	if (unlikely(!(skb->dev->flags & IFF_UP))) {
		err = -ENETDOWN;
		goto inval_skb;
252
253
	}

254
255
256
	skb->ip_summed = CHECKSUM_UNNECESSARY;

	skb_reset_mac_header(skb);
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
	skb_reset_network_header(skb);
	skb_reset_transport_header(skb);

	if (loop) {
		/* local loopback of sent CAN frames */

		/* indication for the CAN driver: do loopback */
		skb->pkt_type = PACKET_LOOPBACK;

		/*
		 * The reference to the originating sock may be required
		 * by the receiving socket to check whether the frame is
		 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
		 * Therefore we have to ensure that skb->sk remains the
		 * reference to the originating sock by restoring skb->sk
		 * after each skb_clone() or skb_orphan() usage.
		 */

		if (!(skb->dev->flags & IFF_ECHO)) {
			/*
			 * If the interface is not capable to do loopback
			 * itself, we do it here.
			 */
280
			newskb = skb_clone(skb, GFP_ATOMIC);
281
282
283
284
285
			if (!newskb) {
				kfree_skb(skb);
				return -ENOMEM;
			}

286
			can_skb_set_owner(newskb, skb->sk);
287
288
289
290
291
292
293
294
295
296
297
298
299
			newskb->ip_summed = CHECKSUM_UNNECESSARY;
			newskb->pkt_type = PACKET_BROADCAST;
		}
	} else {
		/* indication for the CAN driver: no loopback required */
		skb->pkt_type = PACKET_HOST;
	}

	/* send to netdevice */
	err = dev_queue_xmit(skb);
	if (err > 0)
		err = net_xmit_errno(err);

300
	if (err) {
301
		kfree_skb(newskb);
302
303
304
		return err;
	}

305
	if (newskb)
306
		netif_rx_ni(newskb);
307

308
	/* update statistics */
309
310
	can_stats->tx_frames++;
	can_stats->tx_frames_delta++;
311

312
	return 0;
313
314
315
316

inval_skb:
	kfree_skb(skb);
	return err;
317
318
319
320
321
322
323
}
EXPORT_SYMBOL(can_send);

/*
 * af_can rx path
 */

324
325
static struct dev_rcv_lists *find_dev_rcv_lists(struct net *net,
						struct net_device *dev)
326
{
327
	if (!dev)
328
		return net->can.can_rx_alldev_list;
329
330
	else
		return (struct dev_rcv_lists *)dev->ml_priv;
331
332
}

333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
/**
 * effhash - hash function for 29 bit CAN identifier reduction
 * @can_id: 29 bit CAN identifier
 *
 * Description:
 *  To reduce the linear traversal in one linked list of _single_ EFF CAN
 *  frame subscriptions the 29 bit identifier is mapped to 10 bits.
 *  (see CAN_EFF_RCV_HASH_BITS definition)
 *
 * Return:
 *  Hash value from 0x000 - 0x3FF ( enforced by CAN_EFF_RCV_HASH_BITS mask )
 */
static unsigned int effhash(canid_t can_id)
{
	unsigned int hash;

	hash = can_id;
	hash ^= can_id >> CAN_EFF_RCV_HASH_BITS;
	hash ^= can_id >> (2 * CAN_EFF_RCV_HASH_BITS);

	return hash & ((1 << CAN_EFF_RCV_HASH_BITS) - 1);
}

356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
/**
 * find_rcv_list - determine optimal filterlist inside device filter struct
 * @can_id: pointer to CAN identifier of a given can_filter
 * @mask: pointer to CAN mask of a given can_filter
 * @d: pointer to the device filter struct
 *
 * Description:
 *  Returns the optimal filterlist to reduce the filter handling in the
 *  receive path. This function is called by service functions that need
 *  to register or unregister a can_filter in the filter lists.
 *
 *  A filter matches in general, when
 *
 *          <received_can_id> & mask == can_id & mask
 *
 *  so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
 *  relevant bits for the filter.
 *
 *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
375
376
 *  filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg
 *  frames there is a special filterlist and a special rx path filter handling.
377
378
379
380
381
382
 *
 * Return:
 *  Pointer to optimal filterlist for the given can_id/mask pair.
 *  Constistency checked mask.
 *  Reduced can_id to have a preprocessed filter compare value.
 */
383
384
385
386
387
static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
					struct dev_rcv_lists *d)
{
	canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */

