af_can.c 25.2 KB
Newer Older
1 2 3 4
/*
 * af_can.c - Protocol family CAN core module
 *            (used by different CAN protocol modules)
 *
5
 * Copyright (c) 2002-2017 Volkswagen Group Electronic Research
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of Volkswagen nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * Alternatively, provided that this notice is retained in full, this
 * software may be distributed under the terms of the GNU General
 * Public License ("GPL") version 2, in which case the provisions of the
 * GPL apply INSTEAD OF those given above.
 *
 * The provided data structures and external interfaces from this code
 * are not restricted to be used by modules with a GPL compatible license.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
 * DAMAGE.
 *
 */

#include <linux/module.h>
44
#include <linux/stddef.h>
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
#include <linux/init.h>
#include <linux/kmod.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/spinlock.h>
#include <linux/rcupdate.h>
#include <linux/uaccess.h>
#include <linux/net.h>
#include <linux/netdevice.h>
#include <linux/socket.h>
#include <linux/if_ether.h>
#include <linux/if_arp.h>
#include <linux/skbuff.h>
#include <linux/can.h>
#include <linux/can/core.h>
60
#include <linux/can/skb.h>
61
#include <linux/ratelimit.h>
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
#include <net/net_namespace.h>
#include <net/sock.h>

#include "af_can.h"

MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
	      "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");

MODULE_ALIAS_NETPROTO(PF_CAN);

static int stats_timer __read_mostly = 1;
module_param(stats_timer, int, S_IRUGO);
MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");

static struct kmem_cache *rcv_cache __read_mostly;

/* table of registered CAN protocols */
81
static const struct can_proto __rcu *proto_tab[CAN_NPROTO] __read_mostly;
82
static DEFINE_MUTEX(proto_tab_lock);
83

84 85
static atomic_t skbcounter = ATOMIC_INIT(0);

86 87 88 89
/*
 * af_can socket functions
 */

Oliver Hartkopp's avatar
Oliver Hartkopp committed
90
int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
91 92 93 94 95 96 97 98 99 100 101 102
{
	struct sock *sk = sock->sk;

	switch (cmd) {

	case SIOCGSTAMP:
		return sock_get_timestamp(sk, (struct timeval __user *)arg);

	default:
		return -ENOIOCTLCMD;
	}
}
Oliver Hartkopp's avatar
Oliver Hartkopp committed
103
EXPORT_SYMBOL(can_ioctl);
104 105 106 107 108 109

static void can_sock_destruct(struct sock *sk)
{
	skb_queue_purge(&sk->sk_receive_queue);
}

110
static const struct can_proto *can_get_proto(int protocol)
111
{
112
	const struct can_proto *cp;
113 114 115 116 117 118 119 120 121 122

	rcu_read_lock();
	cp = rcu_dereference(proto_tab[protocol]);
	if (cp && !try_module_get(cp->prot->owner))
		cp = NULL;
	rcu_read_unlock();

	return cp;
}

123 124 125 126 127
static inline void can_put_proto(const struct can_proto *cp)
{
	module_put(cp->prot->owner);
}

128 129
static int can_create(struct net *net, struct socket *sock, int protocol,
		      int kern)
130 131
{
	struct sock *sk;
132
	const struct can_proto *cp;
133 134 135 136 137 138 139
	int err = 0;

	sock->state = SS_UNCONNECTED;

	if (protocol < 0 || protocol >= CAN_NPROTO)
		return -EINVAL;

140
	cp = can_get_proto(protocol);
141

142
#ifdef CONFIG_MODULES
143 144 145
	if (!cp) {
		/* try to load protocol module if kernel is modular */

146
		err = request_module("can-proto-%d", protocol);
147 148 149 150 151 152

		/*
		 * In case of error we only print a message but don't
		 * return the error code immediately.  Below we will
		 * return -EPROTONOSUPPORT
		 */
153 154
		if (err)
			printk_ratelimited(KERN_ERR "can: request_module "
155
			       "(can-proto-%d) failed.\n", protocol);
156

157
		cp = can_get_proto(protocol);
158
	}
159
#endif
160 161 162 163 164 165 166

