vmstat.c 38.1 KB
Newer Older
1 2 3 4 5
/*
 *  linux/mm/vmstat.c
 *
 *  Manages VM statistics
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6 7 8 9
 *
 *  zoned VM statistics
 *  Copyright (C) 2006 Silicon Graphics, Inc.,
 *		Christoph Lameter <christoph@lameter.com>
10
 *  Copyright (C) 2008-2014 Christoph Lameter
11
 */
12
#include <linux/fs.h>
13
#include <linux/mm.h>
Alexey Dobriyan's avatar
Alexey Dobriyan committed
14
#include <linux/err.h>
15
#include <linux/module.h>
16
#include <linux/slab.h>
17
#include <linux/cpu.h>
18
#include <linux/cpumask.h>
Adrian Bunk's avatar
Adrian Bunk committed
19
#include <linux/vmstat.h>
Alexey Dobriyan's avatar
Alexey Dobriyan committed
20
#include <linux/sched.h>
21
#include <linux/math64.h>
22
#include <linux/writeback.h>
23
#include <linux/compaction.h>
24 25 26
#include <linux/mm_inline.h>

#include "internal.h"
27

28 29 30 31
#ifdef CONFIG_VM_EVENT_COUNTERS
DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
EXPORT_PER_CPU_SYMBOL(vm_event_states);

32
static void sum_vm_events(unsigned long *ret)
33
{
Christoph Lameter's avatar
Christoph Lameter committed
34
	int cpu;
35 36 37 38
	int i;

	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));

39
	for_each_online_cpu(cpu) {
40 41 42 43 44 45 46 47 48 49 50 51 52 53
		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);

		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
			ret[i] += this->event[i];
	}
}

/*
 * Accumulate the vm event counters across all CPUs.
 * The result is unavoidably approximate - it can change
 * during and after execution of this function.
*/
void all_vm_events(unsigned long *ret)
{
KOSAKI Motohiro's avatar
KOSAKI Motohiro committed
54
	get_online_cpus();
55
	sum_vm_events(ret);
KOSAKI Motohiro's avatar
KOSAKI Motohiro committed
56
	put_online_cpus();
57
}
58
EXPORT_SYMBOL_GPL(all_vm_events);
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

/*
 * Fold the foreign cpu events into our own.
 *
 * This is adding to the events on one processor
 * but keeps the global counts constant.
 */
void vm_events_fold_cpu(int cpu)
{
	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
	int i;

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
		count_vm_events(i, fold_state->event[i]);
		fold_state->event[i] = 0;
	}
}

#endif /* CONFIG_VM_EVENT_COUNTERS */

79 80 81 82 83
/*
 * Manage combined zone based / global counters
 *
 * vm_stat contains the global counters
 */
84
atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
85 86 87 88
EXPORT_SYMBOL(vm_stat);

#ifdef CONFIG_SMP

89
int calculate_pressure_threshold(struct zone *zone)
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
{
	int threshold;
	int watermark_distance;

	/*
	 * As vmstats are not up to date, there is drift between the estimated
	 * and real values. For high thresholds and a high number of CPUs, it
	 * is possible for the min watermark to be breached while the estimated
	 * value looks fine. The pressure threshold is a reduced value such
	 * that even the maximum amount of drift will not accidentally breach
	 * the min watermark
	 */
	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
	threshold = max(1, (int)(watermark_distance / num_online_cpus()));

	/*
	 * Maximum threshold is 125
	 */
	threshold = min(125, threshold);

	return threshold;
}

113
int calculate_normal_threshold(struct zone *zone)
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
{
	int threshold;
	int mem;	/* memory in 128 MB units */

	/*
	 * The threshold scales with the number of processors and the amount
	 * of memory per zone. More memory means that we can defer updates for
	 * longer, more processors could lead to more contention.
 	 * fls() is used to have a cheap way of logarithmic scaling.
	 *
	 * Some sample thresholds:
	 *
	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
	 * ------------------------------------------------------------------
	 * 8		1		1	0.9-1 GB	4
	 * 16		2		2	0.9-1 GB	4
	 * 20 		2		2	1-2 GB		5
	 * 24		2		2	2-4 GB		6
	 * 28		2		2	4-8 GB		7
	 * 32		2		2	8-16 GB		8
	 * 4		2		2	<128M		1
	 * 30		4		3	2-4 GB		5
	 * 48		4		3	8-16 GB		8
	 * 32		8		4	1-2 GB		4
	 * 32		8		4	0.9-1GB		4
	 * 10		16		5	<128M		1
	 * 40		16		5	900M		4
	 * 70		64		7	2-4 GB		5
	 * 84		64		7	4-8 GB		6
	 * 108		512		9	4-8 GB		6
	 * 125		1024		10	8-16 GB		8
	 * 125		1024		10	16-32 GB	9
	 */

148
	mem = zone->managed_pages >> (27 - PAGE_SHIFT);
149 150 151 152 153 154 155 156 157 158

	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));

	/*
	 * Maximum threshold is 125
	 */
	threshold = min(125, threshold);

	return threshold;
}
159 160

/*
161
 * Refresh the thresholds for each zone.
162
 */
163
void refresh_zone_stat_thresholds(void)
164
{
165 166 167 168
	struct zone *zone;
	int cpu;
	int threshold;

169
	for_each_populated_zone(zone) {
170 171
		unsigned long max_drift, tolerate_drift;

172
		threshold = calculate_normal_threshold(zone);
173 174

		for_each_online_cpu(cpu)
175 176
			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
							= threshold;
177 178 179 180 181 182 183 184 185 186 187

