vmstat.c 33.9 KB
Newer Older
1 2 3 4 5
/*
 *  linux/mm/vmstat.c
 *
 *  Manages VM statistics
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6 7 8 9
 *
 *  zoned VM statistics
 *  Copyright (C) 2006 Silicon Graphics, Inc.,
 *		Christoph Lameter <christoph@lameter.com>
10
 */
11
#include <linux/fs.h>
12
#include <linux/mm.h>
Alexey Dobriyan's avatar
Alexey Dobriyan committed
13
#include <linux/err.h>
14
#include <linux/module.h>
15
#include <linux/slab.h>
16
#include <linux/cpu.h>
Adrian Bunk's avatar
Adrian Bunk committed
17
#include <linux/vmstat.h>
Alexey Dobriyan's avatar
Alexey Dobriyan committed
18
#include <linux/sched.h>
19
#include <linux/math64.h>
20
#include <linux/writeback.h>
21
#include <linux/compaction.h>
22

23 24 25 26
#ifdef CONFIG_VM_EVENT_COUNTERS
DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
EXPORT_PER_CPU_SYMBOL(vm_event_states);

27
static void sum_vm_events(unsigned long *ret)
28
{
Christoph Lameter's avatar
Christoph Lameter committed
29
	int cpu;
30 31 32 33
	int i;

	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));

34
	for_each_online_cpu(cpu) {
35 36 37 38 39 40 41 42 43 44 45 46 47 48
		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);

		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
			ret[i] += this->event[i];
	}
}

/*
 * Accumulate the vm event counters across all CPUs.
 * The result is unavoidably approximate - it can change
 * during and after execution of this function.
*/
void all_vm_events(unsigned long *ret)
{
KOSAKI Motohiro's avatar
KOSAKI Motohiro committed
49
	get_online_cpus();
50
	sum_vm_events(ret);
KOSAKI Motohiro's avatar
KOSAKI Motohiro committed
51
	put_online_cpus();
52
}
53
EXPORT_SYMBOL_GPL(all_vm_events);
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

#ifdef CONFIG_HOTPLUG
/*
 * Fold the foreign cpu events into our own.
 *
 * This is adding to the events on one processor
 * but keeps the global counts constant.
 */
void vm_events_fold_cpu(int cpu)
{
	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
	int i;

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
		count_vm_events(i, fold_state->event[i]);
		fold_state->event[i] = 0;
	}
}
#endif /* CONFIG_HOTPLUG */

#endif /* CONFIG_VM_EVENT_COUNTERS */

76 77 78 79 80
/*
 * Manage combined zone based / global counters
 *
 * vm_stat contains the global counters
 */
81
atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
82 83 84 85
EXPORT_SYMBOL(vm_stat);

#ifdef CONFIG_SMP

86
int calculate_pressure_threshold(struct zone *zone)
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
{
	int threshold;
	int watermark_distance;

	/*
	 * As vmstats are not up to date, there is drift between the estimated
	 * and real values. For high thresholds and a high number of CPUs, it
	 * is possible for the min watermark to be breached while the estimated
	 * value looks fine. The pressure threshold is a reduced value such
	 * that even the maximum amount of drift will not accidentally breach
	 * the min watermark
	 */
	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
	threshold = max(1, (int)(watermark_distance / num_online_cpus()));

	/*
	 * Maximum threshold is 125
	 */
	threshold = min(125, threshold);

	return threshold;
}

110
int calculate_normal_threshold(struct zone *zone)
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
{
	int threshold;
	int mem;	/* memory in 128 MB units */

	/*
	 * The threshold scales with the number of processors and the amount
	 * of memory per zone. More memory means that we can defer updates for
	 * longer, more processors could lead to more contention.
 	 * fls() is used to have a cheap way of logarithmic scaling.
	 *
	 * Some sample thresholds:
	 *
	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
	 * ------------------------------------------------------------------
	 * 8		1		1	0.9-1 GB	4
	 * 16		2		2	0.9-1 GB	4
	 * 20 		2		2	1-2 GB		5
	 * 24		2		2	2-4 GB		6
	 * 28		2		2	4-8 GB		7
	 * 32		2		2	8-16 GB		8
	 * 4		2		2	<128M		1
	 * 30		4		3	2-4 GB		5
	 * 48		4		3	8-16 GB		8
	 * 32		8		4	1-2 GB		4
	 * 32		8		4	0.9-1GB		4
	 * 10		16		5	<128M		1
	 * 40		16		5	900M		4
	 * 70		64		7	2-4 GB		5
	 * 84		64		7	4-8 GB		6
	 * 108		512		9	4-8 GB		6
	 * 125		1024		10	8-16 GB		8
	 * 125		1024		10	16-32 GB	9
	 */

	mem = zone->present_pages >> (27 - PAGE_SHIFT);

	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));