	/* check for available protocol and correct usage */

	if (!cp)
		return -EPROTONOSUPPORT;

	if (cp->type != sock->type) {
167
		err = -EPROTOTYPE;
168 169 170 171 172
		goto errout;
	}

	sock->ops = cp->ops;

173
	sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot, kern);
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
	if (!sk) {
		err = -ENOMEM;
		goto errout;
	}

	sock_init_data(sock, sk);
	sk->sk_destruct = can_sock_destruct;

	if (sk->sk_prot->init)
		err = sk->sk_prot->init(sk);

	if (err) {
		/* release sk on errors */
		sock_orphan(sk);
		sock_put(sk);
	}

 errout:
192
	can_put_proto(cp);
193 194 195 196 197 198 199 200 201 202 203 204
	return err;
}

/*
 * af_can tx path
 */

/**
 * can_send - transmit a CAN frame (optional with local loopback)
 * @skb: pointer to socket buffer with CAN frame in data section
 * @loop: loopback for listeners on local CAN sockets (recommended default!)
 *
205 206
 * Due to the loopback this routine must not be called from hardirq context.
 *
207 208 209 210 211 212
 * Return:
 *  0 on success
 *  -ENETDOWN when the selected interface is down
 *  -ENOBUFS on full driver queue (see net_xmit_errno())
 *  -ENOMEM when local loopback failed at calling skb_clone()
 *  -EPERM when trying to send on a non-CAN interface
213
 *  -EMSGSIZE CAN frame size is bigger than CAN interface MTU
Oliver Hartkopp's avatar
Oliver Hartkopp committed
214
 *  -EINVAL when the skb->data does not contain a valid CAN frame
215 216 217
 */
int can_send(struct sk_buff *skb, int loop)
{
218
	struct sk_buff *newskb = NULL;
219
	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
220
	struct s_stats *can_stats = dev_net(skb->dev)->can.can_stats;
221 222 223 224 225 226 227 228 229 230 231 232
	int err = -EINVAL;

	if (skb->len == CAN_MTU) {
		skb->protocol = htons(ETH_P_CAN);
		if (unlikely(cfd->len > CAN_MAX_DLEN))
			goto inval_skb;
	} else if (skb->len == CANFD_MTU) {
		skb->protocol = htons(ETH_P_CANFD);
		if (unlikely(cfd->len > CANFD_MAX_DLEN))
			goto inval_skb;
	} else
		goto inval_skb;
233

234 235 236 237 238 239 240 241
	/*
	 * Make sure the CAN frame can pass the selected CAN netdevice.
	 * As structs can_frame and canfd_frame are similar, we can provide
	 * CAN FD frames to legacy CAN drivers as long as the length is <= 8
	 */
	if (unlikely(skb->len > skb->dev->mtu && cfd->len > CAN_MAX_DLEN)) {
		err = -EMSGSIZE;
		goto inval_skb;
Oliver Hartkopp's avatar
Oliver Hartkopp committed
242 243
	}

244 245 246
	if (unlikely(skb->dev->type != ARPHRD_CAN)) {
		err = -EPERM;
		goto inval_skb;
247 248
	}

249 250 251
	if (unlikely(!(skb->dev->flags & IFF_UP))) {
		err = -ENETDOWN;
		goto inval_skb;
252 253
	}

254 255 256
	skb->ip_summed = CHECKSUM_UNNECESSARY;

	skb_reset_mac_header(skb);
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
	skb_reset_network_header(skb);
	skb_reset_transport_header(skb);

	if (loop) {
		/* local loopback of sent CAN frames */

		/* indication for the CAN driver: do loopback */
		skb->pkt_type = PACKET_LOOPBACK;

		/*
		 * The reference to the originating sock may be required
		 * by the receiving socket to check whether the frame is
		 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
		 * Therefore we have to ensure that skb->sk remains the
		 * reference to the originating sock by restoring skb->sk
		 * after each skb_clone() or skb_orphan() usage.
		 */

		if (!(skb->dev->flags & IFF_ECHO)) {
			/*
			 * If the interface is not capable to do loopback
			 * itself, we do it here.
			 */
280
			newskb = skb_clone(skb, GFP_ATOMIC);
281 282 283 284 285
			if (!newskb) {
				kfree_skb(skb);
				return -ENOMEM;
			}

