af_can.c 24.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/*
 * af_can.c - Protocol family CAN core module
 *            (used by different CAN protocol modules)
 *
 * Copyright (c) 2002-2007 Volkswagen Group Electronic Research
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of Volkswagen nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * Alternatively, provided that this notice is retained in full, this
 * software may be distributed under the terms of the GNU General
 * Public License ("GPL") version 2, in which case the provisions of the
 * GPL apply INSTEAD OF those given above.
 *
 * The provided data structures and external interfaces from this code
 * are not restricted to be used by modules with a GPL compatible license.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
 * DAMAGE.
 *
 */

#include <linux/module.h>
44
#include <linux/stddef.h>
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
#include <linux/init.h>
#include <linux/kmod.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/spinlock.h>
#include <linux/rcupdate.h>
#include <linux/uaccess.h>
#include <linux/net.h>
#include <linux/netdevice.h>
#include <linux/socket.h>
#include <linux/if_ether.h>
#include <linux/if_arp.h>
#include <linux/skbuff.h>
#include <linux/can.h>
#include <linux/can/core.h>
60
#include <linux/can/skb.h>
61
#include <linux/ratelimit.h>
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
#include <net/net_namespace.h>
#include <net/sock.h>

#include "af_can.h"

MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
	      "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");

MODULE_ALIAS_NETPROTO(PF_CAN);

static int stats_timer __read_mostly = 1;
module_param(stats_timer, int, S_IRUGO);
MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");

static struct kmem_cache *rcv_cache __read_mostly;

/* table of registered CAN protocols */
81
static const struct can_proto *proto_tab[CAN_NPROTO] __read_mostly;
82
static DEFINE_MUTEX(proto_tab_lock);
83 84 85 86 87

struct timer_list can_stattimer;   /* timer for statistics update */
struct s_stats    can_stats;       /* packet statistics */
struct s_pstats   can_pstats;      /* receive list statistics */

88 89
static atomic_t skbcounter = ATOMIC_INIT(0);

90 91 92 93
/*
 * af_can socket functions
 */

Oliver Hartkopp's avatar
Oliver Hartkopp committed
94
int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
95 96 97 98 99 100 101 102 103 104 105 106
{
	struct sock *sk = sock->sk;

	switch (cmd) {

	case SIOCGSTAMP:
		return sock_get_timestamp(sk, (struct timeval __user *)arg);

	default:
		return -ENOIOCTLCMD;
	}
}
Oliver Hartkopp's avatar
Oliver Hartkopp committed
107
EXPORT_SYMBOL(can_ioctl);
108 109 110 111 112 113

static void can_sock_destruct(struct sock *sk)
{
	skb_queue_purge(&sk->sk_receive_queue);
}

114
static const struct can_proto *can_get_proto(int protocol)
115
{
116
	const struct can_proto *cp;
117 118 119 120 121 122 123 124 125 126

	rcu_read_lock();
	cp = rcu_dereference(proto_tab[protocol]);
	if (cp && !try_module_get(cp->prot->owner))
		cp = NULL;
	rcu_read_unlock();

	return cp;
}

127 128 129 130 131
static inline void can_put_proto(const struct can_proto *cp)
{
	module_put(cp->prot->owner);
}

132 133
static int can_create(struct net *net, struct socket *sock, int protocol,
		      int kern)
134 135
{
	struct sock *sk;
136
	const struct can_proto *cp;
137 138 139 140 141 142 143
	int err = 0;

	sock->state = SS_UNCONNECTED;

	if (protocol < 0 || protocol >= CAN_NPROTO)
		return -EINVAL;

144
	cp = can_get_proto(protocol);
145

146
#ifdef CONFIG_MODULES
147 148 149
	if (!cp) {
		/* try to load protocol module if kernel is modular */

150
		err = request_module("can-proto-%d", protocol);
151 152 153 154 155 156

		/*
		 * In case of error we only print a message but don't
		 * return the error code immediately.  Below we will
		 * return -EPROTONOSUPPORT
		 */
157 158
		if (err)
			printk_ratelimited(KERN_ERR "can: request_module "
159
			       "(can-proto-%d) failed.\n", protocol);
160

