vmstat.c 51 KB
Newer Older
1 2 3 4 5
/*
 *  linux/mm/vmstat.c
 *
 *  Manages VM statistics
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6 7 8 9
 *
 *  zoned VM statistics
 *  Copyright (C) 2006 Silicon Graphics, Inc.,
 *		Christoph Lameter <christoph@lameter.com>
10
 *  Copyright (C) 2008-2014 Christoph Lameter
11
 */
12
#include <linux/fs.h>
13
#include <linux/mm.h>
Alexey Dobriyan's avatar
Alexey Dobriyan committed
14
#include <linux/err.h>
15
#include <linux/module.h>
16
#include <linux/slab.h>
17
#include <linux/cpu.h>
18
#include <linux/cpumask.h>
Adrian Bunk's avatar
Adrian Bunk committed
19
#include <linux/vmstat.h>
20 21 22
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/debugfs.h>
Alexey Dobriyan's avatar
Alexey Dobriyan committed
23
#include <linux/sched.h>
24
#include <linux/math64.h>
25
#include <linux/writeback.h>
26
#include <linux/compaction.h>
27
#include <linux/mm_inline.h>
28 29
#include <linux/page_ext.h>
#include <linux/page_owner.h>
30 31

#include "internal.h"
32

33 34
#define NUMA_STATS_THRESHOLD (U16_MAX - 2)

35 36 37 38
#ifdef CONFIG_VM_EVENT_COUNTERS
DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
EXPORT_PER_CPU_SYMBOL(vm_event_states);

39
static void sum_vm_events(unsigned long *ret)
40
{
Christoph Lameter's avatar
Christoph Lameter committed
41
	int cpu;
42 43 44 45
	int i;

	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));

46
	for_each_online_cpu(cpu) {
47 48 49 50 51 52 53 54 55 56 57 58 59 60
		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);

		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
			ret[i] += this->event[i];
	}
}

/*
 * Accumulate the vm event counters across all CPUs.
 * The result is unavoidably approximate - it can change
 * during and after execution of this function.
*/
void all_vm_events(unsigned long *ret)
{
KOSAKI Motohiro's avatar
KOSAKI Motohiro committed
61
	get_online_cpus();
62
	sum_vm_events(ret);
KOSAKI Motohiro's avatar
KOSAKI Motohiro committed
63
	put_online_cpus();
64
}
65
EXPORT_SYMBOL_GPL(all_vm_events);
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

/*
 * Fold the foreign cpu events into our own.
 *
 * This is adding to the events on one processor
 * but keeps the global counts constant.
 */
void vm_events_fold_cpu(int cpu)
{
	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
	int i;

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
		count_vm_events(i, fold_state->event[i]);
		fold_state->event[i] = 0;
	}
}

#endif /* CONFIG_VM_EVENT_COUNTERS */

86 87 88 89 90
/*
 * Manage combined zone based / global counters
 *
 * vm_stat contains the global counters
 */
91
atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
92
atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS] __cacheline_aligned_in_smp;
93 94
atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
EXPORT_SYMBOL(vm_zone_stat);
95
EXPORT_SYMBOL(vm_numa_stat);
96
EXPORT_SYMBOL(vm_node_stat);
97 98 99

#ifdef CONFIG_SMP

100
int calculate_pressure_threshold(struct zone *zone)
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
{
	int threshold;
	int watermark_distance;

	/*
	 * As vmstats are not up to date, there is drift between the estimated
	 * and real values. For high thresholds and a high number of CPUs, it
	 * is possible for the min watermark to be breached while the estimated
	 * value looks fine. The pressure threshold is a reduced value such
	 * that even the maximum amount of drift will not accidentally breach
	 * the min watermark
	 */
	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
	threshold = max(1, (int)(watermark_distance / num_online_cpus()));

	/*
	 * Maximum threshold is 125
	 */
	threshold = min(125, threshold);

	return threshold;
}

124
int calculate_normal_threshold(struct zone *zone)
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
{
	int threshold;
	int mem;	/* memory in 128 MB units */

	/*
	 * The threshold scales with the number of processors and the amount
	 * of memory per zone. More memory means that we can defer updates for
	 * longer, more processors could lead to more contention.
 	 * fls() is used to have a cheap way of logarithmic scaling.
	 *
	 * Some sample thresholds:
	 *
	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
	 * ------------------------------------------------------------------
	 * 8		1		1	0.9-1 GB	4
	 * 16		2		2	0.9-1 GB	4
	 * 20 		2		2	1-2 GB		5
	 * 24		2		2	2-4 GB		6
	 * 28		2		2	4-8 GB		7
	 * 32		2		2	8-16 GB		8
	 * 4		2		2	<128M		1
	 * 30		4		3	2-4 GB		5
	 * 48		4		3	8-16 GB		8
	 * 32		8		4	1-2 GB		4
	 * 32		8		4	0.9-1GB		4
	 * 10		16		5	<128M		1
	 * 40		16		5	900M		4
	 * 70		64		7	2-4 GB		5
	 * 84		64		7	4-8 GB		6
	 * 108		512		9	4-8 GB		6
	 * 125		1024		10	8-16 GB		8
	 * 125		1024		10	16-32 GB	9
	 */