286
			can_skb_set_owner(newskb, skb->sk);
287 288 289 290 291 292 293 294 295 296 297 298 299
			newskb->ip_summed = CHECKSUM_UNNECESSARY;
			newskb->pkt_type = PACKET_BROADCAST;
		}
	} else {
		/* indication for the CAN driver: no loopback required */
		skb->pkt_type = PACKET_HOST;
	}

	/* send to netdevice */
	err = dev_queue_xmit(skb);
	if (err > 0)
		err = net_xmit_errno(err);

300
	if (err) {
301
		kfree_skb(newskb);
302 303 304
		return err;
	}

305
	if (newskb)
306
		netif_rx_ni(newskb);
307

308
	/* update statistics */
309 310
	can_stats->tx_frames++;
	can_stats->tx_frames_delta++;
311

312
	return 0;
313 314 315 316

inval_skb:
	kfree_skb(skb);
	return err;
317 318 319 320 321 322 323
}
EXPORT_SYMBOL(can_send);

/*
 * af_can rx path
 */

324 325
static struct dev_rcv_lists *find_dev_rcv_lists(struct net *net,
						struct net_device *dev)
326
{
327
	if (!dev)
328
		return net->can.can_rx_alldev_list;
329 330
	else
		return (struct dev_rcv_lists *)dev->ml_priv;
331 332
}

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
/**
 * effhash - hash function for 29 bit CAN identifier reduction
 * @can_id: 29 bit CAN identifier
 *
 * Description:
 *  To reduce the linear traversal in one linked list of _single_ EFF CAN
 *  frame subscriptions the 29 bit identifier is mapped to 10 bits.
 *  (see CAN_EFF_RCV_HASH_BITS definition)
 *
 * Return:
 *  Hash value from 0x000 - 0x3FF ( enforced by CAN_EFF_RCV_HASH_BITS mask )
 */
static unsigned int effhash(canid_t can_id)
{
	unsigned int hash;

	hash = can_id;
	hash ^= can_id >> CAN_EFF_RCV_HASH_BITS;
	hash ^= can_id >> (2 * CAN_EFF_RCV_HASH_BITS);

	return hash & ((1 << CAN_EFF_RCV_HASH_BITS) - 1);
}

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
/**
 * find_rcv_list - determine optimal filterlist inside device filter struct
 * @can_id: pointer to CAN identifier of a given can_filter
 * @mask: pointer to CAN mask of a given can_filter
 * @d: pointer to the device filter struct
 *
 * Description:
 *  Returns the optimal filterlist to reduce the filter handling in the
 *  receive path. This function is called by service functions that need
 *  to register or unregister a can_filter in the filter lists.
 *
 *  A filter matches in general, when
 *
 *          <received_can_id> & mask == can_id & mask
 *
 *  so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
 *  relevant bits for the filter.
 *
 *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
375 376
 *  filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg
 *  frames there is a special filterlist and a special rx path filter handling.
377 378 379 380 381 382
 *
 * Return:
 *  Pointer to optimal filterlist for the given can_id/mask pair.
 *  Constistency checked mask.
 *  Reduced can_id to have a preprocessed filter compare value.
 */
383 384 385 386 387
static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
					struct dev_rcv_lists *d)
{
	canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */

388
	/* filter for error message frames in extra filterlist */
389
	if (*mask & CAN_ERR_FLAG) {
390
		/* clear CAN_ERR_FLAG in filter entry */
391 392 393 394
		*mask &= CAN_ERR_MASK;
		return &d->rx[RX_ERR];
	}

395 396 397 398 399 400 401
	/* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */

#define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)

	/* ensure valid values in can_mask for 'SFF only' frame filtering */
	if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
		*mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
402 403 404 405 406 407 408 409 410 411 412 413

	/* reduce condition testing at receive time */
	*can_id &= *mask;

	/* inverse can_id/can_mask filter */
	if (inv)
		return &d->rx[RX_INV];