161
		cp = can_get_proto(protocol);
162
	}
163
#endif
164 165 166 167 168 169 170

	/* check for available protocol and correct usage */

	if (!cp)
		return -EPROTONOSUPPORT;

	if (cp->type != sock->type) {
171
		err = -EPROTOTYPE;
172 173 174 175 176
		goto errout;
	}

	sock->ops = cp->ops;

177
	sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot, kern);
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
	if (!sk) {
		err = -ENOMEM;
		goto errout;
	}

	sock_init_data(sock, sk);
	sk->sk_destruct = can_sock_destruct;

	if (sk->sk_prot->init)
		err = sk->sk_prot->init(sk);

	if (err) {
		/* release sk on errors */
		sock_orphan(sk);
		sock_put(sk);
	}

 errout:
196
	can_put_proto(cp);
197 198 199 200 201 202 203 204 205 206 207 208
	return err;
}

/*
 * af_can tx path
 */

/**
 * can_send - transmit a CAN frame (optional with local loopback)
 * @skb: pointer to socket buffer with CAN frame in data section
 * @loop: loopback for listeners on local CAN sockets (recommended default!)
 *
209 210
 * Due to the loopback this routine must not be called from hardirq context.
 *
211 212 213 214 215 216
 * Return:
 *  0 on success
 *  -ENETDOWN when the selected interface is down
 *  -ENOBUFS on full driver queue (see net_xmit_errno())
 *  -ENOMEM when local loopback failed at calling skb_clone()
 *  -EPERM when trying to send on a non-CAN interface
217
 *  -EMSGSIZE CAN frame size is bigger than CAN interface MTU
Oliver Hartkopp's avatar
Oliver Hartkopp committed
218
 *  -EINVAL when the skb->data does not contain a valid CAN frame
219 220 221
 */
int can_send(struct sk_buff *skb, int loop)
{
222
	struct sk_buff *newskb = NULL;
223 224 225 226 227 228 229 230 231 232 233 234 235
	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
	int err = -EINVAL;

	if (skb->len == CAN_MTU) {
		skb->protocol = htons(ETH_P_CAN);
		if (unlikely(cfd->len > CAN_MAX_DLEN))
			goto inval_skb;
	} else if (skb->len == CANFD_MTU) {
		skb->protocol = htons(ETH_P_CANFD);
		if (unlikely(cfd->len > CANFD_MAX_DLEN))
			goto inval_skb;
	} else
		goto inval_skb;
236

237 238 239 240 241 242 243 244
	/*
	 * Make sure the CAN frame can pass the selected CAN netdevice.
	 * As structs can_frame and canfd_frame are similar, we can provide
	 * CAN FD frames to legacy CAN drivers as long as the length is <= 8
	 */
	if (unlikely(skb->len > skb->dev->mtu && cfd->len > CAN_MAX_DLEN)) {
		err = -EMSGSIZE;
		goto inval_skb;
Oliver Hartkopp's avatar
Oliver Hartkopp committed
245 246
	}

247 248 249
	if (unlikely(skb->dev->type != ARPHRD_CAN)) {
		err = -EPERM;
		goto inval_skb;
250 251
	}

252 253 254
	if (unlikely(!(skb->dev->flags & IFF_UP))) {
		err = -ENETDOWN;
		goto inval_skb;
255 256
	}

257 258 259
	skb->ip_summed = CHECKSUM_UNNECESSARY;

	skb_reset_mac_header(skb);
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
	skb_reset_network_header(skb);
	skb_reset_transport_header(skb);

	if (loop) {
		/* local loopback of sent CAN frames */

		/* indication for the CAN driver: do loopback */
		skb->pkt_type = PACKET_LOOPBACK;

