vmstat.c 35.6 KB
Newer Older
1 2 3 4 5
/*
 *  linux/mm/vmstat.c
 *
 *  Manages VM statistics
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6 7 8 9
 *
 *  zoned VM statistics
 *  Copyright (C) 2006 Silicon Graphics, Inc.,
 *		Christoph Lameter <christoph@lameter.com>
10
 */
11
#include <linux/fs.h>
12
#include <linux/mm.h>
Alexey Dobriyan's avatar
Alexey Dobriyan committed
13
#include <linux/err.h>
14
#include <linux/module.h>
15
#include <linux/slab.h>
16
#include <linux/cpu.h>
Adrian Bunk's avatar
Adrian Bunk committed
17
#include <linux/vmstat.h>
Alexey Dobriyan's avatar
Alexey Dobriyan committed
18
#include <linux/sched.h>
19
#include <linux/math64.h>
20
#include <linux/writeback.h>
21
#include <linux/compaction.h>
22 23 24
#include <linux/mm_inline.h>

#include "internal.h"
25

26 27 28 29
#ifdef CONFIG_VM_EVENT_COUNTERS
DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
EXPORT_PER_CPU_SYMBOL(vm_event_states);

30
static void sum_vm_events(unsigned long *ret)
31
{
Christoph Lameter's avatar
Christoph Lameter committed
32
	int cpu;
33 34 35 36
	int i;

	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));

37
	for_each_online_cpu(cpu) {
38 39 40 41 42 43 44 45 46 47 48 49 50 51
		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);

		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
			ret[i] += this->event[i];
	}
}

/*
 * Accumulate the vm event counters across all CPUs.
 * The result is unavoidably approximate - it can change
 * during and after execution of this function.
*/
void all_vm_events(unsigned long *ret)
{
KOSAKI Motohiro's avatar
KOSAKI Motohiro committed
52
	get_online_cpus();
53
	sum_vm_events(ret);
KOSAKI Motohiro's avatar
KOSAKI Motohiro committed
54
	put_online_cpus();
55
}
56
EXPORT_SYMBOL_GPL(all_vm_events);
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

/*
 * Fold the foreign cpu events into our own.
 *
 * This is adding to the events on one processor
 * but keeps the global counts constant.
 */
void vm_events_fold_cpu(int cpu)
{
	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
	int i;

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
		count_vm_events(i, fold_state->event[i]);
		fold_state->event[i] = 0;
	}
}

#endif /* CONFIG_VM_EVENT_COUNTERS */

77 78 79 80 81
/*
 * Manage combined zone based / global counters
 *
 * vm_stat contains the global counters
 */
82
atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
83 84 85 86
EXPORT_SYMBOL(vm_stat);

#ifdef CONFIG_SMP

87
int calculate_pressure_threshold(struct zone *zone)
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
{
	int threshold;
	int watermark_distance;

	/*
	 * As vmstats are not up to date, there is drift between the estimated
	 * and real values. For high thresholds and a high number of CPUs, it
	 * is possible for the min watermark to be breached while the estimated
	 * value looks fine. The pressure threshold is a reduced value such
	 * that even the maximum amount of drift will not accidentally breach
	 * the min watermark
	 */
	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
	threshold = max(1, (int)(watermark_distance / num_online_cpus()));

	/*
	 * Maximum threshold is 125
	 */
	threshold = min(125, threshold);

	return threshold;
}

111
int calculate_normal_threshold(struct zone *zone)
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
{
	int threshold;
	int mem;	/* memory in 128 MB units */

	/*
	 * The threshold scales with the number of processors and the amount
	 * of memory per zone. More memory means that we can defer updates for
	 * longer, more processors could lead to more contention.
 	 * fls() is used to have a cheap way of logarithmic scaling.
	 *
	 * Some sample thresholds:
	 *
	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
	 * ------------------------------------------------------------------
	 * 8		1		1	0.9-1 GB	4
	 * 16		2		2	0.9-1 GB	4
	 * 20 		2		2	1-2 GB		5
	 * 24		2		2	2-4 GB		6
	 * 28		2		2	4-8 GB		7
	 * 32		2		2	8-16 GB		8
	 * 4		2		2	<128M		1
	 * 30		4		3	2-4 GB		5
	 * 48		4		3	8-16 GB		8
	 * 32		8		4	1-2 GB		4
	 * 32		8		4	0.9-1GB		4
	 * 10		16		5	<128M		1
	 * 40		16		5	900M		4
	 * 70		64		7	2-4 GB		5
	 * 84		64		7	4-8 GB		6
	 * 108		512		9	4-8 GB		6
	 * 125		1024		10	8-16 GB		8
	 * 125		1024		10	16-32 GB	9
	 */

146
	mem = zone->managed_pages >> (27 - PAGE_SHIFT);
147 148 149 150 151 152 153 154 155 156