159
	mem = zone->managed_pages >> (27 - PAGE_SHIFT);
160 161 162 163 164 165 166 167 168 169

	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));

	/*
	 * Maximum threshold is 125
	 */
	threshold = min(125, threshold);

	return threshold;
}
170 171

/*
172
 * Refresh the thresholds for each zone.
173
 */
174
void refresh_zone_stat_thresholds(void)
175
{
176
	struct pglist_data *pgdat;
177 178 179 180
	struct zone *zone;
	int cpu;
	int threshold;

181 182 183 184 185 186 187
	/* Zero current pgdat thresholds */
	for_each_online_pgdat(pgdat) {
		for_each_online_cpu(cpu) {
			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
		}
	}

188
	for_each_populated_zone(zone) {
189
		struct pglist_data *pgdat = zone->zone_pgdat;
190 191
		unsigned long max_drift, tolerate_drift;

192
		threshold = calculate_normal_threshold(zone);
193

194 195 196
		for_each_online_cpu(cpu) {
			int pgdat_threshold;

197 198
			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
							= threshold;
199

200 201 202 203 204 205
			/* Base nodestat threshold on the largest populated zone. */
			pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
				= max(threshold, pgdat_threshold);
		}

206 207 208 209 210 211 212 213 214 215
		/*
		 * Only set percpu_drift_mark if there is a danger that
		 * NR_FREE_PAGES reports the low watermark is ok when in fact
		 * the min watermark could be breached by an allocation
		 */
		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
		max_drift = num_online_cpus() * threshold;
		if (max_drift > tolerate_drift)
			zone->percpu_drift_mark = high_wmark_pages(zone) +
					max_drift;
216
	}
217 218
}

219 220
void set_pgdat_percpu_threshold(pg_data_t *pgdat,
				int (*calculate_pressure)(struct zone *))
221 222 223 224 225 226 227 228 229 230 231
{
	struct zone *zone;
	int cpu;
	int threshold;
	int i;

	for (i = 0; i < pgdat->nr_zones; i++) {
		zone = &pgdat->node_zones[i];
		if (!zone->percpu_drift_mark)
			continue;

232
		threshold = (*calculate_pressure)(zone);
233
		for_each_online_cpu(cpu)
234 235 236 237 238
			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
							= threshold;
	}
}

239
/*
240 241 242
 * For use when we know that interrupts are disabled,
 * or when we know that preemption is disabled and that
 * particular counter cannot be updated from interrupt context.
243 244
 */
void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
245
			   long delta)
246
{
247 248
	struct per_cpu_pageset __percpu *pcp = zone->pageset;
	s8 __percpu *p = pcp->vm_stat_diff + item;
249
	long x;
250 251 252
	long t;

	x = delta + __this_cpu_read(*p);
253

254
	t = __this_cpu_read(pcp->stat_threshold);
255

256
	if (unlikely(x > t || x < -t)) {
257 258 259
		zone_page_state_add(x, zone, item);
		x = 0;
	}
260
	__this_cpu_write(*p, x);
261 262 263
}
EXPORT_SYMBOL(__mod_zone_page_state);

264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
				long delta)
{
	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
	s8 __percpu *p = pcp->vm_node_stat_diff + item;
	long x;
	long t;

	x = delta + __this_cpu_read(*p);

	t = __this_cpu_read(pcp->stat_threshold);

	if (unlikely(x > t || x < -t)) {
		node_page_state_add(x, pgdat, item);
		x = 0;
	}
	__this_cpu_write(*p, x);
}
EXPORT_SYMBOL(__mod_node_page_state);

284 285 286 287 288 289 290 291 292 293 294 295 296
/*
 * Optimized increment and decrement functions.
 *
 * These are only for a single page and therefore can take a struct page *
 * argument instead of struct zone *. This allows the inclusion of the code
 * generated for page_zone(page) into the optimized functions.
 *
 * No overflow check is necessary and therefore the differential can be
 * incremented or decremented in place which may allow the compilers to
 * generate better code.
 * The increment or decrement is known and therefore one boundary check can
 * be omitted.
 *
297 298 299
 * NOTE: These functions are very performance sensitive. Change only
 * with care.
 *
300 301 302 303 304 305 306
 * Some processors have inc/dec instructions that are atomic vs an interrupt.
 * However, the code must first determine the differential location in a zone
 * based on the processor number and then inc/dec the counter. There is no
 * guarantee without disabling preemption that the processor will not change
 * in between and therefore the atomicity vs. interrupt cannot be exploited
 * in a useful way here.
 */
307
void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
308
{
309 310 311
	struct per_cpu_pageset __percpu *pcp = zone->pageset;
	s8 __percpu *p = pcp->vm_stat_diff + item;
	s8 v, t;
312