		/*
		 * The reference to the originating sock may be required
		 * by the receiving socket to check whether the frame is
		 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
		 * Therefore we have to ensure that skb->sk remains the
		 * reference to the originating sock by restoring skb->sk
		 * after each skb_clone() or skb_orphan() usage.
		 */

		if (!(skb->dev->flags & IFF_ECHO)) {
			/*
			 * If the interface is not capable to do loopback
			 * itself, we do it here.
			 */
283
			newskb = skb_clone(skb, GFP_ATOMIC);
284 285 286 287 288
			if (!newskb) {
				kfree_skb(skb);
				return -ENOMEM;
			}

289
			can_skb_set_owner(newskb, skb->sk);
290 291 292 293 294 295 296 297 298 299 300 301 302
			newskb->ip_summed = CHECKSUM_UNNECESSARY;
			newskb->pkt_type = PACKET_BROADCAST;
		}
	} else {
		/* indication for the CAN driver: no loopback required */
		skb->pkt_type = PACKET_HOST;
	}

	/* send to netdevice */
	err = dev_queue_xmit(skb);
	if (err > 0)
		err = net_xmit_errno(err);

303
	if (err) {
304
		kfree_skb(newskb);
305 306 307
		return err;
	}

308
	if (newskb)
309
		netif_rx_ni(newskb);
310

311 312 313 314
	/* update statistics */
	can_stats.tx_frames++;
	can_stats.tx_frames_delta++;

315
	return 0;
316 317 318 319

inval_skb:
	kfree_skb(skb);
	return err;
320 321 322 323 324 325 326
}
EXPORT_SYMBOL(can_send);

/*
 * af_can rx path
 */

327 328
static struct dev_rcv_lists *find_dev_rcv_lists(struct net *net,
						struct net_device *dev)
329
{
330
	if (!dev)
331
		return net->can.can_rx_alldev_list;
332 333
	else
		return (struct dev_rcv_lists *)dev->ml_priv;
334 335
}

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
/**
 * effhash - hash function for 29 bit CAN identifier reduction
 * @can_id: 29 bit CAN identifier
 *
 * Description:
 *  To reduce the linear traversal in one linked list of _single_ EFF CAN
 *  frame subscriptions the 29 bit identifier is mapped to 10 bits.
 *  (see CAN_EFF_RCV_HASH_BITS definition)
 *
 * Return:
 *  Hash value from 0x000 - 0x3FF ( enforced by CAN_EFF_RCV_HASH_BITS mask )
 */
static unsigned int effhash(canid_t can_id)
{
	unsigned int hash;

	hash = can_id;
	hash ^= can_id >> CAN_EFF_RCV_HASH_BITS;
	hash ^= can_id >> (2 * CAN_EFF_RCV_HASH_BITS);

	return hash & ((1 << CAN_EFF_RCV_HASH_BITS) - 1);
}

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
/**
 * find_rcv_list - determine optimal filterlist inside device filter struct
 * @can_id: pointer to CAN identifier of a given can_filter
 * @mask: pointer to CAN mask of a given can_filter
 * @d: pointer to the device filter struct
 *
 * Description:
 *  Returns the optimal filterlist to reduce the filter handling in the
 *  receive path. This function is called by service functions that need
 *  to register or unregister a can_filter in the filter lists.
 *
 *  A filter matches in general, when
 *
 *          <received_can_id> & mask == can_id & mask
 *
 *  so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
 *  relevant bits for the filter.
 *
 *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
378 379
 *  filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg
 *  frames there is a special filterlist and a special rx path filter handling.
380 381 382 383 384 385
 *
 * Return:
 *  Pointer to optimal filterlist for the given can_id/mask pair.
 *  Constistency checked mask.
 *  Reduced can_id to have a preprocessed filter compare value.
 */
386 387 388 389 390
static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
					struct dev_rcv_lists *d)
{
	canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */

391
	/* filter for error message frames in extra filterlist */
392
	if (*mask & CAN_ERR_FLAG) {
393
		/* clear CAN_ERR_FLAG in filter entry */
394 395 396 397
		*mask &= CAN_ERR_MASK;
		return &d->rx[RX_ERR];
	}