	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));

	/*
	 * Maximum threshold is 125
	 */
	threshold = min(125, threshold);

	return threshold;
}
157 158

/*
159
 * Refresh the thresholds for each zone.
160
 */
161
void refresh_zone_stat_thresholds(void)
162
{
163 164 165 166
	struct zone *zone;
	int cpu;
	int threshold;

167
	for_each_populated_zone(zone) {
168 169
		unsigned long max_drift, tolerate_drift;

170
		threshold = calculate_normal_threshold(zone);
171 172

		for_each_online_cpu(cpu)
173 174
			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
							= threshold;
175 176 177 178 179 180 181 182 183 184 185

		/*
		 * Only set percpu_drift_mark if there is a danger that
		 * NR_FREE_PAGES reports the low watermark is ok when in fact
		 * the min watermark could be breached by an allocation
		 */
		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
		max_drift = num_online_cpus() * threshold;
		if (max_drift > tolerate_drift)
			zone->percpu_drift_mark = high_wmark_pages(zone) +
					max_drift;
186
	}
187 188
}

189 190
void set_pgdat_percpu_threshold(pg_data_t *pgdat,
				int (*calculate_pressure)(struct zone *))
191 192 193 194 195 196 197 198 199 200 201
{
	struct zone *zone;
	int cpu;
	int threshold;
	int i;

	for (i = 0; i < pgdat->nr_zones; i++) {
		zone = &pgdat->node_zones[i];
		if (!zone->percpu_drift_mark)
			continue;

202
		threshold = (*calculate_pressure)(zone);
203
		for_each_online_cpu(cpu)
204 205 206 207 208
			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
							= threshold;
	}
}

209
/*
210 211 212
 * For use when we know that interrupts are disabled,
 * or when we know that preemption is disabled and that
 * particular counter cannot be updated from interrupt context.
213 214 215 216
 */
void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
				int delta)
{
217 218
	struct per_cpu_pageset __percpu *pcp = zone->pageset;
	s8 __percpu *p = pcp->vm_stat_diff + item;
219
	long x;
220 221 222
	long t;

	x = delta + __this_cpu_read(*p);
223

224
	t = __this_cpu_read(pcp->stat_threshold);
225

226
	if (unlikely(x > t || x < -t)) {
227 228 229
		zone_page_state_add(x, zone, item);
		x = 0;
	}
230
	__this_cpu_write(*p, x);
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
}
EXPORT_SYMBOL(__mod_zone_page_state);

/*
 * Optimized increment and decrement functions.
 *
 * These are only for a single page and therefore can take a struct page *
 * argument instead of struct zone *. This allows the inclusion of the code
 * generated for page_zone(page) into the optimized functions.
 *
 * No overflow check is necessary and therefore the differential can be
 * incremented or decremented in place which may allow the compilers to
 * generate better code.
 * The increment or decrement is known and therefore one boundary check can
 * be omitted.
 *
247 248 249
 * NOTE: These functions are very performance sensitive. Change only
 * with care.
 *
250 251 252 253 254 255 256
 * Some processors have inc/dec instructions that are atomic vs an interrupt.
 * However, the code must first determine the differential location in a zone
 * based on the processor number and then inc/dec the counter. There is no
 * guarantee without disabling preemption that the processor will not change
 * in between and therefore the atomicity vs. interrupt cannot be exploited
 * in a useful way here.
 */
257
void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
258
{
259 260 261
	struct per_cpu_pageset __percpu *pcp = zone->pageset;
	s8 __percpu *p = pcp->vm_stat_diff + item;
	s8 v, t;
262

263
	v = __this_cpu_inc_return(*p);
264 265 266
	t = __this_cpu_read(pcp->stat_threshold);
	if (unlikely(v > t)) {
		s8 overstep = t >> 1;
267

268 269
		zone_page_state_add(v + overstep, zone, item);
		__this_cpu_write(*p, -overstep);
270 271
	}
}
272 273 274 275 276

void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
	__inc_zone_state(page_zone(page), item);
}
277 278
EXPORT_SYMBOL(__inc_zone_page_state);

279
void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
280
{
281 282 283
	struct per_cpu_pageset __percpu *pcp = zone->pageset;
	s8 __percpu *p = pcp->vm_stat_diff + item;
	s8 v, t;
284

285
	v = __this_cpu_dec_return(*p);
286 287 288
	t = __this_cpu_read(pcp->stat_threshold);
	if (unlikely(v < - t)) {
		s8 overstep = t >> 1;
289

290 291
		zone_page_state_add(v - overstep, zone, item);
		__this_cpu_write(*p, overstep);
292 293
	}
}
294 295 296 297 298

void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
	__dec_zone_state(page_zone(page), item);
}
299 300
EXPORT_SYMBOL(__dec_zone_page_state);