	/* mask == 0 => no condition testing at receive time */
	if (!(*mask))
		return &d->rx[RX_ALL];

414
	/* extra filterlists for the subscription of a single non-RTR can_id */
415 416
	if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
	    !(*can_id & CAN_RTR_FLAG)) {
417 418

		if (*can_id & CAN_EFF_FLAG) {
419 420
			if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS))
				return &d->rx_eff[effhash(*can_id)];
421 422 423
		} else {
			if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
				return &d->rx_sff[*can_id];
424 425 426 427 428 429 430 431 432 433 434 435 436 437
		}
	}

	/* default: filter via can_id/can_mask */
	return &d->rx[RX_FIL];
}

/**
 * can_rx_register - subscribe CAN frames from a specific interface
 * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
 * @can_id: CAN identifier (see description)
 * @mask: CAN mask (see description)
 * @func: callback function on filter match
 * @data: returned parameter for callback function
438
 * @ident: string for calling module identification
439
 * @sk: socket pointer (might be NULL)
440 441 442 443 444 445 446 447
 *
 * Description:
 *  Invokes the callback function with the received sk_buff and the given
 *  parameter 'data' on a matching receive filter. A filter matches, when
 *
 *          <received_can_id> & mask == can_id & mask
 *
 *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
448
 *  filter for error message frames (CAN_ERR_FLAG bit set in mask).
449
 *
450 451 452 453 454 455
 *  The provided pointer to the sk_buff is guaranteed to be valid as long as
 *  the callback function is running. The callback function must *not* free
 *  the given sk_buff while processing it's task. When the given sk_buff is
 *  needed after the end of the callback function it must be cloned inside
 *  the callback function with skb_clone().
 *
456 457 458 459 460
 * Return:
 *  0 on success
 *  -ENOMEM on missing cache mem to create subscription entry
 *  -ENODEV unknown device
 */
461 462 463
int can_rx_register(struct net *net, struct net_device *dev, canid_t can_id,
		    canid_t mask, void (*func)(struct sk_buff *, void *),
		    void *data, char *ident, struct sock *sk)
464 465 466 467
{
	struct receiver *r;
	struct hlist_head *rl;
	struct dev_rcv_lists *d;
468
	struct s_pstats *can_pstats = net->can.can_pstats;
469 470 471 472
	int err = 0;

	/* insert new receiver  (dev,canid,mask) -> (func,data) */

473 474 475
	if (dev && dev->type != ARPHRD_CAN)
		return -ENODEV;

476 477 478
	if (dev && !net_eq(net, dev_net(dev)))
		return -ENODEV;

479 480 481 482
	r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
	if (!r)
		return -ENOMEM;

483
	spin_lock(&net->can.can_rcvlists_lock);
484

485
	d = find_dev_rcv_lists(net, dev);
486 487 488 489 490 491 492 493 494
	if (d) {
		rl = find_rcv_list(&can_id, &mask, d);

		r->can_id  = can_id;
		r->mask    = mask;
		r->matches = 0;
		r->func    = func;
		r->data    = data;
		r->ident   = ident;
495
		r->sk      = sk;
496 497 498 499

		hlist_add_head_rcu(&r->list, rl);
		d->entries++;

500 501 502
		can_pstats->rcv_entries++;
		if (can_pstats->rcv_entries_max < can_pstats->rcv_entries)
			can_pstats->rcv_entries_max = can_pstats->rcv_entries;
503 504 505 506 507
	} else {
		kmem_cache_free(rcv_cache, r);
		err = -ENODEV;
	}

508
	spin_unlock(&net->can.can_rcvlists_lock);
509 510 511 512 513 514 515 516 517 518 519

	return err;
}
EXPORT_SYMBOL(can_rx_register);

/*
 * can_rx_delete_receiver - rcu callback for single receiver entry removal
 */
static void can_rx_delete_receiver(struct rcu_head *rp)
{
	struct receiver *r = container_of(rp, struct receiver, rcu);
520
	struct sock *sk = r->sk;
521 522

	kmem_cache_free(rcv_cache, r);
523 524
	if (sk)
		sock_put(sk);
525 526 527 528
}