398 399 400 401 402 403 404
	/* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */

#define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)

	/* ensure valid values in can_mask for 'SFF only' frame filtering */
	if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
		*mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
405 406 407 408 409 410 411 412 413 414 415 416

	/* reduce condition testing at receive time */
	*can_id &= *mask;

	/* inverse can_id/can_mask filter */
	if (inv)
		return &d->rx[RX_INV];

	/* mask == 0 => no condition testing at receive time */
	if (!(*mask))
		return &d->rx[RX_ALL];

417
	/* extra filterlists for the subscription of a single non-RTR can_id */
418 419
	if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
	    !(*can_id & CAN_RTR_FLAG)) {
420 421

		if (*can_id & CAN_EFF_FLAG) {
422 423
			if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS))
				return &d->rx_eff[effhash(*can_id)];
424 425 426
		} else {
			if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
				return &d->rx_sff[*can_id];
427 428 429 430 431 432 433 434 435 436 437 438 439 440
		}
	}

	/* default: filter via can_id/can_mask */
	return &d->rx[RX_FIL];
}

/**
 * can_rx_register - subscribe CAN frames from a specific interface
 * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
 * @can_id: CAN identifier (see description)
 * @mask: CAN mask (see description)
 * @func: callback function on filter match
 * @data: returned parameter for callback function
441
 * @ident: string for calling module identification
442
 * @sk: socket pointer (might be NULL)
443 444 445 446 447 448 449 450
 *
 * Description:
 *  Invokes the callback function with the received sk_buff and the given
 *  parameter 'data' on a matching receive filter. A filter matches, when
 *
 *          <received_can_id> & mask == can_id & mask
 *
 *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
451
 *  filter for error message frames (CAN_ERR_FLAG bit set in mask).
452
 *
453 454 455 456 457 458
 *  The provided pointer to the sk_buff is guaranteed to be valid as long as
 *  the callback function is running. The callback function must *not* free
 *  the given sk_buff while processing it's task. When the given sk_buff is
 *  needed after the end of the callback function it must be cloned inside
 *  the callback function with skb_clone().
 *
459 460 461 462 463
 * Return:
 *  0 on success
 *  -ENOMEM on missing cache mem to create subscription entry
 *  -ENODEV unknown device
 */
464 465 466
int can_rx_register(struct net *net, struct net_device *dev, canid_t can_id,
		    canid_t mask, void (*func)(struct sk_buff *, void *),
		    void *data, char *ident, struct sock *sk)
467 468 469 470 471 472 473 474
{
	struct receiver *r;
	struct hlist_head *rl;
	struct dev_rcv_lists *d;
	int err = 0;

	/* insert new receiver  (dev,canid,mask) -> (func,data) */

475 476 477
	if (dev && dev->type != ARPHRD_CAN)
		return -ENODEV;

478 479 480
	if (dev && !net_eq(net, dev_net(dev)))
		return -ENODEV;

481 482 483 484
	r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
	if (!r)
		return -ENOMEM;

485
	spin_lock(&net->can.can_rcvlists_lock);
486

487
	d = find_dev_rcv_lists(net, dev);
488 489 490 491 492 493 494 495 496
	if (d) {
		rl = find_rcv_list(&can_id, &mask, d);

		r->can_id  = can_id;
		r->mask    = mask;
		r->matches = 0;
		r->func    = func;
		r->data    = data;
		r->ident   = ident;
497
		r->sk      = sk;
498 499 500 501 502 503 504 505 506 507 508 509

		hlist_add_head_rcu(&r->list, rl);
		d->entries++;

		can_pstats.rcv_entries++;
		if (can_pstats.rcv_entries_max < can_pstats.rcv_entries)
			can_pstats.rcv_entries_max = can_pstats.rcv_entries;
	} else {
		kmem_cache_free(rcv_cache, r);
		err = -ENODEV;
	}