301
#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
/*
 * If we have cmpxchg_local support then we do not need to incur the overhead
 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
 *
 * mod_state() modifies the zone counter state through atomic per cpu
 * operations.
 *
 * Overstep mode specifies how overstep should handled:
 *     0       No overstepping
 *     1       Overstepping half of threshold
 *     -1      Overstepping minus half of threshold
*/
static inline void mod_state(struct zone *zone,
       enum zone_stat_item item, int delta, int overstep_mode)
{
	struct per_cpu_pageset __percpu *pcp = zone->pageset;
	s8 __percpu *p = pcp->vm_stat_diff + item;
	long o, n, t, z;

	do {
		z = 0;  /* overflow to zone counters */

		/*
		 * The fetching of the stat_threshold is racy. We may apply
		 * a counter threshold to the wrong the cpu if we get
327 328 329 330 331 332
		 * rescheduled while executing here. However, the next
		 * counter update will apply the threshold again and
		 * therefore bring the counter under the threshold again.
		 *
		 * Most of the time the thresholds are the same anyways
		 * for all cpus in a zone.
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
		 */
		t = this_cpu_read(pcp->stat_threshold);

		o = this_cpu_read(*p);
		n = delta + o;

		if (n > t || n < -t) {
			int os = overstep_mode * (t >> 1) ;

			/* Overflow must be added to zone counters */
			z = n + os;
			n = -os;
		}
	} while (this_cpu_cmpxchg(*p, o, n) != o);

	if (z)
		zone_page_state_add(z, zone, item);
}

void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
					int delta)
{
	mod_state(zone, item, delta, 0);
}
EXPORT_SYMBOL(mod_zone_page_state);

void inc_zone_state(struct zone *zone, enum zone_stat_item item)
{
	mod_state(zone, item, 1, 1);
}

void inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
	mod_state(page_zone(page), item, 1, 1);
}
EXPORT_SYMBOL(inc_zone_page_state);

void dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
	mod_state(page_zone(page), item, -1, -1);
}
EXPORT_SYMBOL(dec_zone_page_state);
#else
/*
 * Use interrupt disable to serialize counter updates
 */
void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
					int delta)
{
	unsigned long flags;

	local_irq_save(flags);
	__mod_zone_page_state(zone, item, delta);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(mod_zone_page_state);

390 391 392 393 394 395 396 397 398
void inc_zone_state(struct zone *zone, enum zone_stat_item item)
{
	unsigned long flags;

	local_irq_save(flags);
	__inc_zone_state(zone, item);
	local_irq_restore(flags);
}

399 400 401 402 403 404 405
void inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
	unsigned long flags;
	struct zone *zone;

	zone = page_zone(page);
	local_irq_save(flags);
406
	__inc_zone_state(zone, item);
407 408 409 410 411 412 413 414 415
	local_irq_restore(flags);
}
EXPORT_SYMBOL(inc_zone_page_state);

void dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
	unsigned long flags;

	local_irq_save(flags);
416
	__dec_zone_page_state(page, item);
417 418 419
	local_irq_restore(flags);
}
EXPORT_SYMBOL(dec_zone_page_state);
420
#endif
421

Christoph Lameter's avatar
Christoph Lameter committed
422 423 424 425 426 427 428 429 430
static inline void fold_diff(int *diff)
{
	int i;

	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
		if (diff[i])
			atomic_long_add(diff[i], &vm_stat[i]);
}

431
/*
432
 * Update the zone counters for the current cpu.
433
 *
434 435 436 437 438 439 440 441 442 443
 * Note that refresh_cpu_vm_stats strives to only access
 * node local memory. The per cpu pagesets on remote zones are placed
 * in the memory local to the processor using that pageset. So the
 * loop over all zones will access a series of cachelines local to
 * the processor.
 *
 * The call to zone_page_state_add updates the cachelines with the
 * statistics in the remote zone struct as well as the global cachelines
 * with the global counters. These could cause remote node cache line
 * bouncing and will have to be only done when necessary.
444
 */
445
static void refresh_cpu_vm_stats(void)
446 447 448
{
	struct zone *zone;
	int i;
449
	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
450

451
	for_each_populated_zone(zone) {
452
		struct per_cpu_pageset __percpu *p = zone->pageset;
453

454 455
		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
			int v;
456

457 458
			v = this_cpu_xchg(p->vm_stat_diff[i], 0);
			if (v) {
459 460 461

				atomic_long_add(v, &zone->vm_stat[i]);
				global_diff[i] += v;
462 463
#ifdef CONFIG_NUMA
				/* 3 seconds idle till flush */
464
				__this_cpu_write(p->expire, 3);
465
#endif
466
			}
467
		}
468
		cond_resched();
469 470 471 472 473 474 475 476
#ifdef CONFIG_NUMA
		/*
		 * Deal with draining the remote pageset of this
		 * processor
		 *
		 * Check if there are pages remaining in this pageset
		 * if not then there is nothing to expire.
		 */
477 478
		if (!__this_cpu_read(p->expire) ||
			       !__this_cpu_read(p->pcp.count))
479 480 481 482 483 484
			continue;

