vmstat.c 16.9 KB
Newer Older
1
2
3
4
5
/*
 *  linux/mm/vmstat.c
 *
 *  Manages VM statistics
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6
7
8
9
 *
 *  zoned VM statistics
 *  Copyright (C) 2006 Silicon Graphics, Inc.,
 *		Christoph Lameter <christoph@lameter.com>
10
11
12
 */

#include <linux/mm.h>
13
#include <linux/module.h>
14
#include <linux/cpu.h>
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#ifdef CONFIG_VM_EVENT_COUNTERS
DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
EXPORT_PER_CPU_SYMBOL(vm_event_states);

static void sum_vm_events(unsigned long *ret, cpumask_t *cpumask)
{
	int cpu = 0;
	int i;

	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));

	cpu = first_cpu(*cpumask);
	while (cpu < NR_CPUS) {
		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);

		cpu = next_cpu(cpu, *cpumask);

		if (cpu < NR_CPUS)
			prefetch(&per_cpu(vm_event_states, cpu));


		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
			ret[i] += this->event[i];
	}
}

/*
 * Accumulate the vm event counters across all CPUs.
 * The result is unavoidably approximate - it can change
 * during and after execution of this function.
*/
void all_vm_events(unsigned long *ret)
{
	sum_vm_events(ret, &cpu_online_map);
}
51
EXPORT_SYMBOL_GPL(all_vm_events);
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

#ifdef CONFIG_HOTPLUG
/*
 * Fold the foreign cpu events into our own.
 *
 * This is adding to the events on one processor
 * but keeps the global counts constant.
 */
void vm_events_fold_cpu(int cpu)
{
	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
	int i;

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
		count_vm_events(i, fold_state->event[i]);
		fold_state->event[i] = 0;
	}
}
#endif /* CONFIG_HOTPLUG */

#endif /* CONFIG_VM_EVENT_COUNTERS */

74
75
76
77
78
79
80
81
82
83
/*
 * Manage combined zone based / global counters
 *
 * vm_stat contains the global counters
 */
atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
EXPORT_SYMBOL(vm_stat);

#ifdef CONFIG_SMP

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
static int calculate_threshold(struct zone *zone)
{
	int threshold;
	int mem;	/* memory in 128 MB units */

	/*
	 * The threshold scales with the number of processors and the amount
	 * of memory per zone. More memory means that we can defer updates for
	 * longer, more processors could lead to more contention.
 	 * fls() is used to have a cheap way of logarithmic scaling.
	 *
	 * Some sample thresholds:
	 *
	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
	 * ------------------------------------------------------------------
	 * 8		1		1	0.9-1 GB	4
	 * 16		2		2	0.9-1 GB	4
	 * 20 		2		2	1-2 GB		5
	 * 24		2		2	2-4 GB		6
	 * 28		2		2	4-8 GB		7
	 * 32		2		2	8-16 GB		8
	 * 4		2		2	<128M		1
	 * 30		4		3	2-4 GB		5
	 * 48		4		3	8-16 GB		8
	 * 32		8		4	1-2 GB		4
	 * 32		8		4	0.9-1GB		4
	 * 10		16		5	<128M		1
	 * 40		16		5	900M		4
	 * 70		64		7	2-4 GB		5
	 * 84		64		7	4-8 GB		6
	 * 108		512		9	4-8 GB		6
	 * 125		1024		10	8-16 GB		8
	 * 125		1024		10	16-32 GB	9
	 */

	mem = zone->present_pages >> (27 - PAGE_SHIFT);

	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));

	/*
	 * Maximum threshold is 125
	 */
	threshold = min(125, threshold);

	return threshold;
}
130
131

/*
132
 * Refresh the thresholds for each zone.
133
 */
134
static void refresh_zone_stat_thresholds(void)
135
{
136
137
138
139
140
141
142
143
144
145
146
147
148
149
	struct zone *zone;
	int cpu;
	int threshold;

	for_each_zone(zone) {

		if (!zone->present_pages)
			continue;

		threshold = calculate_threshold(zone);

		for_each_online_cpu(cpu)
			zone_pcp(zone, cpu)->stat_threshold = threshold;
	}
150
151
152
153
154
155
156
157
}