	/*
	 * Maximum threshold is 125
	 */
	threshold = min(125, threshold);

	return threshold;
}
156 157

/*
158
 * Refresh the thresholds for each zone.
159
 */
160
void refresh_zone_stat_thresholds(void)
161
{
162 163 164 165
	struct zone *zone;
	int cpu;
	int threshold;

166
	for_each_populated_zone(zone) {
167 168
		unsigned long max_drift, tolerate_drift;

169
		threshold = calculate_normal_threshold(zone);
170 171

		for_each_online_cpu(cpu)
172 173
			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
							= threshold;
174 175 176 177 178 179 180 181 182 183 184

		/*
		 * Only set percpu_drift_mark if there is a danger that
		 * NR_FREE_PAGES reports the low watermark is ok when in fact
		 * the min watermark could be breached by an allocation
		 */
		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
		max_drift = num_online_cpus() * threshold;
		if (max_drift > tolerate_drift)
			zone->percpu_drift_mark = high_wmark_pages(zone) +
					max_drift;
185
	}
186 187
}

188 189
void set_pgdat_percpu_threshold(pg_data_t *pgdat,
				int (*calculate_pressure)(struct zone *))
190 191 192 193 194 195 196 197 198 199 200
{
	struct zone *zone;
	int cpu;
	int threshold;
	int i;

	for (i = 0; i < pgdat->nr_zones; i++) {
		zone = &pgdat->node_zones[i];
		if (!zone->percpu_drift_mark)
			continue;

201 202
		threshold = (*calculate_pressure)(zone);
		for_each_possible_cpu(cpu)
203 204 205 206 207
			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
							= threshold;
	}
}

208 209 210 211 212 213
/*
 * For use when we know that interrupts are disabled.
 */
void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
				int delta)
{
214 215
	struct per_cpu_pageset __percpu *pcp = zone->pageset;
	s8 __percpu *p = pcp->vm_stat_diff + item;
216
	long x;
217 218 219
	long t;

	x = delta + __this_cpu_read(*p);
220

221
	t = __this_cpu_read(pcp->stat_threshold);
222

223
	if (unlikely(x > t || x < -t)) {
224 225 226
		zone_page_state_add(x, zone, item);
		x = 0;
	}
227
	__this_cpu_write(*p, x);
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
}
EXPORT_SYMBOL(__mod_zone_page_state);

/*
 * Optimized increment and decrement functions.
 *
 * These are only for a single page and therefore can take a struct page *
 * argument instead of struct zone *. This allows the inclusion of the code
 * generated for page_zone(page) into the optimized functions.
 *
 * No overflow check is necessary and therefore the differential can be
 * incremented or decremented in place which may allow the compilers to
 * generate better code.
 * The increment or decrement is known and therefore one boundary check can
 * be omitted.
 *
244 245 246
 * NOTE: These functions are very performance sensitive. Change only
 * with care.
 *
247 248 249 250 251 252 253
 * Some processors have inc/dec instructions that are atomic vs an interrupt.
 * However, the code must first determine the differential location in a zone
 * based on the processor number and then inc/dec the counter. There is no
 * guarantee without disabling preemption that the processor will not change
 * in between and therefore the atomicity vs. interrupt cannot be exploited
 * in a useful way here.
 */
254
void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
255
{
256 257 258
	struct per_cpu_pageset __percpu *pcp = zone->pageset;
	s8 __percpu *p = pcp->vm_stat_diff + item;
	s8 v, t;
259

260
	v = __this_cpu_inc_return(*p);
261 262 263
	t = __this_cpu_read(pcp->stat_threshold);
	if (unlikely(v > t)) {
		s8 overstep = t >> 1;
264

265 266
		zone_page_state_add(v + overstep, zone, item);
		__this_cpu_write(*p, -overstep);
267 268
	}
}
269 270 271 272 273

void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
	__inc_zone_state(page_zone(page), item);
}
274 275
EXPORT_SYMBOL(__inc_zone_page_state);

276
void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
277
{
278 279 280
	struct per_cpu_pageset __percpu *pcp = zone->pageset;
	s8 __percpu *p = pcp->vm_stat_diff + item;
	s8 v, t;
281

282
	v = __this_cpu_dec_return(*p);
283 284 285
	t = __this_cpu_read(pcp->stat_threshold);
	if (unlikely(v < - t)) {
		s8 overstep = t >> 1;
286

287 288
		zone_page_state_add(v - overstep, zone, item);
		__this_cpu_write(*p, overstep);
289 290
	}
}
291 292 293 294 295

void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
	__dec_zone_state(page_zone(page), item);
}
296 297
EXPORT_SYMBOL(__dec_zone_page_state);