510
	spin_unlock(&net->can.can_rcvlists_lock);
511 512 513 514 515 516 517 518 519 520 521

	return err;
}
EXPORT_SYMBOL(can_rx_register);

/*
 * can_rx_delete_receiver - rcu callback for single receiver entry removal
 */
static void can_rx_delete_receiver(struct rcu_head *rp)
{
	struct receiver *r = container_of(rp, struct receiver, rcu);
522
	struct sock *sk = r->sk;
523 524

	kmem_cache_free(rcv_cache, r);
525 526
	if (sk)
		sock_put(sk);
527 528 529 530
}

/**
 * can_rx_unregister - unsubscribe CAN frames from a specific interface
Jeremiah Mahler's avatar
Jeremiah Mahler committed
531
 * @dev: pointer to netdevice (NULL => unsubscribe from 'all' CAN devices list)
532 533 534 535 536 537 538 539
 * @can_id: CAN identifier
 * @mask: CAN mask
 * @func: callback function on filter match
 * @data: returned parameter for callback function
 *
 * Description:
 *  Removes subscription entry depending on given (subscription) values.
 */
540 541 542
void can_rx_unregister(struct net *net, struct net_device *dev, canid_t can_id,
		       canid_t mask, void (*func)(struct sk_buff *, void *),
		       void *data)
543 544 545 546 547
{
	struct receiver *r = NULL;
	struct hlist_head *rl;
	struct dev_rcv_lists *d;

548 549 550
	if (dev && dev->type != ARPHRD_CAN)
		return;

551 552
	if (dev && !net_eq(net, dev_net(dev)))
		return;
553

554 555 556
	spin_lock(&net->can.can_rcvlists_lock);

	d = find_dev_rcv_lists(net, dev);
557
	if (!d) {
558
		pr_err("BUG: receive list not found for "
559 560 561 562 563 564 565 566 567 568 569 570 571
		       "dev %s, id %03X, mask %03X\n",
		       DNAME(dev), can_id, mask);
		goto out;
	}

	rl = find_rcv_list(&can_id, &mask, d);

	/*
	 * Search the receiver list for the item to delete.  This should
	 * exist, since no receiver may be unregistered that hasn't
	 * been registered before.
	 */

572
	hlist_for_each_entry_rcu(r, rl, list) {
573 574
		if (r->can_id == can_id && r->mask == mask &&
		    r->func == func && r->data == data)
575 576 577 578
			break;
	}

	/*
579 580
	 * Check for bugs in CAN protocol implementations using af_can.c:
	 * 'r' will be NULL if no matching list item was found for removal.
581 582
	 */

583
	if (!r) {
584 585
		WARN(1, "BUG: receive list entry not found for dev %s, "
		     "id %03X, mask %03X\n", DNAME(dev), can_id, mask);
586 587 588 589 590 591 592 593 594 595
		goto out;
	}

	hlist_del_rcu(&r->list);
	d->entries--;

	if (can_pstats.rcv_entries > 0)
		can_pstats.rcv_entries--;

	/* remove device structure requested by NETDEV_UNREGISTER */
596 597 598 599
	if (d->remove_on_zero_entries && !d->entries) {
		kfree(d);
		dev->ml_priv = NULL;
	}
600 601

 out:
602
	spin_unlock(&net->can.can_rcvlists_lock);
603 604

	/* schedule the receiver item for deletion */
605 606 607
	if (r) {
		if (r->sk)
			sock_hold(r->sk);
608
		call_rcu(&r->rcu, can_rx_delete_receiver);
609
	}
610 611 612 613 614
}
EXPORT_SYMBOL(can_rx_unregister);

static inline void deliver(struct sk_buff *skb, struct receiver *r)
{
615 616
	r->func(skb, r->data);
	r->matches++;
617 618 619 620 621 622 623 624 625 626 627 628 629
}

static int can_rcv_filter(struct dev_rcv_lists *d, struct sk_buff *skb)
{
	struct receiver *r;
	int matches = 0;
	struct can_frame *cf = (struct can_frame *)skb->data;
	canid_t can_id = cf->can_id;

	if (d->entries == 0)
		return 0;

	if (can_id & CAN_ERR_FLAG) {
630
		/* check for error message frame entries only */
631
		hlist_for_each_entry_rcu(r, &d->rx[RX_ERR], list) {
632 633 634 635 636 637 638 639 640
			if (can_id & r->mask) {
				deliver(skb, r);
				matches++;
			}
		}
		return matches;
	}