388
	/* filter for error message frames in extra filterlist */
389
	if (*mask & CAN_ERR_FLAG) {
390
		/* clear CAN_ERR_FLAG in filter entry */
391
392
393
394
		*mask &= CAN_ERR_MASK;
		return &d->rx[RX_ERR];
	}

395
396
397
398
399
400
401
	/* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */

#define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)

	/* ensure valid values in can_mask for 'SFF only' frame filtering */
	if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
		*mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
402
403
404
405
406
407
408
409
410
411
412
413

	/* reduce condition testing at receive time */
	*can_id &= *mask;

	/* inverse can_id/can_mask filter */
	if (inv)
		return &d->rx[RX_INV];

	/* mask == 0 => no condition testing at receive time */
	if (!(*mask))
		return &d->rx[RX_ALL];

414
	/* extra filterlists for the subscription of a single non-RTR can_id */
415
416
	if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
	    !(*can_id & CAN_RTR_FLAG)) {
417
418

		if (*can_id & CAN_EFF_FLAG) {
419
420
			if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS))
				return &d->rx_eff[effhash(*can_id)];
421
422
423
		} else {
			if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
				return &d->rx_sff[*can_id];
424
425
426
427
428
429
430
431
432
433
434
435
436
437
		}
	}

	/* default: filter via can_id/can_mask */
	return &d->rx[RX_FIL];
}

/**
 * can_rx_register - subscribe CAN frames from a specific interface
 * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
 * @can_id: CAN identifier (see description)
 * @mask: CAN mask (see description)
 * @func: callback function on filter match
 * @data: returned parameter for callback function
438
 * @ident: string for calling module identification
439
 * @sk: socket pointer (might be NULL)
440
441
442
443
444
445
446
447
 *
 * Description:
 *  Invokes the callback function with the received sk_buff and the given
 *  parameter 'data' on a matching receive filter. A filter matches, when
 *
 *          <received_can_id> & mask == can_id & mask
 *
 *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
448
 *  filter for error message frames (CAN_ERR_FLAG bit set in mask).
449
 *
450
451
452
453
454
455
 *  The provided pointer to the sk_buff is guaranteed to be valid as long as
 *  the callback function is running. The callback function must *not* free
 *  the given sk_buff while processing it's task. When the given sk_buff is
 *  needed after the end of the callback function it must be cloned inside
 *  the callback function with skb_clone().
 *
456
457
458
459
460
 * Return:
 *  0 on success
 *  -ENOMEM on missing cache mem to create subscription entry
 *  -ENODEV unknown device
 */
461
462
463
int can_rx_register(struct net *net, struct net_device *dev, canid_t can_id,
		    canid_t mask, void (*func)(struct sk_buff *, void *),
		    void *data, char *ident, struct sock *sk)
464
465
466
467
{
	struct receiver *r;
	struct hlist_head *rl;
	struct dev_rcv_lists *d;
468
	struct s_pstats *can_pstats = net->can.can_pstats;
469
470
471
472
	int err = 0;

	/* insert new receiver  (dev,canid,mask) -> (func,data) */

473
474
475
	if (dev && dev->type != ARPHRD_CAN)
		return -ENODEV;

476
477
478
	if (dev && !net_eq(net, dev_net(dev)))
		return -ENODEV;

479
480
481
482
	r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
	if (!r)
		return -ENOMEM;

483
	spin_lock(&net->can.can_rcvlists_lock);
484

485
	d = find_dev_rcv_lists(net, dev);
486
487
488
489
490
491
492
493
494
	if (d) {
		rl = find_rcv_list(&can_id, &mask, d);

		r->can_id  = can_id;
		r->mask    = mask;
		r->matches = 0;
		r->func    = func;
		r->data    = data;
		r->ident   = ident;
495
		r->sk      = sk;
496
497
498
499

		hlist_add_head_rcu(&r->list, rl);
		d->entries++;