		/*
		 * Only set percpu_drift_mark if there is a danger that
		 * NR_FREE_PAGES reports the low watermark is ok when in fact
		 * the min watermark could be breached by an allocation
		 */
		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
		max_drift = num_online_cpus() * threshold;
		if (max_drift > tolerate_drift)
			zone->percpu_drift_mark = high_wmark_pages(zone) +
					max_drift;
188
	}
189 190
}

191 192
void set_pgdat_percpu_threshold(pg_data_t *pgdat,
				int (*calculate_pressure)(struct zone *))
193 194 195 196 197 198 199 200 201 202 203
{
	struct zone *zone;
	int cpu;
	int threshold;
	int i;

	for (i = 0; i < pgdat->nr_zones; i++) {
		zone = &pgdat->node_zones[i];
		if (!zone->percpu_drift_mark)
			continue;

204
		threshold = (*calculate_pressure)(zone);
205
		for_each_online_cpu(cpu)
206 207 208 209 210
			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
							= threshold;
	}
}

211
/*
212 213 214
 * For use when we know that interrupts are disabled,
 * or when we know that preemption is disabled and that
 * particular counter cannot be updated from interrupt context.
215 216 217 218
 */
void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
				int delta)
{
219 220
	struct per_cpu_pageset __percpu *pcp = zone->pageset;
	s8 __percpu *p = pcp->vm_stat_diff + item;
221
	long x;
222 223 224
	long t;

	x = delta + __this_cpu_read(*p);
225

226
	t = __this_cpu_read(pcp->stat_threshold);
227

228
	if (unlikely(x > t || x < -t)) {
229 230 231
		zone_page_state_add(x, zone, item);
		x = 0;
	}
232
	__this_cpu_write(*p, x);
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
}
EXPORT_SYMBOL(__mod_zone_page_state);

/*
 * Optimized increment and decrement functions.
 *
 * These are only for a single page and therefore can take a struct page *
 * argument instead of struct zone *. This allows the inclusion of the code
 * generated for page_zone(page) into the optimized functions.
 *
 * No overflow check is necessary and therefore the differential can be
 * incremented or decremented in place which may allow the compilers to
 * generate better code.
 * The increment or decrement is known and therefore one boundary check can
 * be omitted.
 *
249 250 251
 * NOTE: These functions are very performance sensitive. Change only
 * with care.
 *
252 253 254 255 256 257 258
 * Some processors have inc/dec instructions that are atomic vs an interrupt.
 * However, the code must first determine the differential location in a zone
 * based on the processor number and then inc/dec the counter. There is no
 * guarantee without disabling preemption that the processor will not change
 * in between and therefore the atomicity vs. interrupt cannot be exploited
 * in a useful way here.
 */
259
void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
260
{
261 262 263
	struct per_cpu_pageset __percpu *pcp = zone->pageset;
	s8 __percpu *p = pcp->vm_stat_diff + item;
	s8 v, t;
264

265
	v = __this_cpu_inc_return(*p);
266 267 268
	t = __this_cpu_read(pcp->stat_threshold);
	if (unlikely(v > t)) {
		s8 overstep = t >> 1;
269

270 271
		zone_page_state_add(v + overstep, zone, item);
		__this_cpu_write(*p, -overstep);
272 273
	}
}
274 275 276 277 278

void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
	__inc_zone_state(page_zone(page), item);
}
279 280
EXPORT_SYMBOL(__inc_zone_page_state);

281
void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
282
{
283 284 285
	struct per_cpu_pageset __percpu *pcp = zone->pageset;
	s8 __percpu *p = pcp->vm_stat_diff + item;
	s8 v, t;
286

287
	v = __this_cpu_dec_return(*p);
288 289 290
	t = __this_cpu_read(pcp->stat_threshold);
	if (unlikely(v < - t)) {
		s8 overstep = t >> 1;
291

292 293
		zone_page_state_add(v - overstep, zone, item);
		__this_cpu_write(*p, overstep);
294 295
	}
}
296 297 298 299 300

void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
	__dec_zone_state(page_zone(page), item);
}
301 302
EXPORT_SYMBOL(__dec_zone_page_state);

303
#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
/*
 * If we have cmpxchg_local support then we do not need to incur the overhead
 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
 *
 * mod_state() modifies the zone counter state through atomic per cpu
 * operations.
 *
 * Overstep mode specifies how overstep should handled:
 *     0       No overstepping
 *     1       Overstepping half of threshold
 *     -1      Overstepping minus half of threshold
*/
static inline void mod_state(struct zone *zone,
       enum zone_stat_item item, int delta, int overstep_mode)
{
	struct per_cpu_pageset __percpu *pcp = zone->pageset;
	s8 __percpu *p = pcp->vm_stat_diff + item;
	long o, n, t, z;

	do {
		z = 0;  /* overflow to zone counters */

		/*
		 * The fetching of the stat_threshold is racy. We may apply
		 * a counter threshold to the wrong the cpu if we get
329 330 331 332 333 334
		 * rescheduled while executing here. However, the next
		 * counter update will apply the threshold again and
		 * therefore bring the counter under the threshold again.
		 *
		 * Most of the time the thresholds are the same anyways
		 * for all cpus in a zone.
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
		 */
		t = this_cpu_read(pcp->stat_threshold);

		o = this_cpu_read(*p);
		n = delta + o;

		if (n > t || n < -t) {
			int os = overstep_mode * (t >> 1) ;