/*
 * For use when we know that interrupts are disabled.
 */
void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
				int delta)
{
158
159
	struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
	s8 *p = pcp->vm_stat_diff + item;
160
161
162
163
	long x;

	x = delta + *p;

164
	if (unlikely(x > pcp->stat_threshold || x < -pcp->stat_threshold)) {
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
		zone_page_state_add(x, zone, item);
		x = 0;
	}
	*p = x;
}
EXPORT_SYMBOL(__mod_zone_page_state);

/*
 * For an unknown interrupt state
 */
void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
					int delta)
{
	unsigned long flags;

	local_irq_save(flags);
	__mod_zone_page_state(zone, item, delta);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(mod_zone_page_state);

/*
 * Optimized increment and decrement functions.
 *
 * These are only for a single page and therefore can take a struct page *
 * argument instead of struct zone *. This allows the inclusion of the code
 * generated for page_zone(page) into the optimized functions.
 *
 * No overflow check is necessary and therefore the differential can be
 * incremented or decremented in place which may allow the compilers to
 * generate better code.
 * The increment or decrement is known and therefore one boundary check can
 * be omitted.
 *
199
200
201
 * NOTE: These functions are very performance sensitive. Change only
 * with care.
 *
202
203
204
205
206
207
208
 * Some processors have inc/dec instructions that are atomic vs an interrupt.
 * However, the code must first determine the differential location in a zone
 * based on the processor number and then inc/dec the counter. There is no
 * guarantee without disabling preemption that the processor will not change
 * in between and therefore the atomicity vs. interrupt cannot be exploited
 * in a useful way here.
 */
209
void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
210
{
211
212
	struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
	s8 *p = pcp->vm_stat_diff + item;
213
214
215

	(*p)++;

216
217
218
219
220
	if (unlikely(*p > pcp->stat_threshold)) {
		int overstep = pcp->stat_threshold / 2;

		zone_page_state_add(*p + overstep, zone, item);
		*p = -overstep;
221
222
	}
}
223
224
225
226
227

void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
	__inc_zone_state(page_zone(page), item);
}
228
229
EXPORT_SYMBOL(__inc_zone_page_state);

230
void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
231
{
232
233
	struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
	s8 *p = pcp->vm_stat_diff + item;
234
235
236

	(*p)--;

237
238
239
240
241
	if (unlikely(*p < - pcp->stat_threshold)) {
		int overstep = pcp->stat_threshold / 2;

		zone_page_state_add(*p - overstep, zone, item);
		*p = overstep;
242
243
	}
}
244
245
246
247
248

void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
	__dec_zone_state(page_zone(page), item);
}
249
250
EXPORT_SYMBOL(__dec_zone_page_state);

251
252
253
254
255
256
257
258
259
void inc_zone_state(struct zone *zone, enum zone_stat_item item)
{
	unsigned long flags;

	local_irq_save(flags);
	__inc_zone_state(zone, item);
	local_irq_restore(flags);
}

260
261
262
263
264
265
266
void inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
	unsigned long flags;
	struct zone *zone;

	zone = page_zone(page);
	local_irq_save(flags);
267
	__inc_zone_state(zone, item);
268
269
270
271
272
273
274
275
276
	local_irq_restore(flags);
}
EXPORT_SYMBOL(inc_zone_page_state);

void dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
	unsigned long flags;

	local_irq_save(flags);
277
	__dec_zone_page_state(page, item);
278
279
280
281
282
283
	local_irq_restore(flags);
}
EXPORT_SYMBOL(dec_zone_page_state);

/*
 * Update the zone counters for one cpu.
284
285
286
287
288
289
290
291
292
293
294
 *
 * Note that refresh_cpu_vm_stats strives to only access
 * node local memory. The per cpu pagesets on remote zones are placed
 * in the memory local to the processor using that pageset. So the
 * loop over all zones will access a series of cachelines local to
 * the processor.
 *
 * The call to zone_page_state_add updates the cachelines with the
 * statistics in the remote zone struct as well as the global cachelines
 * with the global counters. These could cause remote node cache line
 * bouncing and will have to be only done when necessary.
295
296
297
298
299
300
301
302
 */
void refresh_cpu_vm_stats(int cpu)
{
	struct zone *zone;
	int i;
	unsigned long flags;

	for_each_zone(zone) {
303
		struct per_cpu_pageset *p;
304

305
306
307
		if (!populated_zone(zone))
			continue;