500
501
502
		can_pstats->rcv_entries++;
		if (can_pstats->rcv_entries_max < can_pstats->rcv_entries)
			can_pstats->rcv_entries_max = can_pstats->rcv_entries;
503
504
505
506
507
	} else {
		kmem_cache_free(rcv_cache, r);
		err = -ENODEV;
	}

508
	spin_unlock(&net->can.can_rcvlists_lock);
509
510
511
512
513
514
515
516
517
518
519

	return err;
}
EXPORT_SYMBOL(can_rx_register);

/*
 * can_rx_delete_receiver - rcu callback for single receiver entry removal
 */
static void can_rx_delete_receiver(struct rcu_head *rp)
{
	struct receiver *r = container_of(rp, struct receiver, rcu);
520
	struct sock *sk = r->sk;
521
522

	kmem_cache_free(rcv_cache, r);
523
524
	if (sk)
		sock_put(sk);
525
526
527
528
}

/**
 * can_rx_unregister - unsubscribe CAN frames from a specific interface
Jeremiah Mahler's avatar
Jeremiah Mahler committed
529
 * @dev: pointer to netdevice (NULL => unsubscribe from 'all' CAN devices list)
530
531
532
533
534
535
536
537
 * @can_id: CAN identifier
 * @mask: CAN mask
 * @func: callback function on filter match
 * @data: returned parameter for callback function
 *
 * Description:
 *  Removes subscription entry depending on given (subscription) values.
 */
538
539
540
void can_rx_unregister(struct net *net, struct net_device *dev, canid_t can_id,
		       canid_t mask, void (*func)(struct sk_buff *, void *),
		       void *data)
541
542
543
{
	struct receiver *r = NULL;
	struct hlist_head *rl;
544
	struct s_pstats *can_pstats = net->can.can_pstats;
545
546
	struct dev_rcv_lists *d;

547
548
549
	if (dev && dev->type != ARPHRD_CAN)
		return;

550
551
	if (dev && !net_eq(net, dev_net(dev)))
		return;
552

553
554
555
	spin_lock(&net->can.can_rcvlists_lock);

	d = find_dev_rcv_lists(net, dev);
556
	if (!d) {
557
		pr_err("BUG: receive list not found for "
558
559
560
561
562
563
564
565
566
567
568
569
570
		       "dev %s, id %03X, mask %03X\n",
		       DNAME(dev), can_id, mask);
		goto out;
	}

	rl = find_rcv_list(&can_id, &mask, d);

	/*
	 * Search the receiver list for the item to delete.  This should
	 * exist, since no receiver may be unregistered that hasn't
	 * been registered before.
	 */

571
	hlist_for_each_entry_rcu(r, rl, list) {
572
573
		if (r->can_id == can_id && r->mask == mask &&
		    r->func == func && r->data == data)
574
575
576
577
			break;
	}

	/*
578
579
	 * Check for bugs in CAN protocol implementations using af_can.c:
	 * 'r' will be NULL if no matching list item was found for removal.
580
581
	 */

582
	if (!r) {
583
584
		WARN(1, "BUG: receive list entry not found for dev %s, "
		     "id %03X, mask %03X\n", DNAME(dev), can_id, mask);
585
586
587
588
589
590
		goto out;
	}

	hlist_del_rcu(&r->list);
	d->entries--;

591
592
	if (can_pstats->rcv_entries > 0)
		can_pstats->rcv_entries--;
593
594

	/* remove device structure requested by NETDEV_UNREGISTER */
595
596
597
598
	if (d->remove_on_zero_entries && !d->entries) {
		kfree(d);
		dev->ml_priv = NULL;
	}
599
600

 out:
601
	spin_unlock(&net->can.can_rcvlists_lock);
602
603

	/* schedule the receiver item for deletion */
604
605
606
	if (r) {
		if (r->sk)
			sock_hold(r->sk);
607
		call_rcu(&r->rcu, can_rx_delete_receiver);
608
	}
609
610
611
612
613
}
EXPORT_SYMBOL(can_rx_unregister);

static inline void deliver(struct sk_buff *skb, struct receiver *r)
{
614
615
	r->func(skb, r->data);
	r->matches++;
616
617
618
619
620
621
622
623
624
625
626
627
628
}

static int can_rcv_filter(struct dev_rcv_lists *d, struct sk_buff *skb)
{
	struct receiver *r;
	int matches = 0;
	struct can_frame *cf = (struct can_frame *)skb->data;
	canid_t can_id = cf->can_id;

	if (d->entries == 0)
		return 0;

	if (can_id & CAN_ERR_FLAG) {
629
		/* check for error message frame entries only */
630
		hlist_for_each_entry_rcu(r, &d->rx[RX_ERR], list) {
631
632
633
634
635
636
637
638
639
			if (can_id & r->mask) {
				deliver(skb, r);
				matches++;
			}
		}
		return matches;
	}

