find_bit.c 3.19 KB
Newer Older
1
/* bit search implementation
2
 *
3
 * Copied from lib/find_bit.c to tools/lib/find_bit.c
4 5 6 7
 *
 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
 * Written by David Howells (dhowells@redhat.com)
 *
8 9 10 11 12 13 14
 * Copyright (C) 2008 IBM Corporation
 * 'find_last_bit' is written by Rusty Russell <rusty@rustcorp.com.au>
 * (Inspired by David Howell's find_next_bit implementation)
 *
 * Rewritten by Yury Norov <yury.norov@gmail.com> to decrease
 * size and improve performance, 2015.
 *
15 16 17 18 19 20 21
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

#include <linux/bitops.h>
22 23
#include <linux/bitmap.h>
#include <linux/kernel.h>
24

25 26
#if !defined(find_next_bit) || !defined(find_next_zero_bit) || \
		!defined(find_next_and_bit)
27 28

/*
29 30 31 32 33
 * This is a common helper function for find_next_bit, find_next_zero_bit, and
 * find_next_and_bit. The differences are:
 *  - The "invert" argument, which is XORed with each fetched word before
 *    searching it for one bits.
 *  - The optional "addr2", which is anded with "addr1" if present.
34
 */
35 36 37
static inline unsigned long _find_next_bit(const unsigned long *addr1,
		const unsigned long *addr2, unsigned long nbits,
		unsigned long start, unsigned long invert)
38 39 40
{
	unsigned long tmp;

41
	if (unlikely(start >= nbits))
42 43
		return nbits;

44 45 46 47
	tmp = addr1[start / BITS_PER_LONG];
	if (addr2)
		tmp &= addr2[start / BITS_PER_LONG];
	tmp ^= invert;
48 49 50 51 52 53 54 55 56 57

	/* Handle 1st word. */
	tmp &= BITMAP_FIRST_WORD_MASK(start);
	start = round_down(start, BITS_PER_LONG);

	while (!tmp) {
		start += BITS_PER_LONG;
		if (start >= nbits)
			return nbits;

58 59 60 61
		tmp = addr1[start / BITS_PER_LONG];
		if (addr2)
			tmp &= addr2[start / BITS_PER_LONG];
		tmp ^= invert;
62 63
	}

64 65 66 67 68 69 70 71 72 73 74
	return min(start + __ffs(tmp), nbits);
}
#endif

#ifndef find_next_bit
/*
 * Find the next set bit in a memory region.
 */
unsigned long find_next_bit(const unsigned long *addr, unsigned long size,
			    unsigned long offset)
{
75
	return _find_next_bit(addr, NULL, size, offset, 0UL);
76 77 78 79 80 81 82 83 84
}
#endif

#ifndef find_first_bit
/*
 * Find the first set bit in a memory region.
 */
unsigned long find_first_bit(const unsigned long *addr, unsigned long size)
{
85
	unsigned long idx;
86

87 88 89
	for (idx = 0; idx * BITS_PER_LONG < size; idx++) {
		if (addr[idx])
			return min(idx * BITS_PER_LONG + __ffs(addr[idx]), size);
90 91
	}

92
	return size;
93 94
}
#endif
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

#ifndef find_first_zero_bit
/*
 * Find the first cleared bit in a memory region.
 */
unsigned long find_first_zero_bit(const unsigned long *addr, unsigned long size)
{
	unsigned long idx;

	for (idx = 0; idx * BITS_PER_LONG < size; idx++) {
		if (addr[idx] != ~0UL)
			return min(idx * BITS_PER_LONG + ffz(addr[idx]), size);
	}

	return size;
}
#endif

#ifndef find_next_zero_bit
unsigned long find_next_zero_bit(const unsigned long *addr, unsigned long size,
				 unsigned long offset)
{
117 118 119 120 121 122 123 124 125 126
	return _find_next_bit(addr, NULL, size, offset, ~0UL);
}
#endif

#ifndef find_next_and_bit
unsigned long find_next_and_bit(const unsigned long *addr1,
		const unsigned long *addr2, unsigned long size,
		unsigned long offset)
{
	return _find_next_bit(addr1, addr2, size, offset, 0UL);
127 128
}
#endif