		/*
		 * We never drain zones local to this processor.
		 */
		if (zone_to_nid(zone) == numa_node_id()) {
485
			__this_cpu_write(p->expire, 0);
486 487 488
			continue;
		}

489 490

		if (__this_cpu_dec_return(p->expire))
491 492
			continue;

493
		if (__this_cpu_read(p->pcp.count))
494
			drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
495
#endif
496
	}
Christoph Lameter's avatar
Christoph Lameter committed
497
	fold_diff(global_diff);
498 499
}

500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
/*
 * Fold the data for an offline cpu into the global array.
 * There cannot be any access by the offline cpu and therefore
 * synchronization is simplified.
 */
void cpu_vm_stats_fold(int cpu)
{
	struct zone *zone;
	int i;
	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };

	for_each_populated_zone(zone) {
		struct per_cpu_pageset *p;

		p = per_cpu_ptr(zone->pageset, cpu);

		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
			if (p->vm_stat_diff[i]) {
				int v;

				v = p->vm_stat_diff[i];
				p->vm_stat_diff[i] = 0;
				atomic_long_add(v, &zone->vm_stat[i]);
				global_diff[i] += v;
			}
	}

Christoph Lameter's avatar
Christoph Lameter committed
527
	fold_diff(global_diff);
528 529
}

530 531 532 533
/*
 * this is only called if !populated_zone(zone), which implies no other users of
 * pset->vm_stat_diff[] exsist.
 */
534 535 536 537 538 539 540 541 542 543 544 545
void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
{
	int i;

	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
		if (pset->vm_stat_diff[i]) {
			int v = pset->vm_stat_diff[i];
			pset->vm_stat_diff[i] = 0;
			atomic_long_add(v, &zone->vm_stat[i]);
			atomic_long_add(v, &vm_stat[i]);
		}
}
546 547
#endif

548 549 550 551 552 553
#ifdef CONFIG_NUMA
/*
 * zonelist = the list of zones passed to the allocator
 * z 	    = the zone from which the allocation occurred.
 *
 * Must be called with interrupts disabled.
Andi Kleen's avatar
Andi Kleen committed
554 555 556 557
 *
 * When __GFP_OTHER_NODE is set assume the node of the preferred
 * zone is the local node. This is useful for daemons who allocate
 * memory on behalf of other processes.
558
 */
Andi Kleen's avatar
Andi Kleen committed
559
void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
560
{
561
	if (z->zone_pgdat == preferred_zone->zone_pgdat) {
562 563 564
		__inc_zone_state(z, NUMA_HIT);
	} else {
		__inc_zone_state(z, NUMA_MISS);
565
		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
566
	}
Andi Kleen's avatar
Andi Kleen committed
567 568
	if (z->node == ((flags & __GFP_OTHER_NODE) ?
			preferred_zone->node : numa_node_id()))
569 570 571 572 573 574
		__inc_zone_state(z, NUMA_LOCAL);
	else
		__inc_zone_state(z, NUMA_OTHER);
}
#endif

575
#ifdef CONFIG_COMPACTION
576

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
struct contig_page_info {
	unsigned long free_pages;
	unsigned long free_blocks_total;
	unsigned long free_blocks_suitable;
};

/*
 * Calculate the number of free pages in a zone, how many contiguous
 * pages are free and how many are large enough to satisfy an allocation of
 * the target size. Note that this function makes no attempt to estimate
 * how many suitable free blocks there *might* be if MOVABLE pages were
 * migrated. Calculating that is possible, but expensive and can be
 * figured out from userspace
 */
static void fill_contig_page_info(struct zone *zone,
				unsigned int suitable_order,
				struct contig_page_info *info)
{
	unsigned int order;

	info->free_pages = 0;
	info->free_blocks_total = 0;
	info->free_blocks_suitable = 0;

	for (order = 0; order < MAX_ORDER; order++) {
		unsigned long blocks;

		/* Count number of free blocks */
		blocks = zone->free_area[order].nr_free;
		info->free_blocks_total += blocks;

		/* Count free base pages */
		info->free_pages += blocks << order;

		/* Count the suitable free blocks */
		if (order >= suitable_order)
			info->free_blocks_suitable += blocks <<
						(order - suitable_order);
	}
}
617 618 619 620 621 622 623 624

/*
 * A fragmentation index only makes sense if an allocation of a requested
 * size would fail. If that is true, the fragmentation index indicates
 * whether external fragmentation or a lack of memory was the problem.
 * The value can be used to determine if page reclaim or compaction
 * should be used
 */
625
static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
{
	unsigned long requested = 1UL << order;

	if (!info->free_blocks_total)
		return 0;