313
	v = __this_cpu_inc_return(*p);
314 315 316
	t = __this_cpu_read(pcp->stat_threshold);
	if (unlikely(v > t)) {
		s8 overstep = t >> 1;
317

318 319
		zone_page_state_add(v + overstep, zone, item);
		__this_cpu_write(*p, -overstep);
320 321
	}
}
322

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
{
	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
	s8 __percpu *p = pcp->vm_node_stat_diff + item;
	s8 v, t;

	v = __this_cpu_inc_return(*p);
	t = __this_cpu_read(pcp->stat_threshold);
	if (unlikely(v > t)) {
		s8 overstep = t >> 1;

		node_page_state_add(v + overstep, pgdat, item);
		__this_cpu_write(*p, -overstep);
	}
}

339 340 341 342
void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
	__inc_zone_state(page_zone(page), item);
}
343 344
EXPORT_SYMBOL(__inc_zone_page_state);

345 346 347 348 349 350
void __inc_node_page_state(struct page *page, enum node_stat_item item)
{
	__inc_node_state(page_pgdat(page), item);
}
EXPORT_SYMBOL(__inc_node_page_state);

351
void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
352
{
353 354 355
	struct per_cpu_pageset __percpu *pcp = zone->pageset;
	s8 __percpu *p = pcp->vm_stat_diff + item;
	s8 v, t;
356

357
	v = __this_cpu_dec_return(*p);
358 359 360
	t = __this_cpu_read(pcp->stat_threshold);
	if (unlikely(v < - t)) {
		s8 overstep = t >> 1;
361

362 363
		zone_page_state_add(v - overstep, zone, item);
		__this_cpu_write(*p, overstep);
364 365
	}
}
366

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
{
	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
	s8 __percpu *p = pcp->vm_node_stat_diff + item;
	s8 v, t;

	v = __this_cpu_dec_return(*p);
	t = __this_cpu_read(pcp->stat_threshold);
	if (unlikely(v < - t)) {
		s8 overstep = t >> 1;

		node_page_state_add(v - overstep, pgdat, item);
		__this_cpu_write(*p, overstep);
	}
}

383 384 385 386
void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
	__dec_zone_state(page_zone(page), item);
}
387 388
EXPORT_SYMBOL(__dec_zone_page_state);

389 390 391 392 393 394
void __dec_node_page_state(struct page *page, enum node_stat_item item)
{
	__dec_node_state(page_pgdat(page), item);
}
EXPORT_SYMBOL(__dec_node_page_state);

395
#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
396 397 398 399 400 401 402 403 404 405 406 407
/*
 * If we have cmpxchg_local support then we do not need to incur the overhead
 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
 *
 * mod_state() modifies the zone counter state through atomic per cpu
 * operations.
 *
 * Overstep mode specifies how overstep should handled:
 *     0       No overstepping
 *     1       Overstepping half of threshold
 *     -1      Overstepping minus half of threshold
*/
408 409
static inline void mod_zone_state(struct zone *zone,
       enum zone_stat_item item, long delta, int overstep_mode)
410 411 412 413 414 415 416 417 418 419 420
{
	struct per_cpu_pageset __percpu *pcp = zone->pageset;
	s8 __percpu *p = pcp->vm_stat_diff + item;
	long o, n, t, z;

	do {
		z = 0;  /* overflow to zone counters */

		/*
		 * The fetching of the stat_threshold is racy. We may apply
		 * a counter threshold to the wrong the cpu if we get
421 422 423 424 425 426
		 * rescheduled while executing here. However, the next
		 * counter update will apply the threshold again and
		 * therefore bring the counter under the threshold again.
		 *
		 * Most of the time the thresholds are the same anyways
		 * for all cpus in a zone.
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
		 */
		t = this_cpu_read(pcp->stat_threshold);

		o = this_cpu_read(*p);
		n = delta + o;

		if (n > t || n < -t) {
			int os = overstep_mode * (t >> 1) ;

			/* Overflow must be added to zone counters */
			z = n + os;
			n = -os;
		}
	} while (this_cpu_cmpxchg(*p, o, n) != o);

	if (z)
		zone_page_state_add(z, zone, item);
}

void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
447
			 long delta)
448
{
449
	mod_zone_state(zone, item, delta, 0);
450 451 452 453 454
}
EXPORT_SYMBOL(mod_zone_page_state);

void inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
455
	mod_zone_state(page_zone(page), item, 1, 1);
456 457 458 459 460
}
EXPORT_SYMBOL(inc_zone_page_state);

void dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
461
	mod_zone_state(page_zone(page), item, -1, -1);
462 463
}
EXPORT_SYMBOL(dec_zone_page_state);
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525

static inline void mod_node_state(struct pglist_data *pgdat,
       enum node_stat_item item, int delta, int overstep_mode)
{
	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
	s8 __percpu *p = pcp->vm_node_stat_diff + item;
	long o, n, t, z;

	do {
		z = 0;  /* overflow to node counters */

		/*
		 * The fetching of the stat_threshold is racy. We may apply
		 * a counter threshold to the wrong the cpu if we get
		 * rescheduled while executing here. However, the next
		 * counter update will apply the threshold again and
		 * therefore bring the counter under the threshold again.
		 *
		 * Most of the time the thresholds are the same anyways
		 * for all cpus in a node.
		 */
		t = this_cpu_read(pcp->stat_threshold);

		o = this_cpu_read(*p);
		n = delta + o;

		if (n > t || n < -t) {
			int os = overstep_mode * (t >> 1) ;