			/* Overflow must be added to zone counters */
			z = n + os;
			n = -os;
		}
	} while (this_cpu_cmpxchg(*p, o, n) != o);

	if (z)
		zone_page_state_add(z, zone, item);
}

void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
					int delta)
{
	mod_state(zone, item, delta, 0);
}
EXPORT_SYMBOL(mod_zone_page_state);

void inc_zone_state(struct zone *zone, enum zone_stat_item item)
{
	mod_state(zone, item, 1, 1);
}

void inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
	mod_state(page_zone(page), item, 1, 1);
}
EXPORT_SYMBOL(inc_zone_page_state);

void dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
	mod_state(page_zone(page), item, -1, -1);
}
EXPORT_SYMBOL(dec_zone_page_state);
#else
/*
 * Use interrupt disable to serialize counter updates
 */
void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
					int delta)
{
	unsigned long flags;

	local_irq_save(flags);
	__mod_zone_page_state(zone, item, delta);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(mod_zone_page_state);

392 393 394 395 396 397 398 399 400
void inc_zone_state(struct zone *zone, enum zone_stat_item item)
{
	unsigned long flags;

	local_irq_save(flags);
	__inc_zone_state(zone, item);
	local_irq_restore(flags);
}

401 402 403 404 405 406 407
void inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
	unsigned long flags;
	struct zone *zone;

	zone = page_zone(page);
	local_irq_save(flags);
408
	__inc_zone_state(zone, item);
409 410 411 412 413 414 415 416 417
	local_irq_restore(flags);
}
EXPORT_SYMBOL(inc_zone_page_state);

void dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
	unsigned long flags;

	local_irq_save(flags);
418
	__dec_zone_page_state(page, item);
419 420 421
	local_irq_restore(flags);
}
EXPORT_SYMBOL(dec_zone_page_state);
422
#endif
423

424 425 426 427 428 429

/*
 * Fold a differential into the global counters.
 * Returns the number of counters updated.
 */
static int fold_diff(int *diff)
Christoph Lameter's avatar
Christoph Lameter committed
430 431
{
	int i;
432
	int changes = 0;
Christoph Lameter's avatar
Christoph Lameter committed
433 434

	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
435
		if (diff[i]) {
Christoph Lameter's avatar
Christoph Lameter committed
436
			atomic_long_add(diff[i], &vm_stat[i]);
437 438 439
			changes++;
	}
	return changes;
Christoph Lameter's avatar
Christoph Lameter committed
440 441
}

442
/*
443
 * Update the zone counters for the current cpu.
444
 *
445 446 447 448 449 450 451 452 453 454
 * Note that refresh_cpu_vm_stats strives to only access
 * node local memory. The per cpu pagesets on remote zones are placed
 * in the memory local to the processor using that pageset. So the
 * loop over all zones will access a series of cachelines local to
 * the processor.
 *
 * The call to zone_page_state_add updates the cachelines with the
 * statistics in the remote zone struct as well as the global cachelines
 * with the global counters. These could cause remote node cache line
 * bouncing and will have to be only done when necessary.
455 456
 *
 * The function returns the number of global counters updated.
457
 */
458
static int refresh_cpu_vm_stats(void)
459 460 461
{
	struct zone *zone;
	int i;
462
	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
463
	int changes = 0;
464

465
	for_each_populated_zone(zone) {
466
		struct per_cpu_pageset __percpu *p = zone->pageset;
467

468 469
		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
			int v;
470

471 472
			v = this_cpu_xchg(p->vm_stat_diff[i], 0);
			if (v) {
473 474 475

				atomic_long_add(v, &zone->vm_stat[i]);
				global_diff[i] += v;
476 477
#ifdef CONFIG_NUMA
				/* 3 seconds idle till flush */
478
				__this_cpu_write(p->expire, 3);
479
#endif
480
			}
481
		}
482
		cond_resched();
483 484 485 486 487 488 489 490
#ifdef CONFIG_NUMA
		/*
		 * Deal with draining the remote pageset of this
		 * processor
		 *
		 * Check if there are pages remaining in this pageset
		 * if not then there is nothing to expire.
		 */
491 492
		if (!__this_cpu_read(p->expire) ||
			       !__this_cpu_read(p->pcp.count))
493 494 495 496 497 498
			continue;

		/*
		 * We never drain zones local to this processor.
		 */
		if (zone_to_nid(zone) == numa_node_id()) {
499
			__this_cpu_write(p->expire, 0);
500 501 502
			continue;
		}

503
		if (__this_cpu_dec_return(p->expire))
504 505
			continue;

506
		if (__this_cpu_read(p->pcp.count)) {
507
			drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
508 509
			changes++;
		}
510
#endif
511
	}
512 513
	changes += fold_diff(global_diff);
	return changes;
514 515
}

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
/*
 * Fold the data for an offline cpu into the global array.
 * There cannot be any access by the offline cpu and therefore
 * synchronization is simplified.
 */
void cpu_vm_stats_fold(int cpu)
{
	struct zone *zone;
	int i;
	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };

	for_each_populated_zone(zone) {
		struct per_cpu_pageset *p;

		p = per_cpu_ptr(zone->pageset, cpu);

		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
			if (p->vm_stat_diff[i]) {
				int v;

				v = p->vm_stat_diff[i];
				p->vm_stat_diff[i] = 0;
				atomic_long_add(v, &zone->vm_stat[i]);
				global_diff[i] += v;
			}
	}

Christoph Lameter's avatar
Christoph Lameter committed
543
	fold_diff(global_diff);
544 545
}

546 547 548 549
/*
 * this is only called if !populated_zone(zone), which implies no other users of
 * pset->vm_stat_diff[] exsist.
 */
550 551 552 553 554 555 556 557 558 559 560 561
void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
{
	int i;