	/* check for unfiltered entries */
640
	hlist_for_each_entry_rcu(r, &d->rx[RX_ALL], list) {
641
642
643
644
645
		deliver(skb, r);
		matches++;
	}

	/* check for can_id/mask entries */
646
	hlist_for_each_entry_rcu(r, &d->rx[RX_FIL], list) {
647
648
649
650
651
652
653
		if ((can_id & r->mask) == r->can_id) {
			deliver(skb, r);
			matches++;
		}
	}

	/* check for inverted can_id/mask entries */
654
	hlist_for_each_entry_rcu(r, &d->rx[RX_INV], list) {
655
656
657
658
659
660
		if ((can_id & r->mask) != r->can_id) {
			deliver(skb, r);
			matches++;
		}
	}

661
662
663
664
	/* check filterlists for single non-RTR can_ids */
	if (can_id & CAN_RTR_FLAG)
		return matches;

665
	if (can_id & CAN_EFF_FLAG) {
666
		hlist_for_each_entry_rcu(r, &d->rx_eff[effhash(can_id)], list) {
667
668
669
670
671
672
673
			if (r->can_id == can_id) {
				deliver(skb, r);
				matches++;
			}
		}
	} else {
		can_id &= CAN_SFF_MASK;
674
		hlist_for_each_entry_rcu(r, &d->rx_sff[can_id], list) {
675
676
677
678
679
680
681
682
			deliver(skb, r);
			matches++;
		}
	}

	return matches;
}

683
static void can_receive(struct sk_buff *skb, struct net_device *dev)
684
685
{
	struct dev_rcv_lists *d;
686
687
	struct net *net = dev_net(dev);
	struct s_stats *can_stats = net->can.can_stats;
688
689
690
	int matches;

	/* update statistics */
691
692
	can_stats->rx_frames++;
	can_stats->rx_frames_delta++;
693

694
695
696
697
	/* create non-zero unique skb identifier together with *skb */
	while (!(can_skb_prv(skb)->skbcnt))
		can_skb_prv(skb)->skbcnt = atomic_inc_return(&skbcounter);

698
699
700
	rcu_read_lock();

	/* deliver the packet to sockets listening on all devices */
701
	matches = can_rcv_filter(net->can.can_rx_alldev_list, skb);
702
703

	/* find receive list for this device */
704
	d = find_dev_rcv_lists(net, dev);
705
706
707
708
709
	if (d)
		matches += can_rcv_filter(d, skb);

	rcu_read_unlock();

710
711
	/* consume the skbuff allocated by the netdevice driver */
	consume_skb(skb);
712
713

	if (matches > 0) {
714
715
		can_stats->matches++;
		can_stats->matches_delta++;
716
	}
717
718
719
720
721
722
}

static int can_rcv(struct sk_buff *skb, struct net_device *dev,
		   struct packet_type *pt, struct net_device *orig_dev)
{
	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
723

724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
	if (WARN_ONCE(dev->type != ARPHRD_CAN ||
		      skb->len != CAN_MTU ||
		      cfd->len > CAN_MAX_DLEN,
		      "PF_CAN: dropped non conform CAN skbuf: "
		      "dev type %d, len %d, datalen %d\n",
		      dev->type, skb->len, cfd->len))
		goto drop;

	can_receive(skb, dev);
	return NET_RX_SUCCESS;

drop:
	kfree_skb(skb);
	return NET_RX_DROP;
}

static int canfd_rcv(struct sk_buff *skb, struct net_device *dev,
		   struct packet_type *pt, struct net_device *orig_dev)
{
	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;

	if (WARN_ONCE(dev->type != ARPHRD_CAN ||
		      skb->len != CANFD_MTU ||
		      cfd->len > CANFD_MAX_DLEN,
		      "PF_CAN: dropped non conform CAN FD skbuf: "
		      "dev type %d, len %d, datalen %d\n",
		      dev->type, skb->len, cfd->len))
		goto drop;

	can_receive(skb, dev);
754
	return NET_RX_SUCCESS;
755
756
757

drop:
	kfree_skb(skb);
758
	return NET_RX_DROP;
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
}