298
#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
/*
 * If we have cmpxchg_local support then we do not need to incur the overhead
 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
 *
 * mod_state() modifies the zone counter state through atomic per cpu
 * operations.
 *
 * Overstep mode specifies how overstep should handled:
 *     0       No overstepping
 *     1       Overstepping half of threshold
 *     -1      Overstepping minus half of threshold
*/
static inline void mod_state(struct zone *zone,
       enum zone_stat_item item, int delta, int overstep_mode)
{
	struct per_cpu_pageset __percpu *pcp = zone->pageset;
	s8 __percpu *p = pcp->vm_stat_diff + item;
	long o, n, t, z;

	do {
		z = 0;  /* overflow to zone counters */

		/*
		 * The fetching of the stat_threshold is racy. We may apply
		 * a counter threshold to the wrong the cpu if we get
324 325 326 327 328 329
		 * rescheduled while executing here. However, the next
		 * counter update will apply the threshold again and
		 * therefore bring the counter under the threshold again.
		 *
		 * Most of the time the thresholds are the same anyways
		 * for all cpus in a zone.
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
		 */
		t = this_cpu_read(pcp->stat_threshold);

		o = this_cpu_read(*p);
		n = delta + o;

		if (n > t || n < -t) {
			int os = overstep_mode * (t >> 1) ;

			/* Overflow must be added to zone counters */
			z = n + os;
			n = -os;
		}
	} while (this_cpu_cmpxchg(*p, o, n) != o);

	if (z)
		zone_page_state_add(z, zone, item);
}

void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
					int delta)
{
	mod_state(zone, item, delta, 0);
}
EXPORT_SYMBOL(mod_zone_page_state);

void inc_zone_state(struct zone *zone, enum zone_stat_item item)
{
	mod_state(zone, item, 1, 1);
}

void inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
	mod_state(page_zone(page), item, 1, 1);
}
EXPORT_SYMBOL(inc_zone_page_state);

void dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
	mod_state(page_zone(page), item, -1, -1);
}
EXPORT_SYMBOL(dec_zone_page_state);
#else
/*
 * Use interrupt disable to serialize counter updates
 */
void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
					int delta)
{
	unsigned long flags;

	local_irq_save(flags);
	__mod_zone_page_state(zone, item, delta);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(mod_zone_page_state);

387 388 389 390 391 392 393 394 395
void inc_zone_state(struct zone *zone, enum zone_stat_item item)
{
	unsigned long flags;

	local_irq_save(flags);
	__inc_zone_state(zone, item);
	local_irq_restore(flags);
}

396 397 398 399 400 401 402
void inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
	unsigned long flags;
	struct zone *zone;

	zone = page_zone(page);
	local_irq_save(flags);
403
	__inc_zone_state(zone, item);
404 405 406 407 408 409 410 411 412
	local_irq_restore(flags);
}
EXPORT_SYMBOL(inc_zone_page_state);

void dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
	unsigned long flags;

	local_irq_save(flags);
413
	__dec_zone_page_state(page, item);
414 415 416
	local_irq_restore(flags);
}
EXPORT_SYMBOL(dec_zone_page_state);
417
#endif
418 419 420

/*
 * Update the zone counters for one cpu.
421
 *
422 423 424 425
 * The cpu specified must be either the current cpu or a processor that
 * is not online. If it is the current cpu then the execution thread must
 * be pinned to the current cpu.
 *
426 427 428 429 430 431 432 433 434 435
 * Note that refresh_cpu_vm_stats strives to only access
 * node local memory. The per cpu pagesets on remote zones are placed
 * in the memory local to the processor using that pageset. So the
 * loop over all zones will access a series of cachelines local to
 * the processor.
 *
 * The call to zone_page_state_add updates the cachelines with the
 * statistics in the remote zone struct as well as the global cachelines
 * with the global counters. These could cause remote node cache line
 * bouncing and will have to be only done when necessary.
436 437 438 439 440
 */
void refresh_cpu_vm_stats(int cpu)
{
	struct zone *zone;
	int i;
441
	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
442

443
	for_each_populated_zone(zone) {
444
		struct per_cpu_pageset *p;
445

446
		p = per_cpu_ptr(zone->pageset, cpu);
447 448

		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
449
			if (p->vm_stat_diff[i]) {
450 451 452
				unsigned long flags;
				int v;

453
				local_irq_save(flags);
454
				v = p->vm_stat_diff[i];
455
				p->vm_stat_diff[i] = 0;
456 457 458
				local_irq_restore(flags);
				atomic_long_add(v, &zone->vm_stat[i]);
				global_diff[i] += v;
459 460 461 462
#ifdef CONFIG_NUMA
				/* 3 seconds idle till flush */
				p->expire = 3;
#endif
463
			}
464
		cond_resched();
465 466 467 468 469 470 471 472
#ifdef CONFIG_NUMA
		/*
		 * Deal with draining the remote pageset of this
		 * processor
		 *
		 * Check if there are pages remaining in this pageset
		 * if not then there is nothing to expire.
		 */
473
		if (!p->expire || !p->pcp.count)
474 475 476 477 478 479 480 481 482 483 484 485 486 487
			continue;

		/*
		 * We never drain zones local to this processor.
		 */
		if (zone_to_nid(zone) == numa_node_id()) {
			p->expire = 0;
			continue;
		}

		p->expire--;
		if (p->expire)
			continue;