	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
		if (pset->vm_stat_diff[i]) {
			int v = pset->vm_stat_diff[i];
			pset->vm_stat_diff[i] = 0;
			atomic_long_add(v, &zone->vm_stat[i]);
			atomic_long_add(v, &vm_stat[i]);
		}
}
562 563
#endif

564 565 566 567 568 569
#ifdef CONFIG_NUMA
/*
 * zonelist = the list of zones passed to the allocator
 * z 	    = the zone from which the allocation occurred.
 *
 * Must be called with interrupts disabled.
Andi Kleen's avatar
Andi Kleen committed
570 571 572 573
 *
 * When __GFP_OTHER_NODE is set assume the node of the preferred
 * zone is the local node. This is useful for daemons who allocate
 * memory on behalf of other processes.
574
 */
Andi Kleen's avatar
Andi Kleen committed
575
void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
576
{
577
	if (z->zone_pgdat == preferred_zone->zone_pgdat) {
578 579 580
		__inc_zone_state(z, NUMA_HIT);
	} else {
		__inc_zone_state(z, NUMA_MISS);
581
		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
582
	}
Andi Kleen's avatar
Andi Kleen committed
583 584
	if (z->node == ((flags & __GFP_OTHER_NODE) ?
			preferred_zone->node : numa_node_id()))
585 586 587 588 589 590
		__inc_zone_state(z, NUMA_LOCAL);
	else
		__inc_zone_state(z, NUMA_OTHER);
}
#endif

591
#ifdef CONFIG_COMPACTION
592

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
struct contig_page_info {
	unsigned long free_pages;
	unsigned long free_blocks_total;
	unsigned long free_blocks_suitable;
};

/*
 * Calculate the number of free pages in a zone, how many contiguous
 * pages are free and how many are large enough to satisfy an allocation of
 * the target size. Note that this function makes no attempt to estimate
 * how many suitable free blocks there *might* be if MOVABLE pages were
 * migrated. Calculating that is possible, but expensive and can be
 * figured out from userspace
 */
static void fill_contig_page_info(struct zone *zone,
				unsigned int suitable_order,
				struct contig_page_info *info)
{
	unsigned int order;

	info->free_pages = 0;
	info->free_blocks_total = 0;
	info->free_blocks_suitable = 0;

	for (order = 0; order < MAX_ORDER; order++) {
		unsigned long blocks;

		/* Count number of free blocks */
		blocks = zone->free_area[order].nr_free;
		info->free_blocks_total += blocks;

		/* Count free base pages */
		info->free_pages += blocks << order;

		/* Count the suitable free blocks */
		if (order >= suitable_order)
			info->free_blocks_suitable += blocks <<
						(order - suitable_order);
	}
}
633 634 635 636 637 638 639 640

/*
 * A fragmentation index only makes sense if an allocation of a requested
 * size would fail. If that is true, the fragmentation index indicates
 * whether external fragmentation or a lack of memory was the problem.
 * The value can be used to determine if page reclaim or compaction
 * should be used
 */
641
static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
{
	unsigned long requested = 1UL << order;

	if (!info->free_blocks_total)
		return 0;

	/* Fragmentation index only makes sense when a request would fail */
	if (info->free_blocks_suitable)
		return -1000;

	/*
	 * Index is between 0 and 1 so return within 3 decimal places
	 *
	 * 0 => allocation would fail due to lack of memory
	 * 1 => allocation would fail due to fragmentation
	 */
	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
}
660 661 662 663 664 665 666 667 668

/* Same as __fragmentation index but allocs contig_page_info on stack */
int fragmentation_index(struct zone *zone, unsigned int order)
{
	struct contig_page_info info;

	fill_contig_page_info(zone, order, &info);
	return __fragmentation_index(order, &info);
}
669 670 671
#endif

#if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
672
#include <linux/proc_fs.h>
673 674
#include <linux/seq_file.h>

675 676 677 678 679
static char * const migratetype_names[MIGRATE_TYPES] = {
	"Unmovable",
	"Reclaimable",
	"Movable",
	"Reserve",
680 681 682
#ifdef CONFIG_CMA
	"CMA",
#endif
683
#ifdef CONFIG_MEMORY_ISOLATION
684
	"Isolate",
685
#endif
686 687
};

688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
static void *frag_start(struct seq_file *m, loff_t *pos)
{
	pg_data_t *pgdat;
	loff_t node = *pos;
	for (pgdat = first_online_pgdat();
	     pgdat && node;
	     pgdat = next_online_pgdat(pgdat))
		--node;

	return pgdat;
}

static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
{
	pg_data_t *pgdat = (pg_data_t *)arg;

	(*pos)++;
	return next_online_pgdat(pgdat);
}

static void frag_stop(struct seq_file *m, void *arg)
{
}

712 713 714
/* Walk all the zones in a node and print using a callback */
static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
715 716 717 718 719 720 721 722 723 724
{
	struct zone *zone;
	struct zone *node_zones = pgdat->node_zones;
	unsigned long flags;

	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
		if (!populated_zone(zone))
			continue;

		spin_lock_irqsave(&zone->lock, flags);
725
		print(m, pgdat, zone);
726
		spin_unlock_irqrestore(&zone->lock, flags);
727 728
	}
}
729
#endif
730

731
#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
#ifdef CONFIG_ZONE_DMA
#define TEXT_FOR_DMA(xx) xx "_dma",
#else
#define TEXT_FOR_DMA(xx)
#endif

#ifdef CONFIG_ZONE_DMA32
#define TEXT_FOR_DMA32(xx) xx "_dma32",
#else
#define TEXT_FOR_DMA32(xx)
#endif