			/* Overflow must be added to node counters */
			z = n + os;
			n = -os;
		}
	} while (this_cpu_cmpxchg(*p, o, n) != o);

	if (z)
		node_page_state_add(z, pgdat, item);
}

void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
					long delta)
{
	mod_node_state(pgdat, item, delta, 0);
}
EXPORT_SYMBOL(mod_node_page_state);

void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
{
	mod_node_state(pgdat, item, 1, 1);
}

void inc_node_page_state(struct page *page, enum node_stat_item item)
{
	mod_node_state(page_pgdat(page), item, 1, 1);
}
EXPORT_SYMBOL(inc_node_page_state);

void dec_node_page_state(struct page *page, enum node_stat_item item)
{
	mod_node_state(page_pgdat(page), item, -1, -1);
}
EXPORT_SYMBOL(dec_node_page_state);
526 527 528 529 530
#else
/*
 * Use interrupt disable to serialize counter updates
 */
void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
531
			 long delta)
532 533 534 535 536 537 538 539 540
{
	unsigned long flags;

	local_irq_save(flags);
	__mod_zone_page_state(zone, item, delta);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(mod_zone_page_state);

541 542 543 544 545 546 547
void inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
	unsigned long flags;
	struct zone *zone;

	zone = page_zone(page);
	local_irq_save(flags);
548
	__inc_zone_state(zone, item);
549 550 551 552 553 554 555 556 557
	local_irq_restore(flags);
}
EXPORT_SYMBOL(inc_zone_page_state);

void dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
	unsigned long flags;

	local_irq_save(flags);
558
	__dec_zone_page_state(page, item);
559 560 561 562
	local_irq_restore(flags);
}
EXPORT_SYMBOL(dec_zone_page_state);

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
{
	unsigned long flags;

	local_irq_save(flags);
	__inc_node_state(pgdat, item);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(inc_node_state);

void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
					long delta)
{
	unsigned long flags;

	local_irq_save(flags);
	__mod_node_page_state(pgdat, item, delta);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(mod_node_page_state);

void inc_node_page_state(struct page *page, enum node_stat_item item)
{
	unsigned long flags;
	struct pglist_data *pgdat;

	pgdat = page_pgdat(page);
	local_irq_save(flags);
	__inc_node_state(pgdat, item);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(inc_node_page_state);

void dec_node_page_state(struct page *page, enum node_stat_item item)
{
	unsigned long flags;

	local_irq_save(flags);
	__dec_node_page_state(page, item);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(dec_node_page_state);
#endif
606 607 608 609 610

/*
 * Fold a differential into the global counters.
 * Returns the number of counters updated.
 */
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
#ifdef CONFIG_NUMA
static int fold_diff(int *zone_diff, int *numa_diff, int *node_diff)
{
	int i;
	int changes = 0;

	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
		if (zone_diff[i]) {
			atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
			changes++;
	}

	for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
		if (numa_diff[i]) {
			atomic_long_add(numa_diff[i], &vm_numa_stat[i]);
			changes++;
	}

	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
		if (node_diff[i]) {
			atomic_long_add(node_diff[i], &vm_node_stat[i]);
			changes++;
	}
	return changes;
}
#else
637
static int fold_diff(int *zone_diff, int *node_diff)
Christoph Lameter's avatar
Christoph Lameter committed
638 639
{
	int i;
640
	int changes = 0;
Christoph Lameter's avatar
Christoph Lameter committed
641 642

	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
643 644 645 646 647 648 649 650
		if (zone_diff[i]) {
			atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
			changes++;
	}

	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
		if (node_diff[i]) {
			atomic_long_add(node_diff[i], &vm_node_stat[i]);
651 652 653
			changes++;
	}
	return changes;
Christoph Lameter's avatar
Christoph Lameter committed
654
}
655
#endif /* CONFIG_NUMA */
Christoph Lameter's avatar
Christoph Lameter committed
656