	/* Fragmentation index only makes sense when a request would fail */
	if (info->free_blocks_suitable)
		return -1000;

	/*
	 * Index is between 0 and 1 so return within 3 decimal places
	 *
	 * 0 => allocation would fail due to lack of memory
	 * 1 => allocation would fail due to fragmentation
	 */
	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
}
644 645 646 647 648 649 650 651 652

/* Same as __fragmentation index but allocs contig_page_info on stack */
int fragmentation_index(struct zone *zone, unsigned int order)
{
	struct contig_page_info info;

	fill_contig_page_info(zone, order, &info);
	return __fragmentation_index(order, &info);
}
653 654 655
#endif

#if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
656
#include <linux/proc_fs.h>
657 658
#include <linux/seq_file.h>

659 660 661 662 663
static char * const migratetype_names[MIGRATE_TYPES] = {
	"Unmovable",
	"Reclaimable",
	"Movable",
	"Reserve",
664 665 666
#ifdef CONFIG_CMA
	"CMA",
#endif
667
#ifdef CONFIG_MEMORY_ISOLATION
668
	"Isolate",
669
#endif
670 671
};

672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
static void *frag_start(struct seq_file *m, loff_t *pos)
{
	pg_data_t *pgdat;
	loff_t node = *pos;
	for (pgdat = first_online_pgdat();
	     pgdat && node;
	     pgdat = next_online_pgdat(pgdat))
		--node;

	return pgdat;
}

static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
{
	pg_data_t *pgdat = (pg_data_t *)arg;

	(*pos)++;
	return next_online_pgdat(pgdat);
}

static void frag_stop(struct seq_file *m, void *arg)
{
}

696 697 698
/* Walk all the zones in a node and print using a callback */
static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
699 700 701 702 703 704 705 706 707 708
{
	struct zone *zone;
	struct zone *node_zones = pgdat->node_zones;
	unsigned long flags;

	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
		if (!populated_zone(zone))
			continue;

		spin_lock_irqsave(&zone->lock, flags);
709
		print(m, pgdat, zone);
710
		spin_unlock_irqrestore(&zone->lock, flags);
711 712
	}
}
713
#endif
714

715
#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
#ifdef CONFIG_ZONE_DMA
#define TEXT_FOR_DMA(xx) xx "_dma",
#else
#define TEXT_FOR_DMA(xx)
#endif

#ifdef CONFIG_ZONE_DMA32
#define TEXT_FOR_DMA32(xx) xx "_dma32",
#else
#define TEXT_FOR_DMA32(xx)
#endif

#ifdef CONFIG_HIGHMEM
#define TEXT_FOR_HIGHMEM(xx) xx "_high",
#else
#define TEXT_FOR_HIGHMEM(xx)
#endif

#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
					TEXT_FOR_HIGHMEM(xx) xx "_movable",

const char * const vmstat_text[] = {
738
	/* enum zone_stat_item countes */
739
	"nr_free_pages",
740
	"nr_alloc_batch",
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
	"nr_inactive_anon",
	"nr_active_anon",
	"nr_inactive_file",
	"nr_active_file",
	"nr_unevictable",
	"nr_mlock",
	"nr_anon_pages",
	"nr_mapped",
	"nr_file_pages",
	"nr_dirty",
	"nr_writeback",
	"nr_slab_reclaimable",
	"nr_slab_unreclaimable",
	"nr_page_table_pages",
	"nr_kernel_stack",
	"nr_unstable",
	"nr_bounce",
	"nr_vmscan_write",
759
	"nr_vmscan_immediate_reclaim",
760 761 762 763 764 765
	"nr_writeback_temp",
	"nr_isolated_anon",
	"nr_isolated_file",
	"nr_shmem",
	"nr_dirtied",
	"nr_written",
766
	"nr_pages_scanned",
767 768 769 770 771 772 773 774 775

#ifdef CONFIG_NUMA
	"numa_hit",
	"numa_miss",
	"numa_foreign",
	"numa_interleave",
	"numa_local",
	"numa_other",
#endif
776 777
	"workingset_refault",
	"workingset_activate",
778
	"workingset_nodereclaim",
779
	"nr_anon_transparent_hugepages",
780
	"nr_free_cma",
781 782

	/* enum writeback_stat_item counters */
783 784 785 786
	"nr_dirty_threshold",
	"nr_dirty_background_threshold",

#ifdef CONFIG_VM_EVENT_COUNTERS
787
	/* enum vm_event_item counters */
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
	"pgpgin",
	"pgpgout",
	"pswpin",
	"pswpout",

	TEXTS_FOR_ZONES("pgalloc")