488 489
		if (p->pcp.count)
			drain_zone_pages(zone, &p->pcp);
490
#endif
491
	}
492 493 494 495

	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
		if (global_diff[i])
			atomic_long_add(global_diff[i], &vm_stat[i]);
496 497
}

498 499 500 501 502 503 504 505 506 507 508 509
void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
{
	int i;

	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
		if (pset->vm_stat_diff[i]) {
			int v = pset->vm_stat_diff[i];
			pset->vm_stat_diff[i] = 0;
			atomic_long_add(v, &zone->vm_stat[i]);
			atomic_long_add(v, &vm_stat[i]);
		}
}
510 511
#endif

512 513 514 515 516 517
#ifdef CONFIG_NUMA
/*
 * zonelist = the list of zones passed to the allocator
 * z 	    = the zone from which the allocation occurred.
 *
 * Must be called with interrupts disabled.
Andi Kleen's avatar
Andi Kleen committed
518 519 520 521
 *
 * When __GFP_OTHER_NODE is set assume the node of the preferred
 * zone is the local node. This is useful for daemons who allocate
 * memory on behalf of other processes.
522
 */
Andi Kleen's avatar
Andi Kleen committed
523
void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
524
{
525
	if (z->zone_pgdat == preferred_zone->zone_pgdat) {
526 527 528
		__inc_zone_state(z, NUMA_HIT);
	} else {
		__inc_zone_state(z, NUMA_MISS);
529
		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
530
	}
Andi Kleen's avatar
Andi Kleen committed
531 532
	if (z->node == ((flags & __GFP_OTHER_NODE) ?
			preferred_zone->node : numa_node_id()))
533 534 535 536 537 538
		__inc_zone_state(z, NUMA_LOCAL);
	else
		__inc_zone_state(z, NUMA_OTHER);
}
#endif

539
#ifdef CONFIG_COMPACTION
540

541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
struct contig_page_info {
	unsigned long free_pages;
	unsigned long free_blocks_total;
	unsigned long free_blocks_suitable;
};

/*
 * Calculate the number of free pages in a zone, how many contiguous
 * pages are free and how many are large enough to satisfy an allocation of
 * the target size. Note that this function makes no attempt to estimate
 * how many suitable free blocks there *might* be if MOVABLE pages were
 * migrated. Calculating that is possible, but expensive and can be
 * figured out from userspace
 */
static void fill_contig_page_info(struct zone *zone,
				unsigned int suitable_order,
				struct contig_page_info *info)
{
	unsigned int order;

	info->free_pages = 0;
	info->free_blocks_total = 0;
	info->free_blocks_suitable = 0;

	for (order = 0; order < MAX_ORDER; order++) {
		unsigned long blocks;

		/* Count number of free blocks */
		blocks = zone->free_area[order].nr_free;
		info->free_blocks_total += blocks;

		/* Count free base pages */
		info->free_pages += blocks << order;

		/* Count the suitable free blocks */
		if (order >= suitable_order)
			info->free_blocks_suitable += blocks <<
						(order - suitable_order);
	}
}
581 582 583 584 585 586 587 588

/*
 * A fragmentation index only makes sense if an allocation of a requested
 * size would fail. If that is true, the fragmentation index indicates
 * whether external fragmentation or a lack of memory was the problem.
 * The value can be used to determine if page reclaim or compaction
 * should be used
 */
589
static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
{
	unsigned long requested = 1UL << order;

	if (!info->free_blocks_total)
		return 0;

	/* Fragmentation index only makes sense when a request would fail */
	if (info->free_blocks_suitable)
		return -1000;

	/*
	 * Index is between 0 and 1 so return within 3 decimal places
	 *
	 * 0 => allocation would fail due to lack of memory
	 * 1 => allocation would fail due to fragmentation
	 */
	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
}
608 609 610 611 612 613 614 615 616

/* Same as __fragmentation index but allocs contig_page_info on stack */
int fragmentation_index(struct zone *zone, unsigned int order)
{
	struct contig_page_info info;

	fill_contig_page_info(zone, order, &info);
	return __fragmentation_index(order, &info);
}
617 618 619
#endif

#if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
620
#include <linux/proc_fs.h>
621 622
#include <linux/seq_file.h>

623 624 625 626 627
static char * const migratetype_names[MIGRATE_TYPES] = {
	"Unmovable",
	"Reclaimable",
	"Movable",
	"Reserve",
628 629 630
#ifdef CONFIG_CMA
	"CMA",
#endif
631
	"Isolate",
632 633
};

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
static void *frag_start(struct seq_file *m, loff_t *pos)
{
	pg_data_t *pgdat;
	loff_t node = *pos;
	for (pgdat = first_online_pgdat();
	     pgdat && node;
	     pgdat = next_online_pgdat(pgdat))
		--node;

	return pgdat;
}

static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
{
	pg_data_t *pgdat = (pg_data_t *)arg;