657
/*
658
 * Update the zone counters for the current cpu.
659
 *
660 661 662 663 664 665 666 667 668 669
 * Note that refresh_cpu_vm_stats strives to only access
 * node local memory. The per cpu pagesets on remote zones are placed
 * in the memory local to the processor using that pageset. So the
 * loop over all zones will access a series of cachelines local to
 * the processor.
 *
 * The call to zone_page_state_add updates the cachelines with the
 * statistics in the remote zone struct as well as the global cachelines
 * with the global counters. These could cause remote node cache line
 * bouncing and will have to be only done when necessary.
670 671
 *
 * The function returns the number of global counters updated.
672
 */
673
static int refresh_cpu_vm_stats(bool do_pagesets)
674
{
675
	struct pglist_data *pgdat;
676 677
	struct zone *zone;
	int i;
678
	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
679 680 681
#ifdef CONFIG_NUMA
	int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
#endif
682
	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
683
	int changes = 0;
684

685
	for_each_populated_zone(zone) {
686
		struct per_cpu_pageset __percpu *p = zone->pageset;
687

688 689
		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
			int v;
690

691 692
			v = this_cpu_xchg(p->vm_stat_diff[i], 0);
			if (v) {
693 694

				atomic_long_add(v, &zone->vm_stat[i]);
695
				global_zone_diff[i] += v;
696 697
#ifdef CONFIG_NUMA
				/* 3 seconds idle till flush */
698
				__this_cpu_write(p->expire, 3);
699
#endif
700
			}
701
		}
702
#ifdef CONFIG_NUMA
703 704 705 706 707 708 709 710 711 712 713 714
		for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) {
			int v;

			v = this_cpu_xchg(p->vm_numa_stat_diff[i], 0);
			if (v) {

				atomic_long_add(v, &zone->vm_numa_stat[i]);
				global_numa_diff[i] += v;
				__this_cpu_write(p->expire, 3);
			}
		}

715 716 717 718 719 720 721 722 723 724
		if (do_pagesets) {
			cond_resched();
			/*
			 * Deal with draining the remote pageset of this
			 * processor
			 *
			 * Check if there are pages remaining in this pageset
			 * if not then there is nothing to expire.
			 */
			if (!__this_cpu_read(p->expire) ||
725
			       !__this_cpu_read(p->pcp.count))
726
				continue;
727

728 729 730 731 732 733 734
			/*
			 * We never drain zones local to this processor.
			 */
			if (zone_to_nid(zone) == numa_node_id()) {
				__this_cpu_write(p->expire, 0);
				continue;
			}
735

736 737
			if (__this_cpu_dec_return(p->expire))
				continue;
738

739 740 741 742
			if (__this_cpu_read(p->pcp.count)) {
				drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
				changes++;
			}
743
		}
744
#endif
745
	}
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760

	for_each_online_pgdat(pgdat) {
		struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;

		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
			int v;

			v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
			if (v) {
				atomic_long_add(v, &pgdat->vm_stat[i]);
				global_node_diff[i] += v;
			}
		}
	}

761 762 763 764
#ifdef CONFIG_NUMA
	changes += fold_diff(global_zone_diff, global_numa_diff,
			     global_node_diff);
#else
765
	changes += fold_diff(global_zone_diff, global_node_diff);
766
#endif
767
	return changes;
768 769
}

770 771 772 773 774 775 776
/*
 * Fold the data for an offline cpu into the global array.
 * There cannot be any access by the offline cpu and therefore
 * synchronization is simplified.
 */
void cpu_vm_stats_fold(int cpu)
{
777
	struct pglist_data *pgdat;
778 779
	struct zone *zone;
	int i;
780
	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
781 782 783
#ifdef CONFIG_NUMA
	int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
#endif
784
	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
785 786 787 788 789 790 791 792 793 794 795 796 797

	for_each_populated_zone(zone) {
		struct per_cpu_pageset *p;

		p = per_cpu_ptr(zone->pageset, cpu);

		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
			if (p->vm_stat_diff[i]) {
				int v;

				v = p->vm_stat_diff[i];
				p->vm_stat_diff[i] = 0;
				atomic_long_add(v, &zone->vm_stat[i]);
798
				global_zone_diff[i] += v;
799
			}
800 801 802 803 804 805 806 807 808 809 810 811

#ifdef CONFIG_NUMA
		for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
			if (p->vm_numa_stat_diff[i]) {
				int v;

				v = p->vm_numa_stat_diff[i];
				p->vm_numa_stat_diff[i] = 0;
				atomic_long_add(v, &zone->vm_numa_stat[i]);
				global_numa_diff[i] += v;
			}
#endif
812 813
	}

814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
	for_each_online_pgdat(pgdat) {
		struct per_cpu_nodestat *p;

		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);

		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
			if (p->vm_node_stat_diff[i]) {
				int v;

				v = p->vm_node_stat_diff[i];
				p->vm_node_stat_diff[i] = 0;
				atomic_long_add(v, &pgdat->vm_stat[i]);
				global_node_diff[i] += v;
			}
	}

830 831 832
#ifdef CONFIG_NUMA
	fold_diff(global_zone_diff, global_numa_diff, global_node_diff);
#else
833
	fold_diff(global_zone_diff, global_node_diff);
834
#endif
835 836
}

837 838 839 840
/*
 * this is only called if !populated_zone(zone), which implies no other users of
 * pset->vm_stat_diff[] exsist.
 */
841 842 843 844 845 846 847 848 849
void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
{
	int i;