	"pgfree",
	"pgactivate",
	"pgdeactivate",

	"pgfault",
	"pgmajfault",

	TEXTS_FOR_ZONES("pgrefill")
803 804
	TEXTS_FOR_ZONES("pgsteal_kswapd")
	TEXTS_FOR_ZONES("pgsteal_direct")
805 806
	TEXTS_FOR_ZONES("pgscan_kswapd")
	TEXTS_FOR_ZONES("pgscan_direct")
807
	"pgscan_direct_throttle",
808 809 810 811 812 813 814 815 816 817 818 819 820 821

#ifdef CONFIG_NUMA
	"zone_reclaim_failed",
#endif
	"pginodesteal",
	"slabs_scanned",
	"kswapd_inodesteal",
	"kswapd_low_wmark_hit_quickly",
	"kswapd_high_wmark_hit_quickly",
	"pageoutrun",
	"allocstall",

	"pgrotated",

822 823 824
	"drop_pagecache",
	"drop_slab",

825 826
#ifdef CONFIG_NUMA_BALANCING
	"numa_pte_updates",
827
	"numa_huge_pte_updates",
828 829 830 831
	"numa_hint_faults",
	"numa_hint_faults_local",
	"numa_pages_migrated",
#endif
832 833 834 835
#ifdef CONFIG_MIGRATION
	"pgmigrate_success",
	"pgmigrate_fail",
#endif
836
#ifdef CONFIG_COMPACTION
837 838 839
	"compact_migrate_scanned",
	"compact_free_scanned",
	"compact_isolated",
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
	"compact_stall",
	"compact_fail",
	"compact_success",
#endif

#ifdef CONFIG_HUGETLB_PAGE
	"htlb_buddy_alloc_success",
	"htlb_buddy_alloc_fail",
#endif
	"unevictable_pgs_culled",
	"unevictable_pgs_scanned",
	"unevictable_pgs_rescued",
	"unevictable_pgs_mlocked",
	"unevictable_pgs_munlocked",
	"unevictable_pgs_cleared",
	"unevictable_pgs_stranded",

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	"thp_fault_alloc",
	"thp_fault_fallback",
	"thp_collapse_alloc",
	"thp_collapse_alloc_failed",
	"thp_split",
863 864
	"thp_zero_page_alloc",
	"thp_zero_page_alloc_failed",
865
#endif
866 867 868 869 870 871 872
#ifdef CONFIG_MEMORY_BALLOON
	"balloon_inflate",
	"balloon_deflate",
#ifdef CONFIG_BALLOON_COMPACTION
	"balloon_migrate",
#endif
#endif /* CONFIG_MEMORY_BALLOON */
873
#ifdef CONFIG_DEBUG_TLBFLUSH
874
#ifdef CONFIG_SMP
Dave Hansen's avatar
Dave Hansen committed
875 876
	"nr_tlb_remote_flush",
	"nr_tlb_remote_flush_received",
877
#endif /* CONFIG_SMP */
Dave Hansen's avatar
Dave Hansen committed
878 879
	"nr_tlb_local_flush_all",
	"nr_tlb_local_flush_one",
880
#endif /* CONFIG_DEBUG_TLBFLUSH */
881

Davidlohr Bueso's avatar
Davidlohr Bueso committed
882 883 884 885
#ifdef CONFIG_DEBUG_VM_VMACACHE
	"vmacache_find_calls",
	"vmacache_find_hits",
#endif
886 887
#endif /* CONFIG_VM_EVENTS_COUNTERS */
};
888
#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
889 890


891
#ifdef CONFIG_PROC_FS
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
						struct zone *zone)
{
	int order;

	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
	for (order = 0; order < MAX_ORDER; ++order)
		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
	seq_putc(m, '\n');
}

/*
 * This walks the free areas for each zone.
 */
static int frag_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;
	walk_zones_in_node(m, pgdat, frag_show_print);
	return 0;
}

static void pagetypeinfo_showfree_print(struct seq_file *m,
					pg_data_t *pgdat, struct zone *zone)
{
	int order, mtype;

	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
		seq_printf(m, "Node %4d, zone %8s, type %12s ",
					pgdat->node_id,
					zone->name,
					migratetype_names[mtype]);
		for (order = 0; order < MAX_ORDER; ++order) {
			unsigned long freecount = 0;
			struct free_area *area;
			struct list_head *curr;

			area = &(zone->free_area[order]);

			list_for_each(curr, &area->free_list[mtype])
				freecount++;
			seq_printf(m, "%6lu ", freecount);
		}
934 935
		seq_putc(m, '\n');
	}
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
}

/* Print out the free pages at each order for each migatetype */
static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
{
	int order;
	pg_data_t *pgdat = (pg_data_t *)arg;