	/* check for unfiltered entries */
641
	hlist_for_each_entry_rcu(r, &d->rx[RX_ALL], list) {
642 643 644 645 646
		deliver(skb, r);
		matches++;
	}

	/* check for can_id/mask entries */
647
	hlist_for_each_entry_rcu(r, &d->rx[RX_FIL], list) {
648 649 650 651 652 653 654
		if ((can_id & r->mask) == r->can_id) {
			deliver(skb, r);
			matches++;
		}
	}

	/* check for inverted can_id/mask entries */
655
	hlist_for_each_entry_rcu(r, &d->rx[RX_INV], list) {
656 657 658 659 660 661
		if ((can_id & r->mask) != r->can_id) {
			deliver(skb, r);
			matches++;
		}
	}

662 663 664 665
	/* check filterlists for single non-RTR can_ids */
	if (can_id & CAN_RTR_FLAG)
		return matches;

666
	if (can_id & CAN_EFF_FLAG) {
667
		hlist_for_each_entry_rcu(r, &d->rx_eff[effhash(can_id)], list) {
668 669 670 671 672 673 674
			if (r->can_id == can_id) {
				deliver(skb, r);
				matches++;
			}
		}
	} else {
		can_id &= CAN_SFF_MASK;
675
		hlist_for_each_entry_rcu(r, &d->rx_sff[can_id], list) {
676 677 678 679 680 681 682 683
			deliver(skb, r);
			matches++;
		}
	}

	return matches;
}

684
static void can_receive(struct sk_buff *skb, struct net_device *dev)
685 686 687 688 689 690 691 692
{
	struct dev_rcv_lists *d;
	int matches;

	/* update statistics */
	can_stats.rx_frames++;
	can_stats.rx_frames_delta++;

693 694 695 696
	/* create non-zero unique skb identifier together with *skb */
	while (!(can_skb_prv(skb)->skbcnt))
		can_skb_prv(skb)->skbcnt = atomic_inc_return(&skbcounter);

697 698 699
	rcu_read_lock();

	/* deliver the packet to sockets listening on all devices */
700
	matches = can_rcv_filter(dev_net(dev)->can.can_rx_alldev_list, skb);
701 702

	/* find receive list for this device */
703
	d = find_dev_rcv_lists(dev_net(dev), dev);
704 705 706 707 708
	if (d)
		matches += can_rcv_filter(d, skb);

	rcu_read_unlock();

709 710
	/* consume the skbuff allocated by the netdevice driver */
	consume_skb(skb);
711 712 713 714 715

	if (matches > 0) {
		can_stats.matches++;
		can_stats.matches_delta++;
	}
716 717 718 719 720 721
}

static int can_rcv(struct sk_buff *skb, struct net_device *dev,
		   struct packet_type *pt, struct net_device *orig_dev)
{
	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
722

723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
	if (WARN_ONCE(dev->type != ARPHRD_CAN ||
		      skb->len != CAN_MTU ||
		      cfd->len > CAN_MAX_DLEN,
		      "PF_CAN: dropped non conform CAN skbuf: "
		      "dev type %d, len %d, datalen %d\n",
		      dev->type, skb->len, cfd->len))
		goto drop;

	can_receive(skb, dev);
	return NET_RX_SUCCESS;

drop:
	kfree_skb(skb);
	return NET_RX_DROP;
}

static int canfd_rcv(struct sk_buff *skb, struct net_device *dev,
		   struct packet_type *pt, struct net_device *orig_dev)
{
	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;

	if (WARN_ONCE(dev->type != ARPHRD_CAN ||
		      skb->len != CANFD_MTU ||
		      cfd->len > CANFD_MAX_DLEN,
		      "PF_CAN: dropped non conform CAN FD skbuf: "
		      "dev type %d, len %d, datalen %d\n",
		      dev->type, skb->len, cfd->len))
		goto drop;

	can_receive(skb, dev);
753
	return NET_RX_SUCCESS;
754 755 756

drop:
	kfree_skb(skb);
757
	return NET_RX_DROP;
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
}