	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
		if (pset->vm_stat_diff[i]) {
			int v = pset->vm_stat_diff[i];
			pset->vm_stat_diff[i] = 0;
			atomic_long_add(v, &zone->vm_stat[i]);
850
			atomic_long_add(v, &vm_zone_stat[i]);
851
		}
852 853 854 855 856 857 858 859 860 861 862

#ifdef CONFIG_NUMA
	for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
		if (pset->vm_numa_stat_diff[i]) {
			int v = pset->vm_numa_stat_diff[i];

			pset->vm_numa_stat_diff[i] = 0;
			atomic_long_add(v, &zone->vm_numa_stat[i]);
			atomic_long_add(v, &vm_numa_stat[i]);
		}
#endif
863
}
864 865
#endif

866
#ifdef CONFIG_NUMA
867 868 869 870
void __inc_numa_state(struct zone *zone,
				 enum numa_stat_item item)
{
	struct per_cpu_pageset __percpu *pcp = zone->pageset;
871 872
	u16 __percpu *p = pcp->vm_numa_stat_diff + item;
	u16 v;
873 874 875

	v = __this_cpu_inc_return(*p);

876 877 878
	if (unlikely(v > NUMA_STATS_THRESHOLD)) {
		zone_numa_state_add(v, zone, item);
		__this_cpu_write(*p, 0);
879 880 881
	}
}

882
/*
883 884 885
 * Determine the per node value of a stat item. This function
 * is called frequently in a NUMA machine, so try to be as
 * frugal as possible.
886
 */
887 888
unsigned long sum_zone_node_page_state(int node,
				 enum zone_stat_item item)
889 890
{
	struct zone *zones = NODE_DATA(node)->node_zones;
891 892
	int i;
	unsigned long count = 0;
893

894 895 896 897
	for (i = 0; i < MAX_NR_ZONES; i++)
		count += zone_page_state(zones + i, item);

	return count;
898 899
}

900 901 902 903
/*
 * Determine the per node value of a numa stat item. To avoid deviation,
 * the per cpu stat number in vm_numa_stat_diff[] is also included.
 */
904 905 906 907 908 909 910 911
unsigned long sum_zone_numa_state(int node,
				 enum numa_stat_item item)
{
	struct zone *zones = NODE_DATA(node)->node_zones;
	int i;
	unsigned long count = 0;

	for (i = 0; i < MAX_NR_ZONES; i++)
912
		count += zone_numa_state_snapshot(zones + i, item);
913 914 915 916

	return count;
}

917 918 919 920 921 922 923 924 925 926 927 928 929
/*
 * Determine the per node value of a stat item.
 */
unsigned long node_page_state(struct pglist_data *pgdat,
				enum node_stat_item item)
{
	long x = atomic_long_read(&pgdat->vm_stat[item]);
#ifdef CONFIG_SMP
	if (x < 0)
		x = 0;
#endif
	return x;
}
930 931
#endif

932
#ifdef CONFIG_COMPACTION
933

934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
struct contig_page_info {
	unsigned long free_pages;
	unsigned long free_blocks_total;
	unsigned long free_blocks_suitable;
};

/*
 * Calculate the number of free pages in a zone, how many contiguous
 * pages are free and how many are large enough to satisfy an allocation of
 * the target size. Note that this function makes no attempt to estimate
 * how many suitable free blocks there *might* be if MOVABLE pages were
 * migrated. Calculating that is possible, but expensive and can be
 * figured out from userspace
 */
static void fill_contig_page_info(struct zone *zone,
				unsigned int suitable_order,
				struct contig_page_info *info)
{
	unsigned int order;

	info->free_pages = 0;
	info->free_blocks_total = 0;
	info->free_blocks_suitable = 0;

	for (order = 0; order < MAX_ORDER; order++) {
		unsigned long blocks;

		/* Count number of free blocks */
		blocks = zone->free_area[order].nr_free;
		info->free_blocks_total += blocks;

		/* Count free base pages */
		info->free_pages += blocks << order;

		/* Count the suitable free blocks */
		if (order >= suitable_order)
			info->free_blocks_suitable += blocks <<
						(order - suitable_order);
	}
}
974 975 976 977 978 979 980 981

/*
 * A fragmentation index only makes sense if an allocation of a requested
 * size would fail. If that is true, the fragmentation index indicates
 * whether external fragmentation or a lack of memory was the problem.
 * The value can be used to determine if page reclaim or compaction
 * should be used
 */
982
static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
983 984 985
{
	unsigned long requested = 1UL << order;

986 987 988
	if (WARN_ON_ONCE(order >= MAX_ORDER))
		return 0;

989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
	if (!info->free_blocks_total)
		return 0;

	/* Fragmentation index only makes sense when a request would fail */
	if (info->free_blocks_suitable)
		return -1000;