	/* Print header */
	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
	for (order = 0; order < MAX_ORDER; ++order)
		seq_printf(m, "%6d ", order);
	seq_putc(m, '\n');

	walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);

	return 0;
}

static void pagetypeinfo_showblockcount_print(struct seq_file *m,
					pg_data_t *pgdat, struct zone *zone)
{
	int mtype;
	unsigned long pfn;
	unsigned long start_pfn = zone->zone_start_pfn;
961
	unsigned long end_pfn = zone_end_pfn(zone);
962 963 964 965 966 967 968 969 970
	unsigned long count[MIGRATE_TYPES] = { 0, };

	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		if (!pfn_valid(pfn))
			continue;

		page = pfn_to_page(pfn);
971 972 973

		/* Watch for unexpected holes punched in the memmap */
		if (!memmap_valid_within(pfn, page, zone))
974
			continue;
975

976 977
		mtype = get_pageblock_migratetype(page);

978 979
		if (mtype < MIGRATE_TYPES)
			count[mtype]++;
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
	}

	/* Print counts */
	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
		seq_printf(m, "%12lu ", count[mtype]);
	seq_putc(m, '\n');
}

/* Print out the free pages at each order for each migratetype */
static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
{
	int mtype;
	pg_data_t *pgdat = (pg_data_t *)arg;

	seq_printf(m, "\n%-23s", "Number of blocks type ");
	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
		seq_printf(m, "%12s ", migratetype_names[mtype]);
	seq_putc(m, '\n');
	walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);

	return 0;
}

/*
 * This prints out statistics in relation to grouping pages by mobility.
 * It is expensive to collect so do not constantly read the file.
 */
static int pagetypeinfo_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;

1012
	/* check memoryless node */
1013
	if (!node_state(pgdat->node_id, N_MEMORY))
1014 1015
		return 0;

1016 1017 1018 1019 1020 1021
	seq_printf(m, "Page block order: %d\n", pageblock_order);
	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
	seq_putc(m, '\n');
	pagetypeinfo_showfree(m, pgdat);
	pagetypeinfo_showblockcount(m, pgdat);

1022 1023 1024
	return 0;
}

1025
static const struct seq_operations fragmentation_op = {
1026 1027 1028 1029 1030 1031
	.start	= frag_start,
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= frag_show,
};

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
static int fragmentation_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &fragmentation_op);
}

static const struct file_operations fragmentation_file_operations = {
	.open		= fragmentation_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

1044
static const struct seq_operations pagetypeinfo_op = {
1045 1046 1047 1048 1049 1050
	.start	= frag_start,
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= pagetypeinfo_show,
};

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
static int pagetypeinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &pagetypeinfo_op);
}

static const struct file_operations pagetypeinfo_file_ops = {
	.open		= pagetypeinfo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

1063 1064
static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
							struct zone *zone)
1065
{
1066 1067 1068 1069 1070 1071 1072
	int i;
	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
	seq_printf(m,
		   "\n  pages free     %lu"
		   "\n        min      %lu"
		   "\n        low      %lu"
		   "\n        high     %lu"
1073
		   "\n        scanned  %lu"
1074
		   "\n        spanned  %lu"
1075 1076
		   "\n        present  %lu"
		   "\n        managed  %lu",
1077
		   zone_page_state(zone, NR_FREE_PAGES),
1078 1079 1080
		   min_wmark_pages(zone),
		   low_wmark_pages(zone),
		   high_wmark_pages(zone),
1081
		   zone_page_state(zone, NR_PAGES_SCANNED),
1082
		   zone->spanned_pages,
1083 1084
		   zone->present_pages,
		   zone->managed_pages);
1085 1086 1087 1088 1089 1090

	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
		seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
				zone_page_state(zone, i));

	seq_printf(m,
1091
		   "\n        protection: (%ld",
1092 1093
		   zone->lowmem_reserve[0]);
	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1094
		seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1095 1096 1097 1098 1099 1100
	seq_printf(m,
		   ")"
		   "\n  pagesets");
	for_each_online_cpu(i) {
		struct per_cpu_pageset *pageset;

1101
		pageset = per_cpu_ptr(zone->pageset, i);
1102 1103 1104 1105 1106 1107 1108 1109 1110
		seq_printf(m,
			   "\n    cpu: %i"
			   "\n              count: %i"
			   "\n              high:  %i"
			   "\n              batch: %i",
			   i,
			   pageset->pcp.count,
			   pageset->pcp.high,
			   pageset->pcp.batch);
1111
#ifdef CONFIG_SMP
1112 1113
		seq_printf(m, "\n  vm stats threshold: %d",
				pageset->stat_threshold);
1114
#endif
1115
	}
1116 1117
	seq_printf(m,
		   "\n  all_unreclaimable: %u"
1118 1119
		   "\n  start_pfn:         %lu"
		   "\n  inactive_ratio:    %u",
1120
		   !zone_reclaimable(zone),
1121 1122
		   zone->zone_start_pfn,
		   zone->inactive_ratio);
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
	seq_putc(m, '\n');
}