#ifdef CONFIG_HIGHMEM
#define TEXT_FOR_HIGHMEM(xx) xx "_high",
#else
#define TEXT_FOR_HIGHMEM(xx)
#endif

#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
					TEXT_FOR_HIGHMEM(xx) xx "_movable",

const char * const vmstat_text[] = {
754
	/* enum zone_stat_item countes */
755
	"nr_free_pages",
756
	"nr_alloc_batch",
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
	"nr_inactive_anon",
	"nr_active_anon",
	"nr_inactive_file",
	"nr_active_file",
	"nr_unevictable",
	"nr_mlock",
	"nr_anon_pages",
	"nr_mapped",
	"nr_file_pages",
	"nr_dirty",
	"nr_writeback",
	"nr_slab_reclaimable",
	"nr_slab_unreclaimable",
	"nr_page_table_pages",
	"nr_kernel_stack",
	"nr_unstable",
	"nr_bounce",
	"nr_vmscan_write",
775
	"nr_vmscan_immediate_reclaim",
776 777 778 779 780 781
	"nr_writeback_temp",
	"nr_isolated_anon",
	"nr_isolated_file",
	"nr_shmem",
	"nr_dirtied",
	"nr_written",
782
	"nr_pages_scanned",
783 784 785 786 787 788 789 790 791

#ifdef CONFIG_NUMA
	"numa_hit",
	"numa_miss",
	"numa_foreign",
	"numa_interleave",
	"numa_local",
	"numa_other",
#endif
792 793
	"workingset_refault",
	"workingset_activate",
794
	"workingset_nodereclaim",
795
	"nr_anon_transparent_hugepages",
796
	"nr_free_cma",
797 798

	/* enum writeback_stat_item counters */
799 800 801 802
	"nr_dirty_threshold",
	"nr_dirty_background_threshold",

#ifdef CONFIG_VM_EVENT_COUNTERS
803
	/* enum vm_event_item counters */
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
	"pgpgin",
	"pgpgout",
	"pswpin",
	"pswpout",

	TEXTS_FOR_ZONES("pgalloc")

	"pgfree",
	"pgactivate",
	"pgdeactivate",

	"pgfault",
	"pgmajfault",

	TEXTS_FOR_ZONES("pgrefill")
819 820
	TEXTS_FOR_ZONES("pgsteal_kswapd")
	TEXTS_FOR_ZONES("pgsteal_direct")
821 822
	TEXTS_FOR_ZONES("pgscan_kswapd")
	TEXTS_FOR_ZONES("pgscan_direct")
823
	"pgscan_direct_throttle",
824 825 826 827 828 829 830 831 832 833 834 835 836 837

#ifdef CONFIG_NUMA
	"zone_reclaim_failed",
#endif
	"pginodesteal",
	"slabs_scanned",
	"kswapd_inodesteal",
	"kswapd_low_wmark_hit_quickly",
	"kswapd_high_wmark_hit_quickly",
	"pageoutrun",
	"allocstall",

	"pgrotated",

838 839 840
	"drop_pagecache",
	"drop_slab",

841 842
#ifdef CONFIG_NUMA_BALANCING
	"numa_pte_updates",
843
	"numa_huge_pte_updates",
844 845 846 847
	"numa_hint_faults",
	"numa_hint_faults_local",
	"numa_pages_migrated",
#endif
848 849 850 851
#ifdef CONFIG_MIGRATION
	"pgmigrate_success",
	"pgmigrate_fail",
#endif
852
#ifdef CONFIG_COMPACTION
853 854 855
	"compact_migrate_scanned",
	"compact_free_scanned",
	"compact_isolated",
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
	"compact_stall",
	"compact_fail",
	"compact_success",
#endif

#ifdef CONFIG_HUGETLB_PAGE
	"htlb_buddy_alloc_success",
	"htlb_buddy_alloc_fail",
#endif
	"unevictable_pgs_culled",
	"unevictable_pgs_scanned",
	"unevictable_pgs_rescued",
	"unevictable_pgs_mlocked",
	"unevictable_pgs_munlocked",
	"unevictable_pgs_cleared",
	"unevictable_pgs_stranded",

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	"thp_fault_alloc",
	"thp_fault_fallback",
	"thp_collapse_alloc",
	"thp_collapse_alloc_failed",
	"thp_split",
879 880
	"thp_zero_page_alloc",
	"thp_zero_page_alloc_failed",
881
#endif
882 883 884 885 886 887 888
#ifdef CONFIG_MEMORY_BALLOON
	"balloon_inflate",
	"balloon_deflate",
#ifdef CONFIG_BALLOON_COMPACTION
	"balloon_migrate",
#endif
#endif /* CONFIG_MEMORY_BALLOON */
889
#ifdef CONFIG_DEBUG_TLBFLUSH
890
#ifdef CONFIG_SMP
Dave Hansen's avatar
Dave Hansen committed
891 892
	"nr_tlb_remote_flush",
	"nr_tlb_remote_flush_received",
893
#endif /* CONFIG_SMP */
Dave Hansen's avatar
Dave Hansen committed
894 895
	"nr_tlb_local_flush_all",
	"nr_tlb_local_flush_one",
896
#endif /* CONFIG_DEBUG_TLBFLUSH */
897

Davidlohr Bueso's avatar
Davidlohr Bueso committed
898 899 900 901
#ifdef CONFIG_DEBUG_VM_VMACACHE
	"vmacache_find_calls",
	"vmacache_find_hits",
#endif
902 903
#endif /* CONFIG_VM_EVENTS_COUNTERS */
};
904
#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
905 906