	/*
	 * Index is between 0 and 1 so return within 3 decimal places
	 *
	 * 0 => allocation would fail due to lack of memory
	 * 1 => allocation would fail due to fragmentation
	 */
	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
}
1004 1005 1006 1007 1008 1009 1010 1011 1012

/* Same as __fragmentation index but allocs contig_page_info on stack */
int fragmentation_index(struct zone *zone, unsigned int order)
{
	struct contig_page_info info;

	fill_contig_page_info(zone, order, &info);
	return __fragmentation_index(order, &info);
}
1013 1014
#endif

1015
#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
#ifdef CONFIG_ZONE_DMA
#define TEXT_FOR_DMA(xx) xx "_dma",
#else
#define TEXT_FOR_DMA(xx)
#endif

#ifdef CONFIG_ZONE_DMA32
#define TEXT_FOR_DMA32(xx) xx "_dma32",
#else
#define TEXT_FOR_DMA32(xx)
#endif

#ifdef CONFIG_HIGHMEM
#define TEXT_FOR_HIGHMEM(xx) xx "_high",
#else
#define TEXT_FOR_HIGHMEM(xx)
#endif

#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
					TEXT_FOR_HIGHMEM(xx) xx "_movable",

const char * const vmstat_text[] = {
1038
	/* enum zone_stat_item countes */
1039
	"nr_free_pages",
Minchan Kim's avatar
Minchan Kim committed
1040 1041 1042 1043 1044
	"nr_zone_inactive_anon",
	"nr_zone_active_anon",
	"nr_zone_inactive_file",
	"nr_zone_active_file",
	"nr_zone_unevictable",
1045
	"nr_zone_write_pending",
1046 1047 1048 1049
	"nr_mlock",
	"nr_page_table_pages",
	"nr_kernel_stack",
	"nr_bounce",
Minchan Kim's avatar
Minchan Kim committed
1050 1051 1052
#if IS_ENABLED(CONFIG_ZSMALLOC)
	"nr_zspages",
#endif
1053 1054 1055
	"nr_free_cma",

	/* enum numa_stat_item counters */
1056 1057 1058 1059 1060 1061 1062 1063
#ifdef CONFIG_NUMA
	"numa_hit",
	"numa_miss",
	"numa_foreign",
	"numa_interleave",
	"numa_local",
	"numa_other",
#endif
1064

1065 1066 1067 1068 1069 1070
	/* Node-based counters */
	"nr_inactive_anon",
	"nr_active_anon",
	"nr_inactive_file",
	"nr_active_file",
	"nr_unevictable",
1071 1072
	"nr_slab_reclaimable",
	"nr_slab_unreclaimable",
1073 1074
	"nr_isolated_anon",
	"nr_isolated_file",
1075 1076 1077
	"workingset_refault",
	"workingset_activate",
	"workingset_nodereclaim",
1078 1079
	"nr_anon_pages",
	"nr_mapped",
1080 1081 1082 1083 1084 1085 1086 1087 1088
	"nr_file_pages",
	"nr_dirty",
	"nr_writeback",
	"nr_writeback_temp",
	"nr_shmem",
	"nr_shmem_hugepages",
	"nr_shmem_pmdmapped",
	"nr_anon_transparent_hugepages",
	"nr_unstable",
1089 1090 1091 1092
	"nr_vmscan_write",
	"nr_vmscan_immediate_reclaim",
	"nr_dirtied",
	"nr_written",
1093

1094
	/* enum writeback_stat_item counters */
1095 1096 1097 1098
	"nr_dirty_threshold",
	"nr_dirty_background_threshold",

#ifdef CONFIG_VM_EVENT_COUNTERS
1099
	/* enum vm_event_item counters */
1100 1101 1102 1103 1104 1105
	"pgpgin",
	"pgpgout",
	"pswpin",
	"pswpout",

	TEXTS_FOR_ZONES("pgalloc")
1106 1107
	TEXTS_FOR_ZONES("allocstall")
	TEXTS_FOR_ZONES("pgskip")
1108 1109 1110 1111

	"pgfree",
	"pgactivate",
	"pgdeactivate",
1112
	"pglazyfree",
1113 1114 1115

	"pgfault",
	"pgmajfault",
Minchan Kim's avatar
Minchan Kim committed
1116
	"pglazyfreed",
1117

1118 1119 1120 1121 1122
	"pgrefill",
	"pgsteal_kswapd",
	"pgsteal_direct",
	"pgscan_kswapd",
	"pgscan_direct",
1123
	"pgscan_direct_throttle",
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

#ifdef CONFIG_NUMA
	"zone_reclaim_failed",
#endif
	"pginodesteal",
	"slabs_scanned",
	"kswapd_inodesteal",
	"kswapd_low_wmark_hit_quickly",
	"kswapd_high_wmark_hit_quickly",
	"pageoutrun",