/*
 * Output information about zones in @pgdat.
 */
static int zoneinfo_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;
	walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1133 1134 1135
	return 0;
}

1136
static const struct seq_operations zoneinfo_op = {
1137 1138 1139 1140 1141 1142 1143
	.start	= frag_start, /* iterate over all zones. The same as in
			       * fragmentation. */
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= zoneinfo_show,
};

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
static int zoneinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &zoneinfo_op);
}

static const struct file_operations proc_zoneinfo_file_operations = {
	.open		= zoneinfo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

1156 1157 1158 1159 1160 1161
enum writeback_stat_item {
	NR_DIRTY_THRESHOLD,
	NR_DIRTY_BG_THRESHOLD,
	NR_VM_WRITEBACK_STAT_ITEMS,
};

1162 1163
static void *vmstat_start(struct seq_file *m, loff_t *pos)
{
1164
	unsigned long *v;
1165
	int i, stat_items_size;
1166 1167 1168

	if (*pos >= ARRAY_SIZE(vmstat_text))
		return NULL;
1169 1170
	stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
			  NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1171

1172
#ifdef CONFIG_VM_EVENT_COUNTERS
1173
	stat_items_size += sizeof(struct vm_event_state);
1174
#endif
1175 1176

	v = kmalloc(stat_items_size, GFP_KERNEL);
1177 1178
	m->private = v;
	if (!v)
1179
		return ERR_PTR(-ENOMEM);
1180 1181
	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
		v[i] = global_page_state(i);
1182 1183 1184 1185 1186 1187
	v += NR_VM_ZONE_STAT_ITEMS;

	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
			    v + NR_DIRTY_THRESHOLD);
	v += NR_VM_WRITEBACK_STAT_ITEMS;

1188
#ifdef CONFIG_VM_EVENT_COUNTERS
1189 1190 1191
	all_vm_events(v);
	v[PGPGIN] /= 2;		/* sectors -> kbytes */
	v[PGPGOUT] /= 2;
1192
#endif
1193
	return (unsigned long *)m->private + *pos;
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
}

static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
{
	(*pos)++;
	if (*pos >= ARRAY_SIZE(vmstat_text))
		return NULL;
	return (unsigned long *)m->private + *pos;
}

static int vmstat_show(struct seq_file *m, void *arg)
{
	unsigned long *l = arg;
	unsigned long off = l - (unsigned long *)m->private;

	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
	return 0;
}

static void vmstat_stop(struct seq_file *m, void *arg)
{
	kfree(m->private);
	m->private = NULL;
}

1219
static const struct seq_operations vmstat_op = {
1220 1221 1222 1223 1224 1225
	.start	= vmstat_start,
	.next	= vmstat_next,
	.stop	= vmstat_stop,
	.show	= vmstat_show,
};

1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
static int vmstat_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &vmstat_op);
}

static const struct file_operations proc_vmstat_file_operations = {
	.open		= vmstat_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};
1237 1238
#endif /* CONFIG_PROC_FS */

1239
#ifdef CONFIG_SMP
1240
static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1241
int sysctl_stat_interval __read_mostly = HZ;
1242 1243 1244

static void vmstat_update(struct work_struct *w)
{
1245
	refresh_cpu_vm_stats();
1246
	schedule_delayed_work(this_cpu_ptr(&vmstat_work),
1247
		round_jiffies_relative(sysctl_stat_interval));
1248 1249
}

1250
static void start_cpu_timer(int cpu)
1251
{
1252
	struct delayed_work *work = &per_cpu(vmstat_work, cpu);
1253

1254
	INIT_DEFERRABLE_WORK(work, vmstat_update);
1255
	schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
1256 1257
}

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
static void vmstat_cpu_dead(int node)
{
	int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu)
		if (cpu_to_node(cpu) == node)
			goto end;

	node_clear_state(node, N_CPU);
end:
	put_online_cpus();
}

1272 1273 1274 1275
/*
 * Use the cpu notifier to insure that the thresholds are recalculated
 * when necessary.
 */
1276
static int vmstat_cpuup_callback(struct notifier_block *nfb,
1277 1278 1279
		unsigned long action,
		void *hcpu)
{
1280 1281
	long cpu = (long)hcpu;

1282
	switch (action) {
1283 1284
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
1285
		refresh_zone_stat_thresholds();
1286
		start_cpu_timer(cpu);
1287
		node_set_state(cpu_to_node(cpu), N_CPU);
1288 1289 1290
		break;
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
1291
		cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1292 1293 1294 1295 1296 1297
		per_cpu(vmstat_work, cpu).work.func = NULL;
		break;
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
		start_cpu_timer(cpu);
		break;
1298
	case CPU_DEAD:
1299
	case CPU_DEAD_FROZEN: