vmstat.c 16.9 KB
Newer Older
1 2 3 4 5
/*
 *  linux/mm/vmstat.c
 *
 *  Manages VM statistics
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6 7 8 9
 *
 *  zoned VM statistics
 *  Copyright (C) 2006 Silicon Graphics, Inc.,
 *		Christoph Lameter <christoph@lameter.com>
10 11 12
 */

#include <linux/mm.h>
13
#include <linux/module.h>
14
#include <linux/cpu.h>
Alexey Dobriyan's avatar
Alexey Dobriyan committed
15
#include <linux/sched.h>
16

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
#ifdef CONFIG_VM_EVENT_COUNTERS
DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
EXPORT_PER_CPU_SYMBOL(vm_event_states);

static void sum_vm_events(unsigned long *ret, cpumask_t *cpumask)
{
	int cpu = 0;
	int i;

	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));

	cpu = first_cpu(*cpumask);
	while (cpu < NR_CPUS) {
		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);

		cpu = next_cpu(cpu, *cpumask);

		if (cpu < NR_CPUS)
			prefetch(&per_cpu(vm_event_states, cpu));


		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
			ret[i] += this->event[i];
	}
}

/*
 * Accumulate the vm event counters across all CPUs.
 * The result is unavoidably approximate - it can change
 * during and after execution of this function.
*/
void all_vm_events(unsigned long *ret)
{
	sum_vm_events(ret, &cpu_online_map);
}
52
EXPORT_SYMBOL_GPL(all_vm_events);
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

#ifdef CONFIG_HOTPLUG
/*
 * Fold the foreign cpu events into our own.
 *
 * This is adding to the events on one processor
 * but keeps the global counts constant.
 */
void vm_events_fold_cpu(int cpu)
{
	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
	int i;

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
		count_vm_events(i, fold_state->event[i]);
		fold_state->event[i] = 0;
	}
}
#endif /* CONFIG_HOTPLUG */

#endif /* CONFIG_VM_EVENT_COUNTERS */

75 76 77 78 79 80 81 82 83 84
/*
 * Manage combined zone based / global counters
 *
 * vm_stat contains the global counters
 */
atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
EXPORT_SYMBOL(vm_stat);

#ifdef CONFIG_SMP

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
static int calculate_threshold(struct zone *zone)
{
	int threshold;
	int mem;	/* memory in 128 MB units */

	/*
	 * The threshold scales with the number of processors and the amount
	 * of memory per zone. More memory means that we can defer updates for
	 * longer, more processors could lead to more contention.
 	 * fls() is used to have a cheap way of logarithmic scaling.
	 *
	 * Some sample thresholds:
	 *
	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
	 * ------------------------------------------------------------------
	 * 8		1		1	0.9-1 GB	4
	 * 16		2		2	0.9-1 GB	4
	 * 20 		2		2	1-2 GB		5
	 * 24		2		2	2-4 GB		6
	 * 28		2		2	4-8 GB		7
	 * 32		2		2	8-16 GB		8
	 * 4		2		2	<128M		1
	 * 30		4		3	2-4 GB		5
	 * 48		4		3	8-16 GB		8
	 * 32		8		4	1-2 GB		4
	 * 32		8		4	0.9-1GB		4
	 * 10		16		5	<128M		1
	 * 40		16		5	900M		4
	 * 70		64		7	2-4 GB		5
	 * 84		64		7	4-8 GB		6
	 * 108		512		9	4-8 GB		6
	 * 125		1024		10	8-16 GB		8
	 * 125		1024		10	16-32 GB	9
	 */

	mem = zone->present_pages >> (27 - PAGE_SHIFT);

	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));

	/*
	 * Maximum threshold is 125
	 */
	threshold = min(125, threshold);

	return threshold;
}
131 132

/*
133
 * Refresh the thresholds for each zone.
134
 */
135
static void refresh_zone_stat_thresholds(void)
136
{
137 138 139 140 141 142 143 144 145 146 147 148 149 150
	struct zone *zone;
	int cpu;
	int threshold;

	for_each_zone(zone) {

		if (!zone->present_pages)
			continue;

		threshold = calculate_threshold(zone);

		for_each_online_cpu(cpu)
			zone_pcp(zone, cpu)->stat_threshold = threshold;
	}
151 152 153 154 155 156 157 158
}