907
#ifdef CONFIG_PROC_FS
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
						struct zone *zone)
{
	int order;

	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
	for (order = 0; order < MAX_ORDER; ++order)
		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
	seq_putc(m, '\n');
}

/*
 * This walks the free areas for each zone.
 */
static int frag_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;
	walk_zones_in_node(m, pgdat, frag_show_print);
	return 0;
}

static void pagetypeinfo_showfree_print(struct seq_file *m,
					pg_data_t *pgdat, struct zone *zone)
{
	int order, mtype;

	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
		seq_printf(m, "Node %4d, zone %8s, type %12s ",
					pgdat->node_id,
					zone->name,
					migratetype_names[mtype]);
		for (order = 0; order < MAX_ORDER; ++order) {
			unsigned long freecount = 0;
			struct free_area *area;
			struct list_head *curr;

			area = &(zone->free_area[order]);

			list_for_each(curr, &area->free_list[mtype])
				freecount++;
			seq_printf(m, "%6lu ", freecount);
		}
950 951
		seq_putc(m, '\n');
	}
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
}

/* Print out the free pages at each order for each migatetype */
static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
{
	int order;
	pg_data_t *pgdat = (pg_data_t *)arg;

	/* Print header */
	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
	for (order = 0; order < MAX_ORDER; ++order)
		seq_printf(m, "%6d ", order);
	seq_putc(m, '\n');

	walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);

	return 0;
}

static void pagetypeinfo_showblockcount_print(struct seq_file *m,
					pg_data_t *pgdat, struct zone *zone)
{
	int mtype;
	unsigned long pfn;
	unsigned long start_pfn = zone->zone_start_pfn;
977
	unsigned long end_pfn = zone_end_pfn(zone);
978 979 980 981 982 983 984 985 986
	unsigned long count[MIGRATE_TYPES] = { 0, };

	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		if (!pfn_valid(pfn))
			continue;

		page = pfn_to_page(pfn);
987 988 989

		/* Watch for unexpected holes punched in the memmap */
		if (!memmap_valid_within(pfn, page, zone))
990
			continue;
991

992 993
		mtype = get_pageblock_migratetype(page);

994 995
		if (mtype < MIGRATE_TYPES)
			count[mtype]++;
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	}

	/* Print counts */
	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
		seq_printf(m, "%12lu ", count[mtype]);
	seq_putc(m, '\n');
}

/* Print out the free pages at each order for each migratetype */
static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
{
	int mtype;
	pg_data_t *pgdat = (pg_data_t *)arg;

	seq_printf(m, "\n%-23s", "Number of blocks type ");
	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
		seq_printf(m, "%12s ", migratetype_names[mtype]);
	seq_putc(m, '\n');
	walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);

	return 0;
}

/*
 * This prints out statistics in relation to grouping pages by mobility.
 * It is expensive to collect so do not constantly read the file.
 */
static int pagetypeinfo_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;

1028
	/* check memoryless node */
1029
	if (!node_state(pgdat->node_id, N_MEMORY))
1030 1031
		return 0;

1032 1033 1034 1035 1036 1037
	seq_printf(m, "Page block order: %d\n", pageblock_order);
	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
	seq_putc(m, '\n');
	pagetypeinfo_showfree(m, pgdat);
	pagetypeinfo_showblockcount(m, pgdat);

1038 1039 1040
	return 0;
}

1041
static const struct seq_operations fragmentation_op = {
1042 1043 1044 1045 1046 1047
	.start	= frag_start,
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= frag_show,
};

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
static int fragmentation_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &fragmentation_op);
}

static const struct file_operations fragmentation_file_operations = {
	.open		= fragmentation_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

1060
static const struct seq_operations pagetypeinfo_op = {
1061 1062 1063 1064 1065 1066
	.start	= frag_start,
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= pagetypeinfo_show,
};

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
static int pagetypeinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &pagetypeinfo_op);
}

static const struct file_operations pagetypeinfo_file_ops = {
	.open		= pagetypeinfo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

1079 1080
static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
							struct zone *zone)
1081
{
1082 1083 1084 1085 1086 1087 1088
	int i;
	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
	seq_printf(m,
		   "\n  pages free     %lu"
		   "\n        min      %lu"
		   "\n        low      %lu"
		   "\n        high     %lu"
1089
		   "\n        scanned  %lu"
1090
		   "\n        spanned  %lu"
1091 1092
		   "\n        present  %lu"
		   "\n        managed  %lu",
1093
		   zone_page_state(zone, NR_FREE_PAGES),
1094 1095 1096
		   min_wmark_pages(zone),
		   low_wmark_pages(zone),
		   high_wmark_pages(zone),
1097
		   zone_page_state(zone, NR_PAGES_SCANNED),
1098
		   zone->spanned_pages,
1099 1100
		   zone->present_pages,
		   zone->managed_pages);
1101 1102 1103 1104 1105 1106

	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
		seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
				zone_page_state(zone, i));

	seq_printf(m,
1107
		   "\n        protection: (%ld",
1108 1109
		   zone->lowmem_reserve[0]);
	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1110
		seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1111 1112 1113 1114 1115 1116
	seq_printf(m,
		   ")"
		   "\n  pagesets");
	for_each_online_cpu(i) {
		struct per_cpu_pageset *pageset;