	"pgrotated",

1137 1138
	"drop_pagecache",
	"drop_slab",
1139
	"oom_kill",
1140

1141 1142
#ifdef CONFIG_NUMA_BALANCING
	"numa_pte_updates",
1143
	"numa_huge_pte_updates",
1144 1145 1146 1147
	"numa_hint_faults",
	"numa_hint_faults_local",
	"numa_pages_migrated",
#endif
1148 1149 1150 1151
#ifdef CONFIG_MIGRATION
	"pgmigrate_success",
	"pgmigrate_fail",
#endif
1152
#ifdef CONFIG_COMPACTION
1153 1154 1155
	"compact_migrate_scanned",
	"compact_free_scanned",
	"compact_isolated",
1156 1157 1158
	"compact_stall",
	"compact_fail",
	"compact_success",
1159
	"compact_daemon_wake",
1160 1161
	"compact_daemon_migrate_scanned",
	"compact_daemon_free_scanned",
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
#endif

#ifdef CONFIG_HUGETLB_PAGE
	"htlb_buddy_alloc_success",
	"htlb_buddy_alloc_fail",
#endif
	"unevictable_pgs_culled",
	"unevictable_pgs_scanned",
	"unevictable_pgs_rescued",
	"unevictable_pgs_mlocked",
	"unevictable_pgs_munlocked",
	"unevictable_pgs_cleared",
	"unevictable_pgs_stranded",

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	"thp_fault_alloc",
	"thp_fault_fallback",
	"thp_collapse_alloc",
	"thp_collapse_alloc_failed",
1181 1182
	"thp_file_alloc",
	"thp_file_mapped",
1183 1184
	"thp_split_page",
	"thp_split_page_failed",
1185
	"thp_deferred_split_page",
1186
	"thp_split_pmd",
1187 1188 1189
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
	"thp_split_pud",
#endif
1190 1191
	"thp_zero_page_alloc",
	"thp_zero_page_alloc_failed",
1192
	"thp_swpout",
1193
	"thp_swpout_fallback",
1194
#endif
1195 1196 1197 1198 1199 1200 1201
#ifdef CONFIG_MEMORY_BALLOON
	"balloon_inflate",
	"balloon_deflate",
#ifdef CONFIG_BALLOON_COMPACTION
	"balloon_migrate",
#endif
#endif /* CONFIG_MEMORY_BALLOON */
1202
#ifdef CONFIG_DEBUG_TLBFLUSH
1203
#ifdef CONFIG_SMP
Dave Hansen's avatar
Dave Hansen committed
1204 1205
	"nr_tlb_remote_flush",
	"nr_tlb_remote_flush_received",
1206
#endif /* CONFIG_SMP */
Dave Hansen's avatar
Dave Hansen committed
1207 1208
	"nr_tlb_local_flush_all",
	"nr_tlb_local_flush_one",
1209
#endif /* CONFIG_DEBUG_TLBFLUSH */
1210

Davidlohr Bueso's avatar
Davidlohr Bueso committed
1211 1212 1213
#ifdef CONFIG_DEBUG_VM_VMACACHE
	"vmacache_find_calls",
	"vmacache_find_hits",
1214
	"vmacache_full_flushes",
Davidlohr Bueso's avatar
Davidlohr Bueso committed
1215
#endif
1216 1217 1218 1219
#ifdef CONFIG_SWAP
	"swap_ra",
	"swap_ra_hit",
#endif
1220 1221
#endif /* CONFIG_VM_EVENTS_COUNTERS */
};
1222
#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
1223

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
     defined(CONFIG_PROC_FS)
static void *frag_start(struct seq_file *m, loff_t *pos)
{
	pg_data_t *pgdat;
	loff_t node = *pos;

	for (pgdat = first_online_pgdat();
	     pgdat && node;
	     pgdat = next_online_pgdat(pgdat))
		--node;

	return pgdat;
}

static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
{
	pg_data_t *pgdat = (pg_data_t *)arg;

	(*pos)++;
	return next_online_pgdat(pgdat);
}

static void frag_stop(struct seq_file *m, void *arg)
{
}

1251 1252 1253 1254
/*
 * Walk zones in a node and print using a callback.
 * If @assert_populated is true, only use callback for zones that are populated.
 */
1255
static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1256
		bool assert_populated, bool nolock,
1257 1258 1259 1260 1261 1262 1263
		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
{
	struct zone *zone;
	struct zone *node_zones = pgdat->node_zones;
	unsigned long flags;

	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1264
		if (assert_populated && !populated_zone(zone))
1265 1266
			continue;

1267 1268
		if (!nolock)
			spin_lock_irqsave(&zone->lock, flags);
1269
		print(m, pgdat, zone);
1270 1271
		if (!nolock)
			spin_unlock_irqrestore(&zone->lock, flags);
1272 1273 1274 1275
	}
}
#endif

1276
#ifdef CONFIG_PROC_FS
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
						struct zone *zone)
{
	int order;

	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
	for (order = 0; order < MAX_ORDER; ++order)
		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
	seq_putc(m, '\n');
}

/*
 * This walks the free areas for each zone.
 */
static int frag_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;