/*
 * af_can protocol functions
 */

/**
 * can_proto_register - register CAN transport protocol
 * @cp: pointer to CAN protocol structure
 *
 * Return:
 *  0 on success
 *  -EINVAL invalid (out of range) protocol number
 *  -EBUSY  protocol already in use
 *  -ENOBUF if proto_register() fails
 */
774
int can_proto_register(const struct can_proto *cp)
775 776 777 778 779
{
	int proto = cp->protocol;
	int err = 0;

	if (proto < 0 || proto >= CAN_NPROTO) {
780
		pr_err("can: protocol number %d out of range\n", proto);
781 782 783
		return -EINVAL;
	}

784 785 786 787
	err = proto_register(cp->prot, 0);
	if (err < 0)
		return err;

788 789
	mutex_lock(&proto_tab_lock);

790
	if (proto_tab[proto]) {
791
		pr_err("can: protocol %d already registered\n", proto);
792
		err = -EBUSY;
Oliver Hartkopp's avatar
Oliver Hartkopp committed
793
	} else
794
		RCU_INIT_POINTER(proto_tab[proto], cp);
795

796
	mutex_unlock(&proto_tab_lock);
797 798

	if (err < 0)
799
		proto_unregister(cp->prot);
800 801 802 803 804 805 806 807 808

	return err;
}
EXPORT_SYMBOL(can_proto_register);

/**
 * can_proto_unregister - unregister CAN transport protocol
 * @cp: pointer to CAN protocol structure
 */
809
void can_proto_unregister(const struct can_proto *cp)
810 811 812
{
	int proto = cp->protocol;

813 814
	mutex_lock(&proto_tab_lock);
	BUG_ON(proto_tab[proto] != cp);
815
	RCU_INIT_POINTER(proto_tab[proto], NULL);
816 817 818
	mutex_unlock(&proto_tab_lock);

	synchronize_rcu();
819 820

	proto_unregister(cp->prot);
821 822 823 824 825 826 827
}
EXPORT_SYMBOL(can_proto_unregister);

/*
 * af_can notifier to create/remove CAN netdevice specific structs
 */
static int can_notifier(struct notifier_block *nb, unsigned long msg,
828
			void *ptr)
829
{
830
	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
831 832 833 834 835 836 837 838 839
	struct dev_rcv_lists *d;

	if (dev->type != ARPHRD_CAN)
		return NOTIFY_DONE;

	switch (msg) {

	case NETDEV_REGISTER:

840
		/* create new dev_rcv_lists for this device */
841
		d = kzalloc(sizeof(*d), GFP_KERNEL);
842
		if (!d)
843
			return NOTIFY_DONE;
844 845
		BUG_ON(dev->ml_priv);
		dev->ml_priv = d;
846 847 848 849

		break;

	case NETDEV_UNREGISTER:
850
		spin_lock(&dev_net(dev)->can.can_rcvlists_lock);
851

852
		d = dev->ml_priv;
853
		if (d) {
854
			if (d->entries)
855
				d->remove_on_zero_entries = 1;
856 857 858 859
			else {
				kfree(d);
				dev->ml_priv = NULL;
			}
860
		} else
861 862
			pr_err("can: notifier: receive list not found for dev "
			       "%s\n", dev->name);
863