/**
 * can_rx_unregister - unsubscribe CAN frames from a specific interface
Jeremiah Mahler's avatar
Jeremiah Mahler committed
529
 * @dev: pointer to netdevice (NULL => unsubscribe from 'all' CAN devices list)
530 531 532 533 534 535 536 537
 * @can_id: CAN identifier
 * @mask: CAN mask
 * @func: callback function on filter match
 * @data: returned parameter for callback function
 *
 * Description:
 *  Removes subscription entry depending on given (subscription) values.
 */
538 539 540
void can_rx_unregister(struct net *net, struct net_device *dev, canid_t can_id,
		       canid_t mask, void (*func)(struct sk_buff *, void *),
		       void *data)
541 542 543
{
	struct receiver *r = NULL;
	struct hlist_head *rl;
544
	struct s_pstats *can_pstats = net->can.can_pstats;
545 546
	struct dev_rcv_lists *d;

547 548 549
	if (dev && dev->type != ARPHRD_CAN)
		return;

550 551
	if (dev && !net_eq(net, dev_net(dev)))
		return;
552

553 554 555
	spin_lock(&net->can.can_rcvlists_lock);

	d = find_dev_rcv_lists(net, dev);
556
	if (!d) {
557
		pr_err("BUG: receive list not found for "
558 559 560 561 562 563 564 565 566 567 568 569 570
		       "dev %s, id %03X, mask %03X\n",
		       DNAME(dev), can_id, mask);
		goto out;
	}

	rl = find_rcv_list(&can_id, &mask, d);

	/*
	 * Search the receiver list for the item to delete.  This should
	 * exist, since no receiver may be unregistered that hasn't
	 * been registered before.
	 */

571
	hlist_for_each_entry_rcu(r, rl, list) {
572 573
		if (r->can_id == can_id && r->mask == mask &&
		    r->func == func && r->data == data)
574 575 576 577
			break;
	}

	/*
578 579
	 * Check for bugs in CAN protocol implementations using af_can.c:
	 * 'r' will be NULL if no matching list item was found for removal.
580 581
	 */

582
	if (!r) {
583 584
		WARN(1, "BUG: receive list entry not found for dev %s, "
		     "id %03X, mask %03X\n", DNAME(dev), can_id, mask);
585 586 587 588 589 590
		goto out;
	}

	hlist_del_rcu(&r->list);
	d->entries--;

591 592
	if (can_pstats->rcv_entries > 0)
		can_pstats->rcv_entries--;
593 594

	/* remove device structure requested by NETDEV_UNREGISTER */
595 596 597 598
	if (d->remove_on_zero_entries && !d->entries) {
		kfree(d);
		dev->ml_priv = NULL;
	}
599 600

 out:
601
	spin_unlock(&net->can.can_rcvlists_lock);
602 603

	/* schedule the receiver item for deletion */
604 605 606
	if (r) {
		if (r->sk)
			sock_hold(r->sk);
607
		call_rcu(&r->rcu, can_rx_delete_receiver);
608
	}
609 610 611 612 613
}
EXPORT_SYMBOL(can_rx_unregister);

static inline void deliver(struct sk_buff *skb, struct receiver *r)
{
614 615
	r->func(skb, r->data);
	r->matches++;
616 617 618 619 620 621 622 623 624 625 626 627 628
}

static int can_rcv_filter(struct dev_rcv_lists *d, struct sk_buff *skb)
{
	struct receiver *r;
	int matches = 0;
	struct can_frame *cf = (struct can_frame *)skb->data;
	canid_t can_id = cf->can_id;

	if (d->entries == 0)
		return 0;

	if (can_id & CAN_ERR_FLAG) {
629
		/* check for error message frame entries only */
630
		hlist_for_each_entry_rcu(r, &d->rx[RX_ERR], list) {
631 632 633 634 635 636 637 638 639
			if (can_id & r->mask) {
				deliver(skb, r);
				matches++;
			}
		}
		return matches;
	}

	/* check for unfiltered entries */
640
	hlist_for_each_entry_rcu(r, &d->rx[RX_ALL], list) {
641 642 643 644 645
		deliver(skb, r);
		matches++;
	}