	(*pos)++;
	return next_online_pgdat(pgdat);
}

static void frag_stop(struct seq_file *m, void *arg)
{
}

658 659 660
/* Walk all the zones in a node and print using a callback */
static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
661 662 663 664 665 666 667 668 669 670
{
	struct zone *zone;
	struct zone *node_zones = pgdat->node_zones;
	unsigned long flags;

	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
		if (!populated_zone(zone))
			continue;

		spin_lock_irqsave(&zone->lock, flags);
671
		print(m, pgdat, zone);
672
		spin_unlock_irqrestore(&zone->lock, flags);
673 674
	}
}
675
#endif
676

677
#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
#ifdef CONFIG_ZONE_DMA
#define TEXT_FOR_DMA(xx) xx "_dma",
#else
#define TEXT_FOR_DMA(xx)
#endif

#ifdef CONFIG_ZONE_DMA32
#define TEXT_FOR_DMA32(xx) xx "_dma32",
#else
#define TEXT_FOR_DMA32(xx)
#endif

#ifdef CONFIG_HIGHMEM
#define TEXT_FOR_HIGHMEM(xx) xx "_high",
#else
#define TEXT_FOR_HIGHMEM(xx)
#endif

#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
					TEXT_FOR_HIGHMEM(xx) xx "_movable",

const char * const vmstat_text[] = {
	/* Zoned VM counters */
	"nr_free_pages",
	"nr_inactive_anon",
	"nr_active_anon",
	"nr_inactive_file",
	"nr_active_file",
	"nr_unevictable",
	"nr_mlock",
	"nr_anon_pages",
	"nr_mapped",
	"nr_file_pages",
	"nr_dirty",
	"nr_writeback",
	"nr_slab_reclaimable",
	"nr_slab_unreclaimable",
	"nr_page_table_pages",
	"nr_kernel_stack",
	"nr_unstable",
	"nr_bounce",
	"nr_vmscan_write",
720
	"nr_vmscan_immediate_reclaim",
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
	"nr_writeback_temp",
	"nr_isolated_anon",
	"nr_isolated_file",
	"nr_shmem",
	"nr_dirtied",
	"nr_written",

#ifdef CONFIG_NUMA
	"numa_hit",
	"numa_miss",
	"numa_foreign",
	"numa_interleave",
	"numa_local",
	"numa_other",
#endif
	"nr_anon_transparent_hugepages",
737
	"nr_free_cma",
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
	"nr_dirty_threshold",
	"nr_dirty_background_threshold",

#ifdef CONFIG_VM_EVENT_COUNTERS
	"pgpgin",
	"pgpgout",
	"pswpin",
	"pswpout",

	TEXTS_FOR_ZONES("pgalloc")

	"pgfree",
	"pgactivate",
	"pgdeactivate",

	"pgfault",
	"pgmajfault",

	TEXTS_FOR_ZONES("pgrefill")
757 758
	TEXTS_FOR_ZONES("pgsteal_kswapd")
	TEXTS_FOR_ZONES("pgsteal_direct")
759 760
	TEXTS_FOR_ZONES("pgscan_kswapd")
	TEXTS_FOR_ZONES("pgscan_direct")
761
	"pgscan_direct_throttle",
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776

#ifdef CONFIG_NUMA
	"zone_reclaim_failed",
#endif
	"pginodesteal",
	"slabs_scanned",
	"kswapd_inodesteal",
	"kswapd_low_wmark_hit_quickly",
	"kswapd_high_wmark_hit_quickly",
	"kswapd_skip_congestion_wait",
	"pageoutrun",
	"allocstall",

	"pgrotated",

777 778 779 780 781 782
#ifdef CONFIG_NUMA_BALANCING
	"numa_pte_updates",
	"numa_hint_faults",
	"numa_hint_faults_local",
	"numa_pages_migrated",
#endif
783 784 785 786
#ifdef CONFIG_MIGRATION
	"pgmigrate_success",
	"pgmigrate_fail",
#endif
787
#ifdef CONFIG_COMPACTION
788 789 790
	"compact_migrate_scanned",
	"compact_free_scanned",
	"compact_isolated",
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
	"compact_stall",
	"compact_fail",
	"compact_success",
#endif

#ifdef CONFIG_HUGETLB_PAGE
	"htlb_buddy_alloc_success",
	"htlb_buddy_alloc_fail",
#endif
	"unevictable_pgs_culled",
	"unevictable_pgs_scanned",
	"unevictable_pgs_rescued",
	"unevictable_pgs_mlocked",
	"unevictable_pgs_munlocked",
	"unevictable_pgs_cleared",
	"unevictable_pgs_stranded",

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	"thp_fault_alloc",
	"thp_fault_fallback",
	"thp_collapse_alloc",
	"thp_collapse_alloc_failed",
	"thp_split",
814 815
	"thp_zero_page_alloc",
	"thp_zero_page_alloc_failed",
816 817 818 819
#endif

#endif /* CONFIG_VM_EVENTS_COUNTERS */
};
820
#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
821 822