1117
		pageset = per_cpu_ptr(zone->pageset, i);
1118 1119 1120 1121 1122 1123 1124 1125 1126
		seq_printf(m,
			   "\n    cpu: %i"
			   "\n              count: %i"
			   "\n              high:  %i"
			   "\n              batch: %i",
			   i,
			   pageset->pcp.count,
			   pageset->pcp.high,
			   pageset->pcp.batch);
1127
#ifdef CONFIG_SMP
1128 1129
		seq_printf(m, "\n  vm stats threshold: %d",
				pageset->stat_threshold);
1130
#endif
1131
	}
1132 1133
	seq_printf(m,
		   "\n  all_unreclaimable: %u"
1134 1135
		   "\n  start_pfn:         %lu"
		   "\n  inactive_ratio:    %u",
1136
		   !zone_reclaimable(zone),
1137 1138
		   zone->zone_start_pfn,
		   zone->inactive_ratio);
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
	seq_putc(m, '\n');
}

/*
 * Output information about zones in @pgdat.
 */
static int zoneinfo_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;
	walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1149 1150 1151
	return 0;
}

1152
static const struct seq_operations zoneinfo_op = {
1153 1154 1155 1156 1157 1158 1159
	.start	= frag_start, /* iterate over all zones. The same as in
			       * fragmentation. */
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= zoneinfo_show,
};

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
static int zoneinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &zoneinfo_op);
}

static const struct file_operations proc_zoneinfo_file_operations = {
	.open		= zoneinfo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

1172 1173 1174 1175 1176 1177
enum writeback_stat_item {
	NR_DIRTY_THRESHOLD,
	NR_DIRTY_BG_THRESHOLD,
	NR_VM_WRITEBACK_STAT_ITEMS,
};

1178 1179
static void *vmstat_start(struct seq_file *m, loff_t *pos)
{
1180
	unsigned long *v;
1181
	int i, stat_items_size;
1182 1183 1184

	if (*pos >= ARRAY_SIZE(vmstat_text))
		return NULL;
1185 1186
	stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
			  NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1187

1188
#ifdef CONFIG_VM_EVENT_COUNTERS
1189
	stat_items_size += sizeof(struct vm_event_state);
1190
#endif
1191 1192

	v = kmalloc(stat_items_size, GFP_KERNEL);
1193 1194
	m->private = v;
	if (!v)
1195
		return ERR_PTR(-ENOMEM);
1196 1197
	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
		v[i] = global_page_state(i);
1198 1199 1200 1201 1202 1203
	v += NR_VM_ZONE_STAT_ITEMS;

	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
			    v + NR_DIRTY_THRESHOLD);
	v += NR_VM_WRITEBACK_STAT_ITEMS;

1204
#ifdef CONFIG_VM_EVENT_COUNTERS
1205 1206 1207
	all_vm_events(v);
	v[PGPGIN] /= 2;		/* sectors -> kbytes */
	v[PGPGOUT] /= 2;
1208
#endif
1209
	return (unsigned long *)m->private + *pos;
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
}

static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
{
	(*pos)++;
	if (*pos >= ARRAY_SIZE(vmstat_text))
		return NULL;
	return (unsigned long *)m->private + *pos;
}

static int vmstat_show(struct seq_file *m, void *arg)
{
	unsigned long *l = arg;
	unsigned long off = l - (unsigned long *)m->private;

	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
	return 0;
}

static void vmstat_stop(struct seq_file *m, void *arg)
{
	kfree(m->private);
	m->private = NULL;
}

1235
static const struct seq_operations vmstat_op = {
1236 1237 1238 1239 1240 1241
	.start	= vmstat_start,
	.next	= vmstat_next,
	.stop	= vmstat_stop,
	.show	= vmstat_show,
};

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
static int vmstat_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &vmstat_op);
}

static const struct file_operations proc_vmstat_file_operations = {
	.open		= vmstat_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};
1253 1254
#endif /* CONFIG_PROC_FS */

1255
#ifdef CONFIG_SMP
1256
static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1257
int sysctl_stat_interval __read_mostly = HZ;
1258
static cpumask_var_t cpu_stat_off;
1259 1260 1261

static void vmstat_update(struct work_struct *w)
{
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
	if (refresh_cpu_vm_stats())
		/*
		 * Counters were updated so we expect more updates
		 * to occur in the future. Keep on running the
		 * update worker thread.
		 */
		schedule_delayed_work(this_cpu_ptr(&vmstat_work),
			round_jiffies_relative(sysctl_stat_interval));
	else {
		/*
		 * We did not update any counters so the app may be in
		 * a mode where it does not cause counter updates.
		 * We may be uselessly running vmstat_update.
		 * Defer the checking for differentials to the
		 * shepherd thread on a different processor.
		 */
		int r;
		/*
		 * Shepherd work thread does not race since it never
		 * changes the bit if its zero but the cpu
		 * online / off line code may race if
		 * worker threads are still allowed during
		 * shutdown / startup.
		 */
		r = cpumask_test_and_set_cpu(smp_processor_id(),
			cpu_stat_off);
		VM_BUG_ON(r);
	}
}

/*
 * Check if the diffs for a certain cpu indicate that
 * an update is needed.
 */
static bool need_update(int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);

		BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
		/*
		 * The fast way of checking if there are any vmstat diffs.
		 * This works because the diffs are byte sized items.
		 */
		if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
			return true;

	}
	return false;
}


/*
 * Shepherd worker thread that checks the
 * differentials of processors that have their worker
 * threads for vm statistics updates disabled because of
 * inactivity.
 */
static void vmstat_shepherd(struct work_struct *w);

static DECLARE_DELAYED_WORK(shepherd, vmstat_shepherd);

static void vmstat_shepherd(struct work_struct *w)
{
	int cpu;

	get_online_cpus();
	/* Check processors whose vmstat worker threads have been disabled */
	for_each_cpu(cpu, cpu_stat_off)
		if (need_update(cpu) &&
			cpumask_test_and_clear_cpu(cpu, cpu_stat_off))

			schedule_delayed_work_on(cpu, &per_cpu(vmstat_work, cpu),
				__round_jiffies_relative(sysctl_stat_interval, cpu));

	put_online_cpus();

	schedule_delayed_work(&shepherd,
1342
		round_jiffies_relative(sysctl_stat_interval));
1343

