genvdso.h 4.63 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
/*
 * Copyright (C) 2015 Imagination Technologies
 * Author: Alex Smith <alex.smith@imgtec.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation;  either version 2 of the  License, or (at your
 * option) any later version.
 */

static inline bool FUNC(patch_vdso)(const char *path, void *vdso)
{
	const ELF(Ehdr) *ehdr = vdso;
	void *shdrs;
	ELF(Shdr) *shdr;
	char *shstrtab, *name;
	uint16_t sh_count, sh_entsize, i;
	unsigned int local_gotno, symtabno, gotsym;
	ELF(Dyn) *dyn = NULL;

	shdrs = vdso + FUNC(swap_uint)(ehdr->e_shoff);
	sh_count = swap_uint16(ehdr->e_shnum);
	sh_entsize = swap_uint16(ehdr->e_shentsize);

	shdr = shdrs + (sh_entsize * swap_uint16(ehdr->e_shstrndx));
	shstrtab = vdso + FUNC(swap_uint)(shdr->sh_offset);

	for (i = 0; i < sh_count; i++) {
		shdr = shdrs + (i * sh_entsize);
		name = shstrtab + swap_uint32(shdr->sh_name);

		/*
		 * Ensure there are no relocation sections - ld.so does not
		 * relocate the VDSO so if there are relocations things will
		 * break.
		 */
		switch (swap_uint32(shdr->sh_type)) {
		case SHT_REL:
		case SHT_RELA:
			fprintf(stderr,
				"%s: '%s' contains relocation sections\n",
				program_name, path);
			return false;
		case SHT_DYNAMIC:
			dyn = vdso + FUNC(swap_uint)(shdr->sh_offset);
			break;
		}

		/* Check for existing sections. */
		if (strcmp(name, ".MIPS.abiflags") == 0) {
			fprintf(stderr,
				"%s: '%s' already contains a '.MIPS.abiflags' section\n",
				program_name, path);
			return false;
		}

		if (strcmp(name, ".mips_abiflags") == 0) {
			strcpy(name, ".MIPS.abiflags");
			shdr->sh_type = swap_uint32(SHT_MIPS_ABIFLAGS);
			shdr->sh_entsize = shdr->sh_size;
		}
	}

	/*
	 * Ensure the GOT has no entries other than the standard 2, for the same
	 * reason we check that there's no relocation sections above.
	 * The standard two entries are:
	 * - Lazy resolver
	 * - Module pointer
	 */
	if (dyn) {
		local_gotno = symtabno = gotsym = 0;

		while (FUNC(swap_uint)(dyn->d_tag) != DT_NULL) {
			switch (FUNC(swap_uint)(dyn->d_tag)) {
			/*
			 * This member holds the number of local GOT entries.
			 */
			case DT_MIPS_LOCAL_GOTNO:
				local_gotno = FUNC(swap_uint)(dyn->d_un.d_val);
				break;
			/*
			 * This member holds the number of entries in the
			 * .dynsym section.
			 */
			case DT_MIPS_SYMTABNO:
				symtabno = FUNC(swap_uint)(dyn->d_un.d_val);
				break;
			/*
			 * This member holds the index of the first dynamic
			 * symbol table entry that corresponds to an entry in
			 * the GOT.
			 */
			case DT_MIPS_GOTSYM:
				gotsym = FUNC(swap_uint)(dyn->d_un.d_val);
				break;
			}

			dyn++;
		}

		if (local_gotno > 2 || symtabno - gotsym) {
			fprintf(stderr,
				"%s: '%s' contains unexpected GOT entries\n",
				program_name, path);
			return false;
		}
	}

	return true;
}

static inline bool FUNC(get_symbols)(const char *path, void *vdso)
{
	const ELF(Ehdr) *ehdr = vdso;
	void *shdrs, *symtab;
	ELF(Shdr) *shdr;
	const ELF(Sym) *sym;
	char *strtab, *name;
	uint16_t sh_count, sh_entsize, st_count, st_entsize, i, j;
	uint64_t offset;
	uint32_t flags;

	shdrs = vdso + FUNC(swap_uint)(ehdr->e_shoff);
	sh_count = swap_uint16(ehdr->e_shnum);
	sh_entsize = swap_uint16(ehdr->e_shentsize);

	for (i = 0; i < sh_count; i++) {
		shdr = shdrs + (i * sh_entsize);

		if (swap_uint32(shdr->sh_type) == SHT_SYMTAB)
			break;
	}

	if (i == sh_count) {
		fprintf(stderr, "%s: '%s' has no symbol table\n", program_name,
			path);
		return false;
	}

	/* Get flags */
	flags = swap_uint32(ehdr->e_flags);
	if (elf_class == ELFCLASS64)
		elf_abi = ABI_N64;
	else if (flags & EF_MIPS_ABI2)
		elf_abi = ABI_N32;
	else
		elf_abi = ABI_O32;

	/* Get symbol table. */
	symtab = vdso + FUNC(swap_uint)(shdr->sh_offset);
	st_entsize = FUNC(swap_uint)(shdr->sh_entsize);
	st_count = FUNC(swap_uint)(shdr->sh_size) / st_entsize;

	/* Get string table. */
	shdr = shdrs + (swap_uint32(shdr->sh_link) * sh_entsize);
	strtab = vdso + FUNC(swap_uint)(shdr->sh_offset);

	/* Write offsets for symbols needed by the kernel. */
	for (i = 0; vdso_symbols[i].name; i++) {
		if (!(vdso_symbols[i].abis & elf_abi))
			continue;

		for (j = 0; j < st_count; j++) {
			sym = symtab + (j * st_entsize);
			name = strtab + swap_uint32(sym->st_name);

			if (!strcmp(name, vdso_symbols[i].name)) {
				offset = FUNC(swap_uint)(sym->st_value);

				fprintf(out_file,
					"\t.%s = 0x%" PRIx64 ",\n",
					vdso_symbols[i].offset_name, offset);
				break;
			}
		}

		if (j == st_count) {
			fprintf(stderr,
				"%s: '%s' is missing required symbol '%s'\n",
				program_name, path, vdso_symbols[i].name);
			return false;
		}
	}

	return true;
}