823
#ifdef CONFIG_PROC_FS
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
						struct zone *zone)
{
	int order;

	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
	for (order = 0; order < MAX_ORDER; ++order)
		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
	seq_putc(m, '\n');
}

/*
 * This walks the free areas for each zone.
 */
static int frag_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;
	walk_zones_in_node(m, pgdat, frag_show_print);
	return 0;
}

static void pagetypeinfo_showfree_print(struct seq_file *m,
					pg_data_t *pgdat, struct zone *zone)
{
	int order, mtype;

	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
		seq_printf(m, "Node %4d, zone %8s, type %12s ",
					pgdat->node_id,
					zone->name,
					migratetype_names[mtype]);
		for (order = 0; order < MAX_ORDER; ++order) {
			unsigned long freecount = 0;
			struct free_area *area;
			struct list_head *curr;

			area = &(zone->free_area[order]);

			list_for_each(curr, &area->free_list[mtype])
				freecount++;
			seq_printf(m, "%6lu ", freecount);
		}
866 867
		seq_putc(m, '\n');
	}
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
}

/* Print out the free pages at each order for each migatetype */
static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
{
	int order;
	pg_data_t *pgdat = (pg_data_t *)arg;

	/* Print header */
	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
	for (order = 0; order < MAX_ORDER; ++order)
		seq_printf(m, "%6d ", order);
	seq_putc(m, '\n');

	walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);

	return 0;
}

static void pagetypeinfo_showblockcount_print(struct seq_file *m,
					pg_data_t *pgdat, struct zone *zone)
{
	int mtype;
	unsigned long pfn;
	unsigned long start_pfn = zone->zone_start_pfn;
	unsigned long end_pfn = start_pfn + zone->spanned_pages;
	unsigned long count[MIGRATE_TYPES] = { 0, };

	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		if (!pfn_valid(pfn))
			continue;

		page = pfn_to_page(pfn);
903 904 905

		/* Watch for unexpected holes punched in the memmap */
		if (!memmap_valid_within(pfn, page, zone))
906
			continue;
907

908 909
		mtype = get_pageblock_migratetype(page);

910 911
		if (mtype < MIGRATE_TYPES)
			count[mtype]++;
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
	}

	/* Print counts */
	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
		seq_printf(m, "%12lu ", count[mtype]);
	seq_putc(m, '\n');
}

/* Print out the free pages at each order for each migratetype */
static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
{
	int mtype;
	pg_data_t *pgdat = (pg_data_t *)arg;

	seq_printf(m, "\n%-23s", "Number of blocks type ");
	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
		seq_printf(m, "%12s ", migratetype_names[mtype]);
	seq_putc(m, '\n');
	walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);

	return 0;
}

/*
 * This prints out statistics in relation to grouping pages by mobility.
 * It is expensive to collect so do not constantly read the file.
 */
static int pagetypeinfo_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;

944
	/* check memoryless node */
945
	if (!node_state(pgdat->node_id, N_MEMORY))
946 947
		return 0;

948 949 950 951 952 953
	seq_printf(m, "Page block order: %d\n", pageblock_order);
	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
	seq_putc(m, '\n');
	pagetypeinfo_showfree(m, pgdat);
	pagetypeinfo_showblockcount(m, pgdat);

954 955 956
	return 0;
}

957
static const struct seq_operations fragmentation_op = {
958 959 960 961 962 963
	.start	= frag_start,
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= frag_show,
};

964 965 966 967 968 969 970 971 972 973 974 975
static int fragmentation_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &fragmentation_op);
}

static const struct file_operations fragmentation_file_operations = {
	.open		= fragmentation_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

976
static const struct seq_operations pagetypeinfo_op = {
977 978 979 980 981 982
	.start	= frag_start,
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= pagetypeinfo_show,
};

983 984 985 986 987 988 989 990 991 992 993 994
static int pagetypeinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &pagetypeinfo_op);
}

static const struct file_operations pagetypeinfo_file_ops = {
	.open		= pagetypeinfo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

995 996
static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
							struct zone *zone)
997
{
998 999 1000 1001 1002 1003 1004
	int i;
	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
	seq_printf(m,
		   "\n  pages free     %lu"
		   "\n        min      %lu"
		   "\n        low      %lu"
		   "\n        high     %lu"
1005
		   "\n        scanned  %lu"
1006
		   "\n        spanned  %lu"
1007 1008
		   "\n        present  %lu"
		   "\n        managed  %lu",
1009
		   zone_page_state(zone, NR_FREE_PAGES),
1010 1011 1012
		   min_wmark_pages(zone),
		   low_wmark_pages(zone),
		   high_wmark_pages(zone),
1013 1014
		   zone->pages_scanned,
		   zone->spanned_pages,
1015 1016
		   zone->present_pages,
		   zone->managed_pages);
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032