/*
 * af_can protocol functions
 */

/**
 * can_proto_register - register CAN transport protocol
 * @cp: pointer to CAN protocol structure
 *
 * Return:
 *  0 on success
 *  -EINVAL invalid (out of range) protocol number
 *  -EBUSY  protocol already in use
 *  -ENOBUF if proto_register() fails
 */
775
int can_proto_register(const struct can_proto *cp)
776
777
778
779
780
{
	int proto = cp->protocol;
	int err = 0;

	if (proto < 0 || proto >= CAN_NPROTO) {
781
		pr_err("can: protocol number %d out of range\n", proto);
782
783
784
		return -EINVAL;
	}

785
786
787
788
	err = proto_register(cp->prot, 0);
	if (err < 0)
		return err;

789
790
	mutex_lock(&proto_tab_lock);

791
	if (proto_tab[proto]) {
792
		pr_err("can: protocol %d already registered\n", proto);
793
		err = -EBUSY;
Oliver Hartkopp's avatar
Oliver Hartkopp committed
794
	} else
795
		RCU_INIT_POINTER(proto_tab[proto], cp);
796

797
	mutex_unlock(&proto_tab_lock);
798
799

	if (err < 0)
800
		proto_unregister(cp->prot);
801
802
803
804
805
806
807
808
809

	return err;
}
EXPORT_SYMBOL(can_proto_register);

/**
 * can_proto_unregister - unregister CAN transport protocol
 * @cp: pointer to CAN protocol structure
 */
810
void can_proto_unregister(const struct can_proto *cp)
811
812
813
{
	int proto = cp->protocol;

814
815
	mutex_lock(&proto_tab_lock);
	BUG_ON(proto_tab[proto] != cp);
816
	RCU_INIT_POINTER(proto_tab[proto], NULL);
817
818
819
	mutex_unlock(&proto_tab_lock);

	synchronize_rcu();
820
821

	proto_unregister(cp->prot);
822
823
824
825
826
827
828
}
EXPORT_SYMBOL(can_proto_unregister);

/*
 * af_can notifier to create/remove CAN netdevice specific structs
 */
static int can_notifier(struct notifier_block *nb, unsigned long msg,
829
			void *ptr)
830
{
831
	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
832
833
834
835
836
837
838
839
840
	struct dev_rcv_lists *d;

	if (dev->type != ARPHRD_CAN)
		return NOTIFY_DONE;

	switch (msg) {

	case NETDEV_REGISTER:

841
		/* create new dev_rcv_lists for this device */
842
		d = kzalloc(sizeof(*d), GFP_KERNEL);
843
		if (!d)
844
			return NOTIFY_DONE;
845
846
		BUG_ON(dev->ml_priv);
		dev->ml_priv = d;
847
848
849
850

		break;

	case NETDEV_UNREGISTER:
851
		spin_lock(&dev_net(dev)->can.can_rcvlists_lock);
852

853
		d = dev->ml_priv;
854
		if (d) {
855
			if (d->entries)
856
				d->remove_on_zero_entries = 1;
857
858
859
860
			else {
				kfree(d);
				dev->ml_priv = NULL;
			}
861
		} else
862
863
			pr_err("can: notifier: receive list not found for dev "
			       "%s\n", dev->name);
864

865
		spin_unlock(&dev_net(dev)->can.can_rcvlists_lock);
866
867
868
869
870
871
872

		break;
	}

	return NOTIFY_DONE;
}

873
874
static int can_pernet_init(struct net *net)
{
875
	spin_lock_init(&net->can.can_rcvlists_lock);
876
877
878
	net->can.can_rx_alldev_list =
		kzalloc(sizeof(struct dev_rcv_lists), GFP_KERNEL);