/*
 * For use when we know that interrupts are disabled.
 */
void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
				int delta)
{
159 160
	struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
	s8 *p = pcp->vm_stat_diff + item;
161 162 163 164
	long x;

	x = delta + *p;

165
	if (unlikely(x > pcp->stat_threshold || x < -pcp->stat_threshold)) {
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
		zone_page_state_add(x, zone, item);
		x = 0;
	}
	*p = x;
}
EXPORT_SYMBOL(__mod_zone_page_state);

/*
 * For an unknown interrupt state
 */
void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
					int delta)
{
	unsigned long flags;

	local_irq_save(flags);
	__mod_zone_page_state(zone, item, delta);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(mod_zone_page_state);

/*
 * Optimized increment and decrement functions.
 *
 * These are only for a single page and therefore can take a struct page *
 * argument instead of struct zone *. This allows the inclusion of the code
 * generated for page_zone(page) into the optimized functions.
 *
 * No overflow check is necessary and therefore the differential can be
 * incremented or decremented in place which may allow the compilers to
 * generate better code.
 * The increment or decrement is known and therefore one boundary check can
 * be omitted.
 *
200 201 202
 * NOTE: These functions are very performance sensitive. Change only
 * with care.
 *
203 204 205 206 207 208 209
 * Some processors have inc/dec instructions that are atomic vs an interrupt.
 * However, the code must first determine the differential location in a zone
 * based on the processor number and then inc/dec the counter. There is no
 * guarantee without disabling preemption that the processor will not change
 * in between and therefore the atomicity vs. interrupt cannot be exploited
 * in a useful way here.
 */
210
void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
211
{
212 213
	struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
	s8 *p = pcp->vm_stat_diff + item;
214 215 216

	(*p)++;

217 218 219 220 221
	if (unlikely(*p > pcp->stat_threshold)) {
		int overstep = pcp->stat_threshold / 2;

		zone_page_state_add(*p + overstep, zone, item);
		*p = -overstep;
222 223
	}
}
224 225 226 227 228

void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
	__inc_zone_state(page_zone(page), item);
}
229 230
EXPORT_SYMBOL(__inc_zone_page_state);

231
void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
232
{
233 234
	struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
	s8 *p = pcp->vm_stat_diff + item;
235 236 237

	(*p)--;

238 239 240 241 242
	if (unlikely(*p < - pcp->stat_threshold)) {
		int overstep = pcp->stat_threshold / 2;

		zone_page_state_add(*p - overstep, zone, item);
		*p = overstep;
243 244
	}
}
245 246 247 248 249

void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
	__dec_zone_state(page_zone(page), item);
}
250 251
EXPORT_SYMBOL(__dec_zone_page_state);

252 253 254 255 256 257 258 259 260
void inc_zone_state(struct zone *zone, enum zone_stat_item item)
{
	unsigned long flags;

	local_irq_save(flags);
	__inc_zone_state(zone, item);
	local_irq_restore(flags);
}

261 262 263 264 265 266 267
void inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
	unsigned long flags;
	struct zone *zone;

	zone = page_zone(page);
	local_irq_save(flags);
268
	__inc_zone_state(zone, item);
269 270 271 272 273 274 275 276 277
	local_irq_restore(flags);
}
EXPORT_SYMBOL(inc_zone_page_state);

void dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
	unsigned long flags;

	local_irq_save(flags);
278
	__dec_zone_page_state(page, item);
279 280 281 282 283 284
	local_irq_restore(flags);
}
EXPORT_SYMBOL(dec_zone_page_state);

/*
 * Update the zone counters for one cpu.
285 286 287 288 289 290 291 292 293 294 295
 *
 * Note that refresh_cpu_vm_stats strives to only access
 * node local memory. The per cpu pagesets on remote zones are placed
 * in the memory local to the processor using that pageset. So the
 * loop over all zones will access a series of cachelines local to
 * the processor.
 *
 * The call to zone_page_state_add updates the cachelines with the
 * statistics in the remote zone struct as well as the global cachelines
 * with the global counters. These could cause remote node cache line
 * bouncing and will have to be only done when necessary.
296 297 298 299 300 301 302 303
 */
void refresh_cpu_vm_stats(int cpu)
{
	struct zone *zone;
	int i;
	unsigned long flags;

	for_each_zone(zone) {
304
		struct per_cpu_pageset *p;
305

306 307 308
		if (!populated_zone(zone))
			continue;