	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
		seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
				zone_page_state(zone, i));

	seq_printf(m,
		   "\n        protection: (%lu",
		   zone->lowmem_reserve[0]);
	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
		seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
	seq_printf(m,
		   ")"
		   "\n  pagesets");
	for_each_online_cpu(i) {
		struct per_cpu_pageset *pageset;

1033
		pageset = per_cpu_ptr(zone->pageset, i);
1034 1035 1036 1037 1038 1039 1040 1041 1042
		seq_printf(m,
			   "\n    cpu: %i"
			   "\n              count: %i"
			   "\n              high:  %i"
			   "\n              batch: %i",
			   i,
			   pageset->pcp.count,
			   pageset->pcp.high,
			   pageset->pcp.batch);
1043
#ifdef CONFIG_SMP
1044 1045
		seq_printf(m, "\n  vm stats threshold: %d",
				pageset->stat_threshold);
1046
#endif
1047
	}
1048 1049
	seq_printf(m,
		   "\n  all_unreclaimable: %u"
1050 1051
		   "\n  start_pfn:         %lu"
		   "\n  inactive_ratio:    %u",
1052
		   zone->all_unreclaimable,
1053 1054
		   zone->zone_start_pfn,
		   zone->inactive_ratio);
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	seq_putc(m, '\n');
}

/*
 * Output information about zones in @pgdat.
 */
static int zoneinfo_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;
	walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1065 1066 1067
	return 0;
}

1068
static const struct seq_operations zoneinfo_op = {
1069 1070 1071 1072 1073 1074 1075
	.start	= frag_start, /* iterate over all zones. The same as in
			       * fragmentation. */
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= zoneinfo_show,
};

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
static int zoneinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &zoneinfo_op);
}

static const struct file_operations proc_zoneinfo_file_operations = {
	.open		= zoneinfo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

1088 1089 1090 1091 1092 1093
enum writeback_stat_item {
	NR_DIRTY_THRESHOLD,
	NR_DIRTY_BG_THRESHOLD,
	NR_VM_WRITEBACK_STAT_ITEMS,
};

1094 1095
static void *vmstat_start(struct seq_file *m, loff_t *pos)
{
1096
	unsigned long *v;
1097
	int i, stat_items_size;
1098 1099 1100

	if (*pos >= ARRAY_SIZE(vmstat_text))
		return NULL;
1101 1102
	stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
			  NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1103

1104
#ifdef CONFIG_VM_EVENT_COUNTERS
1105
	stat_items_size += sizeof(struct vm_event_state);
1106
#endif
1107 1108

	v = kmalloc(stat_items_size, GFP_KERNEL);
1109 1110
	m->private = v;
	if (!v)
1111
		return ERR_PTR(-ENOMEM);
1112 1113
	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
		v[i] = global_page_state(i);
1114 1115 1116 1117 1118 1119
	v += NR_VM_ZONE_STAT_ITEMS;

	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
			    v + NR_DIRTY_THRESHOLD);
	v += NR_VM_WRITEBACK_STAT_ITEMS;

1120
#ifdef CONFIG_VM_EVENT_COUNTERS
1121 1122 1123
	all_vm_events(v);
	v[PGPGIN] /= 2;		/* sectors -> kbytes */
	v[PGPGOUT] /= 2;
1124
#endif
1125
	return (unsigned long *)m->private + *pos;
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
}

static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
{
	(*pos)++;
	if (*pos >= ARRAY_SIZE(vmstat_text))
		return NULL;
	return (unsigned long *)m->private + *pos;
}

static int vmstat_show(struct seq_file *m, void *arg)
{
	unsigned long *l = arg;
	unsigned long off = l - (unsigned long *)m->private;

	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
	return 0;
}

static void vmstat_stop(struct seq_file *m, void *arg)
{
	kfree(m->private);
	m->private = NULL;
}

1151
static const struct seq_operations vmstat_op = {
1152 1153 1154 1155 1156 1157
	.start	= vmstat_start,
	.next	= vmstat_next,
	.stop	= vmstat_stop,
	.show	= vmstat_show,
};

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
static int vmstat_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &vmstat_op);
}

static const struct file_operations proc_vmstat_file_operations = {
	.open		= vmstat_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};
1169 1170
#endif /* CONFIG_PROC_FS */

1171
#ifdef CONFIG_SMP
1172
static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1173
int sysctl_stat_interval __read_mostly = HZ;
1174 1175 1176 1177

static void vmstat_update(struct work_struct *w)
{
	refresh_cpu_vm_stats(smp_processor_id());
1178
	schedule_delayed_work(&__get_cpu_var(vmstat_work),
1179
		round_jiffies_relative(sysctl_stat_interval));
1180 1181
}

1182
static void __cpuinit start_cpu_timer(int cpu)
1183
{
1184
	struct delayed_work *work = &per_cpu(vmstat_work, cpu);
1185

1186
	INIT_DEFERRABLE_WORK(work, vmstat_update);
1187
	schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
1188 1189
}