1344 1345
}

1346
static void __init start_shepherd_timer(void)
1347
{
1348 1349 1350 1351 1352 1353 1354 1355 1356
	int cpu;

	for_each_possible_cpu(cpu)
		INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
			vmstat_update);

	if (!alloc_cpumask_var(&cpu_stat_off, GFP_KERNEL))
		BUG();
	cpumask_copy(cpu_stat_off, cpu_online_mask);
1357

1358 1359
	schedule_delayed_work(&shepherd,
		round_jiffies_relative(sysctl_stat_interval));
1360 1361
}

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
static void vmstat_cpu_dead(int node)
{
	int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu)
		if (cpu_to_node(cpu) == node)
			goto end;

	node_clear_state(node, N_CPU);
end:
	put_online_cpus();
}

1376 1377 1378 1379
/*
 * Use the cpu notifier to insure that the thresholds are recalculated
 * when necessary.
 */
1380
static int vmstat_cpuup_callback(struct notifier_block *nfb,
1381 1382 1383
		unsigned long action,
		void *hcpu)
{
1384 1385
	long cpu = (long)hcpu;

1386
	switch (action) {
1387 1388
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
1389
		refresh_zone_stat_thresholds();
1390
		node_set_state(cpu_to_node(cpu), N_CPU);
1391
		cpumask_set_cpu(cpu, cpu_stat_off);
1392 1393 1394
		break;
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
1395
		cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1396
		cpumask_clear_cpu(cpu, cpu_stat_off);
1397 1398 1399
		break;
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
1400
		cpumask_set_cpu(cpu, cpu_stat_off);
1401
		break;
1402
	case CPU_DEAD:
1403
	case CPU_DEAD_FROZEN:
1404
		refresh_zone_stat_thresholds();
1405
		vmstat_cpu_dead(cpu_to_node(cpu));
1406 1407 1408
		break;
	default:
		break;
1409 1410 1411 1412
	}
	return NOTIFY_OK;
}

1413
static struct notifier_block vmstat_notifier =
1414
	{ &vmstat_cpuup_callback, NULL, 0 };
1415
#endif
1416

Adrian Bunk's avatar
Adrian Bunk committed
1417
static int __init setup_vmstat(void)
1418
{
1419
#ifdef CONFIG_SMP
1420 1421
	cpu_notifier_register_begin();
	__register_cpu_notifier(&vmstat_notifier);
1422

1423
	start_shepherd_timer();
1424
	cpu_notifier_register_done();
1425 1426 1427
#endif
#ifdef CONFIG_PROC_FS
	proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1428
	proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1429
	proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1430
	proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1431
#endif
1432 1433 1434
	return 0;
}
module_init(setup_vmstat)
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494

#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
#include <linux/debugfs.h>


/*
 * Return an index indicating how much of the available free memory is
 * unusable for an allocation of the requested size.
 */
static int unusable_free_index(unsigned int order,
				struct contig_page_info *info)
{
	/* No free memory is interpreted as all free memory is unusable */
	if (info->free_pages == 0)
		return 1000;

	/*
	 * Index should be a value between 0 and 1. Return a value to 3
	 * decimal places.
	 *
	 * 0 => no fragmentation
	 * 1 => high fragmentation
	 */
	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);

}

static void unusable_show_print(struct seq_file *m,
					pg_data_t *pgdat, struct zone *zone)
{
	unsigned int order;
	int index;
	struct contig_page_info info;

	seq_printf(m, "Node %d, zone %8s ",
				pgdat->node_id,
				zone->name);
	for (order = 0; order < MAX_ORDER; ++order) {
		fill_contig_page_info(zone, order, &info);
		index = unusable_free_index(order, &info);
		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
	}

	seq_putc(m, '\n');
}

/*
 * Display unusable free space index
 *
 * The unusable free space index measures how much of the available free
 * memory cannot be used to satisfy an allocation of a given size and is a
 * value between 0 and 1. The higher the value, the more of free memory is
 * unusable and by implication, the worse the external fragmentation is. This
 * can be expressed as a percentage by multiplying by 100.
 */
static int unusable_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;

	/* check memoryless node */
1495
	if (!node_state(pgdat->node_id, N_MEMORY))
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
		return 0;

	walk_zones_in_node(m, pgdat, unusable_show_print);

	return 0;
}

static const struct seq_operations unusable_op = {
	.start	= frag_start,
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= unusable_show,
};

static int unusable_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &unusable_op);
}

static const struct file_operations unusable_file_ops = {
	.open		= unusable_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
static void extfrag_show_print(struct seq_file *m,
					pg_data_t *pgdat, struct zone *zone)
{
	unsigned int order;
	int index;

	/* Alloc on stack as interrupts are disabled for zone walk */
	struct contig_page_info info;

	seq_printf(m, "Node %d, zone %8s ",
				pgdat->node_id,
				zone->name);
	for (order = 0; order < MAX_ORDER; ++order) {
		fill_contig_page_info(zone, order, &info);
1536
		index = __fragmentation_index(order, &info);
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
	}

	seq_putc(m, '\n');
}

/*
 * Display fragmentation index for orders that allocations would fail for
 */
static int extfrag_show(struct seq_file *m, void *arg