308
		p = zone_pcp(zone, cpu);
309
310

		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
311
			if (p->vm_stat_diff[i]) {
312
				local_irq_save(flags);
313
				zone_page_state_add(p->vm_stat_diff[i],
314
					zone, i);
315
316
317
318
319
				p->vm_stat_diff[i] = 0;
#ifdef CONFIG_NUMA
				/* 3 seconds idle till flush */
				p->expire = 3;
#endif
320
321
				local_irq_restore(flags);
			}
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
#ifdef CONFIG_NUMA
		/*
		 * Deal with draining the remote pageset of this
		 * processor
		 *
		 * Check if there are pages remaining in this pageset
		 * if not then there is nothing to expire.
		 */
		if (!p->expire || (!p->pcp[0].count && !p->pcp[1].count))
			continue;

		/*
		 * We never drain zones local to this processor.
		 */
		if (zone_to_nid(zone) == numa_node_id()) {
			p->expire = 0;
			continue;
		}

		p->expire--;
		if (p->expire)
			continue;

		if (p->pcp[0].count)
			drain_zone_pages(zone, p->pcp + 0);

		if (p->pcp[1].count)
			drain_zone_pages(zone, p->pcp + 1);
#endif
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
	}
}

static void __refresh_cpu_vm_stats(void *dummy)
{
	refresh_cpu_vm_stats(smp_processor_id());
}

/*
 * Consolidate all counters.
 *
 * Note that the result is less inaccurate but still inaccurate
 * if concurrent processes are allowed to run.
 */
void refresh_vm_stats(void)
{
	on_each_cpu(__refresh_cpu_vm_stats, NULL, 0, 1);
}
EXPORT_SYMBOL(refresh_vm_stats);

#endif

373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
#ifdef CONFIG_NUMA
/*
 * zonelist = the list of zones passed to the allocator
 * z 	    = the zone from which the allocation occurred.
 *
 * Must be called with interrupts disabled.
 */
void zone_statistics(struct zonelist *zonelist, struct zone *z)
{
	if (z->zone_pgdat == zonelist->zones[0]->zone_pgdat) {
		__inc_zone_state(z, NUMA_HIT);
	} else {
		__inc_zone_state(z, NUMA_MISS);
		__inc_zone_state(zonelist->zones[0], NUMA_FOREIGN);
	}
388
	if (z->node == numa_node_id())
389
390
391
392
393
394
		__inc_zone_state(z, NUMA_LOCAL);
	else
		__inc_zone_state(z, NUMA_OTHER);
}
#endif

395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
#ifdef CONFIG_PROC_FS

#include <linux/seq_file.h>

static void *frag_start(struct seq_file *m, loff_t *pos)
{
	pg_data_t *pgdat;
	loff_t node = *pos;
	for (pgdat = first_online_pgdat();
	     pgdat && node;
	     pgdat = next_online_pgdat(pgdat))
		--node;

	return pgdat;
}

static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
{
	pg_data_t *pgdat = (pg_data_t *)arg;

	(*pos)++;
	return next_online_pgdat(pgdat);
}

static void frag_stop(struct seq_file *m, void *arg)
{
}

/*
 * This walks the free areas for each zone.
 */
static int frag_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;
	struct zone *zone;
	struct zone *node_zones = pgdat->node_zones;
	unsigned long flags;
	int order;

	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
		if (!populated_zone(zone))
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
		for (order = 0; order < MAX_ORDER; ++order)
			seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
		spin_unlock_irqrestore(&zone->lock, flags);
		seq_putc(m, '\n');
	}
	return 0;
}

448
const struct seq_operations fragmentation_op = {
449
450
451
452
453
454
	.start	= frag_start,
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= frag_show,
};

455
456
457
458
459
460
#ifdef CONFIG_ZONE_DMA
#define TEXT_FOR_DMA(xx) xx "_dma",
#else
#define TEXT_FOR_DMA(xx)
#endif

461
462
463
464
465
466
467
468
469
470
471
472
#ifdef CONFIG_ZONE_DMA32
#define TEXT_FOR_DMA32(xx) xx "_dma32",
#else
#define TEXT_FOR_DMA32(xx)
#endif