309
		p = zone_pcp(zone, cpu);
310 311

		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
312
			if (p->vm_stat_diff[i]) {
313
				local_irq_save(flags);
314
				zone_page_state_add(p->vm_stat_diff[i],
315
					zone, i);
316 317 318 319 320
				p->vm_stat_diff[i] = 0;
#ifdef CONFIG_NUMA
				/* 3 seconds idle till flush */
				p->expire = 3;
#endif
321 322
				local_irq_restore(flags);
			}
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
#ifdef CONFIG_NUMA
		/*
		 * Deal with draining the remote pageset of this
		 * processor
		 *
		 * Check if there are pages remaining in this pageset
		 * if not then there is nothing to expire.
		 */
		if (!p->expire || (!p->pcp[0].count && !p->pcp[1].count))
			continue;

		/*
		 * We never drain zones local to this processor.
		 */
		if (zone_to_nid(zone) == numa_node_id()) {
			p->expire = 0;
			continue;
		}

		p->expire--;
		if (p->expire)
			continue;

		if (p->pcp[0].count)
			drain_zone_pages(zone, p->pcp + 0);

		if (p->pcp[1].count)
			drain_zone_pages(zone, p->pcp + 1);
#endif
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
	}
}

static void __refresh_cpu_vm_stats(void *dummy)
{
	refresh_cpu_vm_stats(smp_processor_id());
}

/*
 * Consolidate all counters.
 *
 * Note that the result is less inaccurate but still inaccurate
 * if concurrent processes are allowed to run.
 */
void refresh_vm_stats(void)
{
	on_each_cpu(__refresh_cpu_vm_stats, NULL, 0, 1);
}
EXPORT_SYMBOL(refresh_vm_stats);

#endif

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
#ifdef CONFIG_NUMA
/*
 * zonelist = the list of zones passed to the allocator
 * z 	    = the zone from which the allocation occurred.
 *
 * Must be called with interrupts disabled.
 */
void zone_statistics(struct zonelist *zonelist, struct zone *z)
{
	if (z->zone_pgdat == zonelist->zones[0]->zone_pgdat) {
		__inc_zone_state(z, NUMA_HIT);
	} else {
		__inc_zone_state(z, NUMA_MISS);
		__inc_zone_state(zonelist->zones[0], NUMA_FOREIGN);
	}
389
	if (z->node == numa_node_id())
390 391 392 393 394 395
		__inc_zone_state(z, NUMA_LOCAL);
	else
		__inc_zone_state(z, NUMA_OTHER);
}
#endif

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
#ifdef CONFIG_PROC_FS

#include <linux/seq_file.h>

static void *frag_start(struct seq_file *m, loff_t *pos)
{
	pg_data_t *pgdat;
	loff_t node = *pos;
	for (pgdat = first_online_pgdat();
	     pgdat && node;
	     pgdat = next_online_pgdat(pgdat))
		--node;

	return pgdat;
}

static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
{
	pg_data_t *pgdat = (pg_data_t *)arg;

	(*pos)++;
	return next_online_pgdat(pgdat);
}

static void frag_stop(struct seq_file *m, void *arg)
{
}

/*
 * This walks the free areas for each zone.
 */
static int frag_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;
	struct zone *zone;
	struct zone *node_zones = pgdat->node_zones;
	unsigned long flags;
	int order;

	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
		if (!populated_zone(zone))
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
		for (order = 0; order < MAX_ORDER; ++order)
			seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
		spin_unlock_irqrestore(&zone->lock, flags);
		seq_putc(m, '\n');
	}
	return 0;
}

449
const struct seq_operations fragmentation_op = {
450 451 452 453 454 455
	.start	= frag_start,
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= frag_show,
};

456 457 458 459 460 461
#ifdef CONFIG_ZONE_DMA
#define TEXT_FOR_DMA(xx) xx "_dma",
#else
#define TEXT_FOR_DMA(xx)
#endif

462 463 464 465 466 467 468 469 470 471 472 473
#ifdef CONFIG_ZONE_DMA32
#define TEXT_FOR_DMA32(xx) xx "_dma32",
#else
#define TEXT_FOR_DMA32(xx)
#endif