864
		spin_unlock(&dev_net(dev)->can.can_rcvlists_lock);
865 866 867 868 869 870 871

		break;
	}

	return NOTIFY_DONE;
}

872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
static int can_pernet_init(struct net *net)
{
	net->can.can_rcvlists_lock =
		__SPIN_LOCK_UNLOCKED(net->can.can_rcvlists_lock);
	net->can.can_rx_alldev_list =
		kzalloc(sizeof(struct dev_rcv_lists), GFP_KERNEL);

	if (IS_ENABLED(CONFIG_PROC_FS))
		can_init_proc(net);

	return 0;
}

static void can_pernet_exit(struct net *net)
{
	struct net_device *dev;

	if (IS_ENABLED(CONFIG_PROC_FS))
		can_remove_proc(net);

	/* remove created dev_rcv_lists from still registered CAN devices */
	rcu_read_lock();
	for_each_netdev_rcu(net, dev) {
		if (dev->type == ARPHRD_CAN && dev->ml_priv) {
			struct dev_rcv_lists *d = dev->ml_priv;

			BUG_ON(d->entries);
			kfree(d);
			dev->ml_priv = NULL;
		}
	}
	rcu_read_unlock();
904 905

	kfree(net->can.can_rx_alldev_list);
906 907
}

908 909 910 911 912
/*
 * af_can module init/exit functions
 */

static struct packet_type can_packet __read_mostly = {
913
	.type = cpu_to_be16(ETH_P_CAN),
914 915 916
	.func = can_rcv,
};

917 918 919 920 921
static struct packet_type canfd_packet __read_mostly = {
	.type = cpu_to_be16(ETH_P_CANFD),
	.func = canfd_rcv,
};

922
static const struct net_proto_family can_family_ops = {
923 924 925 926 927 928 929 930 931 932
	.family = PF_CAN,
	.create = can_create,
	.owner  = THIS_MODULE,
};

/* notifier block for netdevice event */
static struct notifier_block can_netdev_notifier __read_mostly = {
	.notifier_call = can_notifier,
};

933 934 935 936 937
static struct pernet_operations can_pernet_ops __read_mostly = {
	.init = can_pernet_init,
	.exit = can_pernet_exit,
};

938 939
static __init int can_init(void)
{
940 941 942 943 944 945
	/* check for correct padding to be able to use the structs similarly */
	BUILD_BUG_ON(offsetof(struct can_frame, can_dlc) !=
		     offsetof(struct canfd_frame, len) ||
		     offsetof(struct can_frame, data) !=
		     offsetof(struct canfd_frame, data));

946
	pr_info("can: controller area network core (" CAN_VERSION_STRING ")\n");
947 948 949 950 951 952

	rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
				      0, 0, NULL);
	if (!rcv_cache)
		return -ENOMEM;

953 954
	if (IS_ENABLED(CONFIG_PROC_FS)) {
		if (stats_timer) {
955
		/* the statistics are updated every second (timer triggered) */
956 957 958 959
			setup_timer(&can_stattimer, can_stat_update, 0);
			mod_timer(&can_stattimer, round_jiffies(jiffies + HZ));
		}
	}
960

961 962
	register_pernet_subsys(&can_pernet_ops);

963 964 965 966
	/* protocol register */
	sock_register(&can_family_ops);
	register_netdevice_notifier(&can_netdev_notifier);
	dev_add_pack(&can_packet);
967
	dev_add_pack(&canfd_packet);
968 969 970 971 972 973

	return 0;
}

static __exit void can_exit(void)
{
974 975 976 977
	if (IS_ENABLED(CONFIG_PROC_FS)) {
		if (stats_timer)
			del_timer_sync(&can_stattimer);
	}
978 979

	/* protocol unregister */
980
	dev_remove_pack(&canfd_packet);
981 982 983 984
	dev_remove_pack(&can_packet);
	unregister_netdevice_notifier(&can_netdev_notifier);
	sock_unregister(PF_CAN);

985
	unregister_pernet_subsys(&can_pernet_ops);
986

987 988
	rcu_barrier(); /* Wait for completion of call_rcu()'s */

989 990 991 992 993
	kmem_cache_destroy(rcv_cache);
}

module_init(can_init);
module_exit(can_exit);