#ifdef CONFIG_HIGHMEM
#define TEXT_FOR_HIGHMEM(xx) xx "_high",
#else
#define TEXT_FOR_HIGHMEM(xx)
#endif

473
#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
474
475
					TEXT_FOR_HIGHMEM(xx)

476
static const char * const vmstat_text[] = {
477
	/* Zoned VM counters */
478
	"nr_free_pages",
479
480
	"nr_active",
	"nr_inactive",
481
	"nr_anon_pages",
482
	"nr_mapped",
483
	"nr_file_pages",
484
485
	"nr_dirty",
	"nr_writeback",
486
487
	"nr_slab_reclaimable",
	"nr_slab_unreclaimable",
488
	"nr_page_table_pages",
489
	"nr_unstable",
490
	"nr_bounce",
491
	"nr_vmscan_write",
492

493
494
495
496
497
498
499
500
501
#ifdef CONFIG_NUMA
	"numa_hit",
	"numa_miss",
	"numa_foreign",
	"numa_interleave",
	"numa_local",
	"numa_other",
#endif

502
#ifdef CONFIG_VM_EVENT_COUNTERS
503
504
505
506
507
	"pgpgin",
	"pgpgout",
	"pswpin",
	"pswpout",

508
	TEXTS_FOR_ZONES("pgalloc")
509
510
511
512
513
514
515
516

	"pgfree",
	"pgactivate",
	"pgdeactivate",

	"pgfault",
	"pgmajfault",

517
518
519
520
	TEXTS_FOR_ZONES("pgrefill")
	TEXTS_FOR_ZONES("pgsteal")
	TEXTS_FOR_ZONES("pgscan_kswapd")
	TEXTS_FOR_ZONES("pgscan_direct")
521
522
523
524
525
526
527
528
529

	"pginodesteal",
	"slabs_scanned",
	"kswapd_steal",
	"kswapd_inodesteal",
	"pageoutrun",
	"allocstall",

	"pgrotated",
530
#endif
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
};

/*
 * Output information about zones in @pgdat.
 */
static int zoneinfo_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = arg;
	struct zone *zone;
	struct zone *node_zones = pgdat->node_zones;
	unsigned long flags;

	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
		int i;

		if (!populated_zone(zone))
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
		seq_printf(m,
			   "\n  pages free     %lu"
			   "\n        min      %lu"
			   "\n        low      %lu"
			   "\n        high     %lu"
			   "\n        scanned  %lu (a: %lu i: %lu)"
			   "\n        spanned  %lu"
			   "\n        present  %lu",
559
			   zone_page_state(zone, NR_FREE_PAGES),
560
561
562
563
564
565
566
			   zone->pages_min,
			   zone->pages_low,
			   zone->pages_high,
			   zone->pages_scanned,
			   zone->nr_scan_active, zone->nr_scan_inactive,
			   zone->spanned_pages,
			   zone->present_pages);
567
568
569
570
571

		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
			seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
					zone_page_state(zone, i));

572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
		seq_printf(m,
			   "\n        protection: (%lu",
			   zone->lowmem_reserve[0]);
		for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
			seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
		seq_printf(m,
			   ")"
			   "\n  pagesets");
		for_each_online_cpu(i) {
			struct per_cpu_pageset *pageset;
			int j;

			pageset = zone_pcp(zone, i);
			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
				seq_printf(m,
					   "\n    cpu: %i pcp: %i"
					   "\n              count: %i"
					   "\n              high:  %i"
					   "\n              batch: %i",
					   i, j,
					   pageset->pcp[j].count,
					   pageset->pcp[j].high,
					   pageset->pcp[j].batch);
			}
596
597
598
599
#ifdef CONFIG_SMP
			seq_printf(m, "\n  vm stats threshold: %d",
					pageset->stat_threshold);
#endif
600
601
602
603
604
605
606
607
608
609
610
611
612
613
		}
		seq_printf(m,
			   "\n  all_unreclaimable: %u"
			   "\n  prev_priority:     %i"
			   "\n  start_pfn:         %lu",
			   zone->all_unreclaimable,
			   zone->prev_priority,
			   zone->zone_start_pfn);
		spin_unlock_irqrestore(&zone->lock, flags);
		seq_putc(m, '\n');
	}
	return 0;
}