	/* check for can_id/mask entries */
646
	hlist_for_each_entry_rcu(r, &d->rx[RX_FIL], list) {
647 648 649 650 651 652 653
		if ((can_id & r->mask) == r->can_id) {
			deliver(skb, r);
			matches++;
		}
	}

	/* check for inverted can_id/mask entries */
654
	hlist_for_each_entry_rcu(r, &d->rx[RX_INV], list) {
655 656 657 658 659 660
		if ((can_id & r->mask) != r->can_id) {
			deliver(skb, r);
			matches++;
		}
	}

661 662 663 664
	/* check filterlists for single non-RTR can_ids */
	if (can_id & CAN_RTR_FLAG)
		return matches;

665
	if (can_id & CAN_EFF_FLAG) {
666
		hlist_for_each_entry_rcu(r, &d->rx_eff[effhash(can_id)], list) {
667 668 669 670 671 672 673
			if (r->can_id == can_id) {
				deliver(skb, r);
				matches++;
			}
		}
	} else {
		can_id &= CAN_SFF_MASK;
674
		hlist_for_each_entry_rcu(r, &d->rx_sff[can_id], list) {
675 676 677 678 679 680 681 682
			deliver(skb, r);
			matches++;
		}
	}

	return matches;
}

683
static void can_receive(struct sk_buff *skb, struct net_device *dev)
684 685
{
	struct dev_rcv_lists *d;
686 687
	struct net *net = dev_net(dev);
	struct s_stats *can_stats = net->can.can_stats;
688 689 690
	int matches;

	/* update statistics */
691 692
	can_stats->rx_frames++;
	can_stats->rx_frames_delta++;
693

694 695 696 697
	/* create non-zero unique skb identifier together with *skb */
	while (!(can_skb_prv(skb)->skbcnt))
		can_skb_prv(skb)->skbcnt = atomic_inc_return(&skbcounter);

698 699 700
	rcu_read_lock();

	/* deliver the packet to sockets listening on all devices */
701
	matches = can_rcv_filter(net->can.can_rx_alldev_list, skb);
702 703

	/* find receive list for this device */
704
	d = find_dev_rcv_lists(net, dev);
705 706 707 708 709
	if (d)
		matches += can_rcv_filter(d, skb);

	rcu_read_unlock();

710 711
	/* consume the skbuff allocated by the netdevice driver */
	consume_skb(skb);
712 713

	if (matches > 0) {
714 715
		can_stats->matches++;
		can_stats->matches_delta++;
716
	}
717 718 719 720 721 722
}

static int can_rcv(struct sk_buff *skb, struct net_device *dev,
		   struct packet_type *pt, struct net_device *orig_dev)
{
	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
723

724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
	if (WARN_ONCE(dev->type != ARPHRD_CAN ||
		      skb->len != CAN_MTU ||
		      cfd->len > CAN_MAX_DLEN,
		      "PF_CAN: dropped non conform CAN skbuf: "
		      "dev type %d, len %d, datalen %d\n",
		      dev->type, skb->len, cfd->len))
		goto drop;

	can_receive(skb, dev);
	return NET_RX_SUCCESS;

drop:
	kfree_skb(skb);
	return NET_RX_DROP;
}

static int canfd_rcv(struct sk_buff *skb, struct net_device *dev,
		   struct packet_type *pt, struct net_device *orig_dev)
{
	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;

	if (WARN_ONCE(dev->type != ARPHRD_CAN ||
		      skb->len != CANFD_MTU ||
		      cfd->len > CANFD_MAX_DLEN,
		      "PF_CAN: dropped non conform CAN FD skbuf: "
		      "dev type %d, len %d, datalen %d\n",
		      dev->type, skb->len, cfd->len))
		goto drop;

	can_receive(skb, dev);
754
	return NET_RX_SUCCESS;
755 756 757

drop:
	kfree_skb(skb);
758
	return NET_RX_DROP;
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
}

/*
 * af_can protocol functions
 */

/**
 * can_proto_register - register CAN transport protocol
 * @cp: pointer to CAN protocol structure
 *
 * Return:
 *  0 on success
 *  -EINVAL invalid (out of range) protocol number
 *  -EBUSY  protocol already in use
 *  -ENOBUF if proto_register() fails
 */
775
int can_proto_register(const struct can_proto *cp)
776 777 778 779 780
{
	int proto = cp->protocol;
	int err = 0;

	if (proto < 0 || proto >= CAN_NPROTO) {
781
		pr_err("can: protocol number %d out of range\n", proto);
782 783 784
		return -EINVAL;
	}

785 786 787 788
	err = proto_register(cp->prot, 0);
	if (err < 0)
		return err;

789 790
	mutex_lock(&proto_tab_lock);

791
	if (rcu_access_pointer(proto_tab[proto])) {
792
		pr_err("can: protocol %d already registered\n", proto);
793
		err = -EBUSY;
Oliver Hartkopp's avatar
Oliver Hartkopp committed
794
	} else
795
		RCU_INIT_POINTER(proto_tab[proto], cp);
796

797
	mutex_unlock(&proto_tab_lock);
798 799

	if (err < 0)
800
		proto_unregister(cp->prot);
801 802 803 804 805 806 807 808 809

	return err;
}
EXPORT_SYMBOL(can_proto_register);

/**
 * can_proto_unregister - unregister CAN transport protocol
 * @cp: pointer to CAN protocol structure
 */
810
void can_proto_unregister(const struct can_proto *cp)
811 812 813
{
	int proto = cp->protocol;

814
	mutex_lock(&proto_tab_lock);
815
	BUG_ON(rcu_access_pointer(proto_tab[proto]) != cp);
816
	RCU_INIT_POINTER(proto_tab[proto], NULL);
817 818 819
	mutex_unlock(&proto_tab_lock);

	synchronize_rcu();
820 821

	proto_unregister(cp->prot);
822 823 824 825 826 827 828
}
EXPORT_SYMBOL(can_proto_unregister);

/*
 * af_can notifier to create/remove CAN netdevice specific structs
 */
static int can_notifier(struct notifier_block *nb, unsigned long msg,
829
			void *ptr)
830
{
831
	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
832 833 834 835 836 837 838 839 840
	struct dev_rcv_lists *d;

	if (dev->type != ARPHRD_CAN)
		return NOTIFY_DONE;

	switch (msg) {

	case NETDEV_REGISTER:

841
		/* create new dev_rcv_lists for this device */
842
		d = kzalloc(sizeof(*d), GFP_KERNEL);
843
		if (!d)
844
			return NOTIFY_DONE;
845 846
		BUG_ON(dev->ml_priv);
		dev->ml_priv = d;
847 848 849 850

		break;

	case NETDEV_UNREGISTER:
851
		spin_lock(&dev_net(dev)->can.can_rcvlists_lock);
852

853
		d = dev->ml_priv;
854
		if (d) {
855
			if (d->entries)
856
				d->remove_on_zero_entries = 1;
857 858 859 860
			else {
				kfree(d);
				dev->ml_priv = NULL;
			}
861
		} else
862 863
			pr_err("can: notifier: receive list not found for dev "
			       "%s\n", dev->name);
864

865
		spin_unlock(&dev_net(dev)->can.can_rcvlists_lock);
866 867 868 869 870 871 872

		break;
	}

	return NOTIFY_DONE;
}

873 874
static int can_pernet_init(struct net *net)
{
875
	spin_lock_init(&net->can.can_rcvlists_lock);
876 877
	net->can.can_rx_alldev_list =
		kzalloc(sizeof(struct dev_rcv_lists), GFP_KERNEL);
878 879
	if (!net->can.can_rx_alldev_list)
		goto out;
880
	net->can.can_stats = kzalloc(sizeof(struct s_stats), GFP_KERNEL);
881 882
	if (!net->can.can_stats)
		goto out_free_alldev_list;
883
	net->can.can_pstats = kzalloc(sizeof(struct s_pstats), GFP_KERNEL);
884 885
	if (!net->can.can_pstats)
		goto out_free_can_stats;
886 887 888 889

	if (IS_ENABLED(CONFIG_PROC_FS)) {
		/* the statistics are updated every second (timer triggered) */
		if (stats_timer) {
890 891
			timer_setup(&net->can.can_stattimer, can_stat_update,
				    0);
892 893 894 895
			mod_timer(&net->can.can_stattimer,
				  round_jiffies(jiffies + HZ));
		}
		net->can.can_stats->jiffies_init = jiffies;
896
		can_init_proc(net);
897
	}
898 899

	return 0;
900 901 902 903 904 905 906

 out_free_can_stats:
	kfree(net->can.can_stats);
 out_free_alldev_list:
	kfree(net->can.can_rx_alldev_list);
 out:
	return -ENOMEM;
907 908 909 910 911 912
}

static void can_pernet_exit(struct net *net)
{
	struct net_device *dev;

913
	if (IS_ENABLED(CONFIG_PROC_FS)) {
914
		can_remove_proc(net);
915 916 917
		if (stats_timer)
			del_timer_sync(&net->can.can_stattimer);
	}
918 919 920 921 922 923 924 925 926 927 928 929 930

	/* remove created dev_rcv_lists from still registered CAN devices */
	rcu_read_lock();
	for_each_netdev_rcu(net, dev) {
		if (dev->type == ARPHRD_CAN && dev->ml_priv) {
			struct dev_rcv_lists *d = dev->ml_priv;

			BUG_ON(d->entries);
			kfree(d);
			dev->ml_priv = NULL;
		}
	}
	rcu_read_unlock();
931 932

	kfree(net->can.can_rx_alldev_list);
933 934
	kfree(net->can.can_stats);
	kfree(net->can.can_pstats);
935 936
}

937 938 939 940 941
/*
 * af_can module init/exit functions
 */

static struct packet_type can_packet __read_mostly = {
942
	.type = cpu_to_be16(ETH_P_CAN),
943 944 945
	.func = can_rcv,
};

946 947 948 949 950
static struct packet_type canfd_packet __read_mostly = {
	.type = cpu_to_be16(ETH_P_CANFD),
	.func = canfd_rcv,
};

951
static const struct net_proto_family can_family_ops = {
952 953 954 955 956 957 958 959 960 961
	.family = PF_CAN,
	.create = can_create,
	.owner  = THIS_MODULE,
};

/* notifier block for netdevice event */
static struct notifier_block can_netdev_notifier __read_mostly = {
	.notifier_call = can_notifier,
};

962 963 964 965 966
static struct pernet_operations can_pernet_ops __read_mostly = {
	.init = can_pernet_init,
	.exit = can_pernet_exit,
};

967 968
static __init int can_init(void)
{
969 970 971 972 973 974
	/* check for correct padding to be able to use the structs similarly */
	BUILD_BUG_ON(offsetof(struct can_frame, can_dlc) !=
		     offsetof(struct canfd_frame, len) ||
		     offsetof(struct can_frame, data) !=
		     offsetof(struct canfd_frame, data));

975
	pr_info("can: controller area network core (" CAN_VERSION_STRING ")\n");
976 977 978 979 980 981

	rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
				      0, 0, NULL);
	if (!rcv_cache)
		return -ENOMEM;

982 983
	register_pernet_subsys(&can_pernet_ops);

984 985 986 987
	/* protocol register */
	sock_register(&can_family_ops);
	register_netdevice_notifier(&can_netdev_notifier);
	dev_add_pack(&can_packet);
988
	dev_add_pack(&canfd_packet);
989 990 991 992 993 994 995

	return 0;
}

static __exit void can_exit(void)
{
	/* protocol unregister */
996
	dev_remove_pack(&canfd_packet);
997 998 999 1000
	dev_remove_pack(&can_packet);
	unregister_netdevice_notifier(&can_netdev_notifier);
	sock_unregister(PF_CAN);

1001
	unregister_pernet_subsys(&can_pernet_ops);
1002

1003 1004
	rcu_barrier(); /* Wait for completion of call_rcu()'s */

1005 1006 1007 1008 1009
	kmem_cache_destroy(rcv_cache);
}

module_init(can_init);
module_exit(can_exit);