#ifdef CONFIG_HIGHMEM
#define TEXT_FOR_HIGHMEM(xx) xx "_high",
#else
#define TEXT_FOR_HIGHMEM(xx)
#endif

474
#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
Mel Gorman's avatar
Mel Gorman committed
475
					TEXT_FOR_HIGHMEM(xx) xx "_movable",
476

477
static const char * const vmstat_text[] = {
478
	/* Zoned VM counters */
479
	"nr_free_pages",
480
	"nr_inactive",
Peter Zijlstra's avatar
Peter Zijlstra committed
481
	"nr_active",
482
	"nr_anon_pages",
483
	"nr_mapped",
484
	"nr_file_pages",
485 486
	"nr_dirty",
	"nr_writeback",
487 488
	"nr_slab_reclaimable",
	"nr_slab_unreclaimable",
489
	"nr_page_table_pages",
490
	"nr_unstable",
491
	"nr_bounce",
492
	"nr_vmscan_write",
493

494 495 496 497 498 499 500 501 502
#ifdef CONFIG_NUMA
	"numa_hit",
	"numa_miss",
	"numa_foreign",
	"numa_interleave",
	"numa_local",
	"numa_other",
#endif

503
#ifdef CONFIG_VM_EVENT_COUNTERS
504 505 506 507 508
	"pgpgin",
	"pgpgout",
	"pswpin",
	"pswpout",

509
	TEXTS_FOR_ZONES("pgalloc")
510 511 512 513 514 515 516 517

	"pgfree",
	"pgactivate",
	"pgdeactivate",

	"pgfault",
	"pgmajfault",

518 519 520 521
	TEXTS_FOR_ZONES("pgrefill")
	TEXTS_FOR_ZONES("pgsteal")
	TEXTS_FOR_ZONES("pgscan_kswapd")
	TEXTS_FOR_ZONES("pgscan_direct")
522 523 524 525 526 527 528 529 530

	"pginodesteal",
	"slabs_scanned",
	"kswapd_steal",
	"kswapd_inodesteal",
	"pageoutrun",
	"allocstall",

	"pgrotated",
531
#endif
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
};

/*
 * Output information about zones in @pgdat.
 */
static int zoneinfo_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = arg;
	struct zone *zone;
	struct zone *node_zones = pgdat->node_zones;
	unsigned long flags;

	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
		int i;

		if (!populated_zone(zone))
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
		seq_printf(m,
			   "\n  pages free     %lu"
			   "\n        min      %lu"
			   "\n        low      %lu"
			   "\n        high     %lu"
			   "\n        scanned  %lu (a: %lu i: %lu)"
			   "\n        spanned  %lu"
			   "\n        present  %lu",
560
			   zone_page_state(zone, NR_FREE_PAGES),
561 562 563 564 565 566 567
			   zone->pages_min,
			   zone->pages_low,
			   zone->pages_high,
			   zone->pages_scanned,
			   zone->nr_scan_active, zone->nr_scan_inactive,
			   zone->spanned_pages,
			   zone->present_pages);
568 569 570 571 572

		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
			seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
					zone_page_state(zone, i));

573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
		seq_printf(m,
			   "\n        protection: (%lu",
			   zone->lowmem_reserve[0]);
		for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
			seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
		seq_printf(m,
			   ")"
			   "\n  pagesets");
		for_each_online_cpu(i) {
			struct per_cpu_pageset *pageset;
			int j;

			pageset = zone_pcp(zone, i);
			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
				seq_printf(m,
					   "\n    cpu: %i pcp: %i"
					   "\n              count: %i"
					   "\n              high:  %i"
					   "\n              batch: %i",
					   i, j,
					   pageset->pcp[j].count,
					   pageset->pcp[j].high,
					   pageset->pcp[j].batch);
			}
597 598 599 600
#ifdef CONFIG_SMP
			seq_printf(m, "\n  vm stats threshold: %d",
					pageset->stat_threshold);
#endif
601 602 603 604 605 606 607 608 609 610 611 612 613 614
		}
		seq_printf(m,
			   "\n  all_unreclaimable: %u"
			   "\n  prev_priority:     %i"
			   "\n  start_pfn:         %lu",
			   zone->all_unreclaimable,
			   zone->prev_priority,
			   zone->zone_start_pfn);
		spin_unlock_irqrestore(&zone->lock, flags);
		seq_putc(m, '\n');
	}
	return 0;
}