614
const struct seq_operations zoneinfo_op = {
615
616
617
618
619
620
621
622
623
	.start	= frag_start, /* iterate over all zones. The same as in
			       * fragmentation. */
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= zoneinfo_show,
};

static void *vmstat_start(struct seq_file *m, loff_t *pos)
{
624
	unsigned long *v;
625
626
627
#ifdef CONFIG_VM_EVENT_COUNTERS
	unsigned long *e;
#endif
628
	int i;
629
630
631
632

	if (*pos >= ARRAY_SIZE(vmstat_text))
		return NULL;

633
#ifdef CONFIG_VM_EVENT_COUNTERS
634
	v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long)
635
636
637
638
639
			+ sizeof(struct vm_event_state), GFP_KERNEL);
#else
	v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long),
			GFP_KERNEL);
#endif
640
641
	m->private = v;
	if (!v)
642
		return ERR_PTR(-ENOMEM);
643
644
	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
		v[i] = global_page_state(i);
645
646
647
648
649
650
#ifdef CONFIG_VM_EVENT_COUNTERS
	e = v + NR_VM_ZONE_STAT_ITEMS;
	all_vm_events(e);
	e[PGPGIN] /= 2;		/* sectors -> kbytes */
	e[PGPGOUT] /= 2;
#endif
651
	return v + *pos;
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
}

static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
{
	(*pos)++;
	if (*pos >= ARRAY_SIZE(vmstat_text))
		return NULL;
	return (unsigned long *)m->private + *pos;
}

static int vmstat_show(struct seq_file *m, void *arg)
{
	unsigned long *l = arg;
	unsigned long off = l - (unsigned long *)m->private;

	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
	return 0;
}

static void vmstat_stop(struct seq_file *m, void *arg)
{
	kfree(m->private);
	m->private = NULL;
}

677
const struct seq_operations vmstat_op = {
678
679
680
681
682
683
684
685
	.start	= vmstat_start,
	.next	= vmstat_next,
	.stop	= vmstat_stop,
	.show	= vmstat_show,
};

#endif /* CONFIG_PROC_FS */

686
#ifdef CONFIG_SMP
687
static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
688
int sysctl_stat_interval __read_mostly = HZ;
689
690
691
692

static void vmstat_update(struct work_struct *w)
{
	refresh_cpu_vm_stats(smp_processor_id());
693
694
	schedule_delayed_work(&__get_cpu_var(vmstat_work),
		sysctl_stat_interval);
695
696
697
698
699
700
}

static void __devinit start_cpu_timer(int cpu)
{
	struct delayed_work *vmstat_work = &per_cpu(vmstat_work, cpu);

701
	INIT_DELAYED_WORK_DEFERRABLE(vmstat_work, vmstat_update);
702
703
704
	schedule_delayed_work_on(cpu, vmstat_work, HZ + cpu);
}

705
706
707
708
709
710
711
712
/*
 * Use the cpu notifier to insure that the thresholds are recalculated
 * when necessary.
 */
static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
		unsigned long action,
		void *hcpu)
{
713
714
	long cpu = (long)hcpu;

715
	switch (action) {
716
717
718
719
720
721
722
723
724
725
726
727
728
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
		start_cpu_timer(cpu);
		break;
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
		cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu));
		per_cpu(vmstat_work, cpu).work.func = NULL;
		break;
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
		start_cpu_timer(cpu);
		break;
729
	case CPU_DEAD:
730
	case CPU_DEAD_FROZEN:
731
732
733
734
		refresh_zone_stat_thresholds();
		break;
	default:
		break;
735
736
737
738
739
740
741
742
743
	}
	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata vmstat_notifier =
	{ &vmstat_cpuup_callback, NULL, 0 };

int __init setup_vmstat(void)
{
744
745
	int cpu;

746
747
	refresh_zone_stat_thresholds();
	register_cpu_notifier(&vmstat_notifier);
748
749
750

	for_each_online_cpu(cpu)
		start_cpu_timer(cpu);
751
752
753
754
	return 0;
}
module_init(setup_vmstat)
#endif