879
880
881
882
883
884
885
886
887
888
889
890
	net->can.can_stats = kzalloc(sizeof(struct s_stats), GFP_KERNEL);
	net->can.can_pstats = kzalloc(sizeof(struct s_pstats), GFP_KERNEL);

	if (IS_ENABLED(CONFIG_PROC_FS)) {
		/* the statistics are updated every second (timer triggered) */
		if (stats_timer) {
			setup_timer(&net->can.can_stattimer, can_stat_update,
				    (unsigned long)net);
			mod_timer(&net->can.can_stattimer,
				  round_jiffies(jiffies + HZ));
		}
		net->can.can_stats->jiffies_init = jiffies;
891
		can_init_proc(net);
892
	}
893
894
895
896
897
898
899
900

	return 0;
}

static void can_pernet_exit(struct net *net)
{
	struct net_device *dev;

901
	if (IS_ENABLED(CONFIG_PROC_FS)) {
902
		can_remove_proc(net);
903
904
905
		if (stats_timer)
			del_timer_sync(&net->can.can_stattimer);
	}
906
907
908
909
910
911
912
913
914
915
916
917
918

	/* remove created dev_rcv_lists from still registered CAN devices */
	rcu_read_lock();
	for_each_netdev_rcu(net, dev) {
		if (dev->type == ARPHRD_CAN && dev->ml_priv) {
			struct dev_rcv_lists *d = dev->ml_priv;

			BUG_ON(d->entries);
			kfree(d);
			dev->ml_priv = NULL;
		}
	}
	rcu_read_unlock();
919
920

	kfree(net->can.can_rx_alldev_list);
921
922
	kfree(net->can.can_stats);
	kfree(net->can.can_pstats);
923
924
}

925
926
927
928
929
/*
 * af_can module init/exit functions
 */

static struct packet_type can_packet __read_mostly = {
930
	.type = cpu_to_be16(ETH_P_CAN),
931
932
933
	.func = can_rcv,
};

934
935
936
937
938
static struct packet_type canfd_packet __read_mostly = {
	.type = cpu_to_be16(ETH_P_CANFD),
	.func = canfd_rcv,
};

939
static const struct net_proto_family can_family_ops = {
940
941
942
943
944
945
946
947
948
949
	.family = PF_CAN,
	.create = can_create,
	.owner  = THIS_MODULE,
};

/* notifier block for netdevice event */
static struct notifier_block can_netdev_notifier __read_mostly = {
	.notifier_call = can_notifier,
};

950
951
952
953
954
static struct pernet_operations can_pernet_ops __read_mostly = {
	.init = can_pernet_init,
	.exit = can_pernet_exit,
};

955
956
static __init int can_init(void)
{
957
958
959
960
961
962
	/* check for correct padding to be able to use the structs similarly */
	BUILD_BUG_ON(offsetof(struct can_frame, can_dlc) !=
		     offsetof(struct canfd_frame, len) ||
		     offsetof(struct can_frame, data) !=
		     offsetof(struct canfd_frame, data));

963
	pr_info("can: controller area network core (" CAN_VERSION_STRING ")\n");
964
965
966
967
968
969

	rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
				      0, 0, NULL);
	if (!rcv_cache)
		return -ENOMEM;

970
971
	register_pernet_subsys(&can_pernet_ops);

972
973
974
975
	/* protocol register */
	sock_register(&can_family_ops);
	register_netdevice_notifier(&can_netdev_notifier);
	dev_add_pack(&can_packet);
976
	dev_add_pack(&canfd_packet);
977
978
979
980
981
982
983

	return 0;
}

static __exit void can_exit(void)
{
	/* protocol unregister */
984
	dev_remove_pack(&canfd_packet);
985
986
987
988
	dev_remove_pack(&can_packet);
	unregister_netdevice_notifier(&can_netdev_notifier);
	sock_unregister(PF_CAN);

989
	unregister_pernet_subsys(&can_pernet_ops);
990

991
992
	rcu_barrier(); /* Wait for completion of call_rcu()'s */

993
994
995
996
997
	kmem_cache_destroy(rcv_cache);
}

module_init(can_init);
module_exit(can_exit);