1190 1191 1192 1193 1194 1195 1196 1197
/*
 * Use the cpu notifier to insure that the thresholds are recalculated
 * when necessary.
 */
static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
		unsigned long action,
		void *hcpu)
{
1198 1199
	long cpu = (long)hcpu;

1200
	switch (action) {
1201 1202
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
1203
		refresh_zone_stat_thresholds();
1204
		start_cpu_timer(cpu);
1205
		node_set_state(cpu_to_node(cpu), N_CPU);
1206 1207 1208
		break;
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
1209
		cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1210 1211 1212 1213 1214 1215
		per_cpu(vmstat_work, cpu).work.func = NULL;
		break;
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
		start_cpu_timer(cpu);
		break;
1216
	case CPU_DEAD:
1217
	case CPU_DEAD_FROZEN:
1218 1219 1220 1221
		refresh_zone_stat_thresholds();
		break;
	default:
		break;
1222 1223 1224 1225 1226 1227
	}
	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata vmstat_notifier =
	{ &vmstat_cpuup_callback, NULL, 0 };
1228
#endif
1229

Adrian Bunk's avatar
Adrian Bunk committed
1230
static int __init setup_vmstat(void)
1231
{
1232
#ifdef CONFIG_SMP
1233 1234
	int cpu;

1235
	register_cpu_notifier(&vmstat_notifier);
1236 1237 1238

	for_each_online_cpu(cpu)
		start_cpu_timer(cpu);
1239 1240 1241
#endif
#ifdef CONFIG_PROC_FS
	proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1242
	proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1243
	proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1244
	proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1245
#endif
1246 1247 1248
	return 0;
}
module_init(setup_vmstat)
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308

#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
#include <linux/debugfs.h>


/*
 * Return an index indicating how much of the available free memory is
 * unusable for an allocation of the requested size.
 */
static int unusable_free_index(unsigned int order,
				struct contig_page_info *info)
{
	/* No free memory is interpreted as all free memory is unusable */
	if (info->free_pages == 0)
		return 1000;

	/*
	 * Index should be a value between 0 and 1. Return a value to 3
	 * decimal places.
	 *
	 * 0 => no fragmentation
	 * 1 => high fragmentation
	 */
	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);

}

static void unusable_show_print(struct seq_file *m,
					pg_data_t *pgdat, struct zone *zone)
{
	unsigned int order;
	int index;
	struct contig_page_info info;

	seq_printf(m, "Node %d, zone %8s ",
				pgdat->node_id,
				zone->name);
	for (order = 0; order < MAX_ORDER; ++order) {
		fill_contig_page_info(zone, order, &info);
		index = unusable_free_index(order, &info);
		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
	}

	seq_putc(m, '\n');
}

/*
 * Display unusable free space index
 *
 * The unusable free space index measures how much of the available free
 * memory cannot be used to satisfy an allocation of a given size and is a
 * value between 0 and 1. The higher the value, the more of free memory is
 * unusable and by implication, the worse the external fragmentation is. This
 * can be expressed as a percentage by multiplying by 100.
 */
static int unusable_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;

	/* check memoryless node */
1309
	if (!node_state(pgdat->node_id, N_MEMORY))
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
		return 0;

	walk_zones_in_node(m, pgdat, unusable_show_print);

	return 0;
}

static const struct seq_operations unusable_op = {
	.start	= frag_start,
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= unusable_show,
};

static int unusable_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &unusable_op);
}

static const struct file_operations unusable_file_ops = {
	.open		= unusable_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
static void extfrag_show_print(struct seq_file *m,
					pg_data_t *pgdat, struct zone *zone)
{
	unsigned int order;
	int index;

	/* Alloc on stack as interrupts are disabled for zone walk */
	struct contig_page_info info;

	seq_printf(m, "Node %d, zone %8s ",
				pgdat->node_id,
				zone->name);
	for (order = 0; order < MAX_ORDER; ++order) {
		fill_contig_page_info(zone, order, &info);
1350
		index = __fragmentation_index(order, &info);
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
	}

	seq_putc(m, '\n');
}

/*
 * Display fragmentation index for orders that allocations would fail for
 */
static int extfrag_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;

	walk_zones_in_node(m, pgdat, extfrag_show_print);

	return 0;
}

static const struct seq_operations extfrag_op = {
	.start	= frag_start,
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= extfrag_show,
};

static int extfrag_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &extfrag_op);
}

static const struct file_operations extfrag_file_ops = {
	.open		= extfrag_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

1388 1389
static int __init extfrag_debug_init(void)
{
1390 1391
	struct dentry *extfrag_debug_root;

1392 1393 1394 1395 1396 1397
	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
	if (!extfrag_debug_root)
		return -ENOMEM;

	if (!debugfs_create_file("unusable_index", 0444,
			extfrag_debug_root, NULL, &unusable_file_ops))
1398
		goto fail;
1399

1400 1401
	if (!debugfs_create_file("extfrag_index", 0444,
			extfrag_debug_root, NULL, &extfrag_file_ops))