615
const struct seq_operations zoneinfo_op = {
616 617 618 619 620 621 622 623 624
	.start	= frag_start, /* iterate over all zones. The same as in
			       * fragmentation. */
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= zoneinfo_show,
};

static void *vmstat_start(struct seq_file *m, loff_t *pos)
{
625
	unsigned long *v;
626 627 628
#ifdef CONFIG_VM_EVENT_COUNTERS
	unsigned long *e;
#endif
629
	int i;
630 631 632 633

	if (*pos >= ARRAY_SIZE(vmstat_text))
		return NULL;

634
#ifdef CONFIG_VM_EVENT_COUNTERS
635
	v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long)
636 637 638 639 640
			+ sizeof(struct vm_event_state), GFP_KERNEL);
#else
	v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long),
			GFP_KERNEL);
#endif
641 642
	m->private = v;
	if (!v)
643
		return ERR_PTR(-ENOMEM);
644 645
	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
		v[i] = global_page_state(i);
646 647 648 649 650 651
#ifdef CONFIG_VM_EVENT_COUNTERS
	e = v + NR_VM_ZONE_STAT_ITEMS;
	all_vm_events(e);
	e[PGPGIN] /= 2;		/* sectors -> kbytes */
	e[PGPGOUT] /= 2;
#endif
652
	return v + *pos;
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
}

static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
{
	(*pos)++;
	if (*pos >= ARRAY_SIZE(vmstat_text))
		return NULL;
	return (unsigned long *)m->private + *pos;
}

static int vmstat_show(struct seq_file *m, void *arg)
{
	unsigned long *l = arg;
	unsigned long off = l - (unsigned long *)m->private;

	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
	return 0;
}

static void vmstat_stop(struct seq_file *m, void *arg)
{
	kfree(m->private);
	m->private = NULL;
}

678
const struct seq_operations vmstat_op = {
679 680 681 682 683 684 685 686
	.start	= vmstat_start,
	.next	= vmstat_next,
	.stop	= vmstat_stop,
	.show	= vmstat_show,
};

#endif /* CONFIG_PROC_FS */

687
#ifdef CONFIG_SMP
688
static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
689
int sysctl_stat_interval __read_mostly = HZ;
690 691 692 693

static void vmstat_update(struct work_struct *w)
{
	refresh_cpu_vm_stats(smp_processor_id());
694 695
	schedule_delayed_work(&__get_cpu_var(vmstat_work),
		sysctl_stat_interval);
696 697 698 699 700 701
}

static void __devinit start_cpu_timer(int cpu)
{
	struct delayed_work *vmstat_work = &per_cpu(vmstat_work, cpu);

702
	INIT_DELAYED_WORK_DEFERRABLE(vmstat_work, vmstat_update);
703 704 705
	schedule_delayed_work_on(cpu, vmstat_work, HZ + cpu);
}

706 707 708 709 710 711 712 713
/*
 * Use the cpu notifier to insure that the thresholds are recalculated
 * when necessary.
 */
static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
		unsigned long action,
		void *hcpu)
{
714 715
	long cpu = (long)hcpu;

716
	switch (action) {
717 718 719 720 721 722 723 724 725 726 727 728 729
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
		start_cpu_timer(cpu);
		break;
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
		cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu));
		per_cpu(vmstat_work, cpu).work.func = NULL;
		break;
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
		start_cpu_timer(cpu);
		break;
730
	case CPU_DEAD:
731
	case CPU_DEAD_FROZEN:
732 733 734 735
		refresh_zone_stat_thresholds();
		break;
	default:
		break;
736 737 738 739 740 741 742 743 744
	}
	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata vmstat_notifier =
	{ &vmstat_cpuup_callback, NULL, 0 };

int __init setup_vmstat(void)
{
745 746
	int cpu;

747 748
	refresh_zone_stat_thresholds();
	register_cpu_notifier(&vmstat_notifier);
749 750 751

	for_each_online_cpu(cpu)
		start_cpu_timer(cpu);
752 753 754 755
	return 0;
}
module_init(setup_vmstat)
#endif