diff --git a/include/asm-generic/qspinlock.h b/include/asm-generic/qspinlock.h
index 6bd05700d8c94cfe5c190008c1eb8910bf8ae0ae..05f05f17a7c2e4fc14f8fa858abc9f7d7715c7b9 100644
--- a/include/asm-generic/qspinlock.h
+++ b/include/asm-generic/qspinlock.h
@@ -21,38 +21,34 @@
 
 #include <asm-generic/qspinlock_types.h>
 
+/**
+ * queued_spin_unlock_wait - wait until the _current_ lock holder releases the lock
+ * @lock : Pointer to queued spinlock structure
+ *
+ * There is a very slight possibility of live-lock if the lockers keep coming
+ * and the waiter is just unfortunate enough to not see any unlock state.
+ */
+#ifndef queued_spin_unlock_wait
+extern void queued_spin_unlock_wait(struct qspinlock *lock);
+#endif
+
 /**
  * queued_spin_is_locked - is the spinlock locked?
  * @lock: Pointer to queued spinlock structure
  * Return: 1 if it is locked, 0 otherwise
  */
+#ifndef queued_spin_is_locked
 static __always_inline int queued_spin_is_locked(struct qspinlock *lock)
 {
 	/*
-	 * queued_spin_lock_slowpath() can ACQUIRE the lock before
-	 * issuing the unordered store that sets _Q_LOCKED_VAL.
-	 *
-	 * See both smp_cond_acquire() sites for more detail.
-	 *
-	 * This however means that in code like:
-	 *
-	 *   spin_lock(A)		spin_lock(B)
-	 *   spin_unlock_wait(B)	spin_is_locked(A)
-	 *   do_something()		do_something()
-	 *
-	 * Both CPUs can end up running do_something() because the store
-	 * setting _Q_LOCKED_VAL will pass through the loads in
-	 * spin_unlock_wait() and/or spin_is_locked().
+	 * See queued_spin_unlock_wait().
 	 *
-	 * Avoid this by issuing a full memory barrier between the spin_lock()
-	 * and the loads in spin_unlock_wait() and spin_is_locked().
-	 *
-	 * Note that regular mutual exclusion doesn't care about this
-	 * delayed store.
+	 * Any !0 state indicates it is locked, even if _Q_LOCKED_VAL
+	 * isn't immediately observable.
 	 */
-	smp_mb();
-	return atomic_read(&lock->val) & _Q_LOCKED_MASK;
+	return atomic_read(&lock->val);
 }
+#endif
 
 /**
  * queued_spin_value_unlocked - is the spinlock structure unlocked?
@@ -122,21 +118,6 @@ static __always_inline void queued_spin_unlock(struct qspinlock *lock)
 }
 #endif
 
-/**
- * queued_spin_unlock_wait - wait until current lock holder releases the lock
- * @lock : Pointer to queued spinlock structure
- *
- * There is a very slight possibility of live-lock if the lockers keep coming
- * and the waiter is just unfortunate enough to not see any unlock state.
- */
-static inline void queued_spin_unlock_wait(struct qspinlock *lock)
-{
-	/* See queued_spin_is_locked() */
-	smp_mb();
-	while (atomic_read(&lock->val) & _Q_LOCKED_MASK)
-		cpu_relax();
-}
-
 #ifndef virt_spin_lock
 static __always_inline bool virt_spin_lock(struct qspinlock *lock)
 {
diff --git a/include/linux/seqlock.h b/include/linux/seqlock.h
index 7973a821ac58877a56ff5214793786948170ae8e..ead97654c4e9afa7239e068cb37f6981d77ce6a3 100644
--- a/include/linux/seqlock.h
+++ b/include/linux/seqlock.h
@@ -277,7 +277,10 @@ static inline void raw_write_seqcount_barrier(seqcount_t *s)
 
 static inline int raw_read_seqcount_latch(seqcount_t *s)
 {
-	return lockless_dereference(s)->sequence;
+	int seq = READ_ONCE(s->sequence);
+	/* Pairs with the first smp_wmb() in raw_write_seqcount_latch() */
+	smp_read_barrier_depends();
+	return seq;
 }
 
 /**
@@ -331,7 +334,7 @@ static inline int raw_read_seqcount_latch(seqcount_t *s)
  *	unsigned seq, idx;
  *
  *	do {
- *		seq = lockless_dereference(latch)->seq;
+ *		seq = raw_read_seqcount_latch(&latch->seq);
  *
  *		idx = seq & 0x01;
  *		entry = data_query(latch->data[idx], ...);
diff --git a/kernel/futex.c b/kernel/futex.c
index ee25f5ba4aca13f8a05a9e6c3a4c5a2aff768131..33664f70e2d25e880efdbc8695fcc12989871150 100644
--- a/kernel/futex.c
+++ b/kernel/futex.c
@@ -469,7 +469,7 @@ get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
 {
 	unsigned long address = (unsigned long)uaddr;
 	struct mm_struct *mm = current->mm;
-	struct page *page;
+	struct page *page, *tail;
 	struct address_space *mapping;
 	int err, ro = 0;
 
@@ -530,7 +530,15 @@ get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
 	 * considered here and page lock forces unnecessarily serialization
 	 * From this point on, mapping will be re-verified if necessary and
 	 * page lock will be acquired only if it is unavoidable
-	 */
+	 *
+	 * Mapping checks require the head page for any compound page so the
+	 * head page and mapping is looked up now. For anonymous pages, it
+	 * does not matter if the page splits in the future as the key is
+	 * based on the address. For filesystem-backed pages, the tail is
+	 * required as the index of the page determines the key. For
+	 * base pages, there is no tail page and tail == page.
+	 */
+	tail = page;
 	page = compound_head(page);
 	mapping = READ_ONCE(page->mapping);
 
@@ -654,7 +662,7 @@ get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
 
 		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
 		key->shared.inode = inode;
-		key->shared.pgoff = basepage_index(page);
+		key->shared.pgoff = basepage_index(tail);
 		rcu_read_unlock();
 	}
 
diff --git a/kernel/locking/mutex.c b/kernel/locking/mutex.c
index e364b424b019ff51de0bde17fe2611444b5c1efb..79d2d765a75f1fef4945dacd2b0aa07b77eba336 100644
--- a/kernel/locking/mutex.c
+++ b/kernel/locking/mutex.c
@@ -486,9 +486,6 @@ __ww_mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
 	if (!hold_ctx)
 		return 0;
 
-	if (unlikely(ctx == hold_ctx))
-		return -EALREADY;
-
 	if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
 	    (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
 #ifdef CONFIG_DEBUG_MUTEXES
@@ -514,6 +511,12 @@ __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
 	unsigned long flags;
 	int ret;
 
+	if (use_ww_ctx) {
+		struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
+		if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
+			return -EALREADY;
+	}
+
 	preempt_disable();
 	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
 
diff --git a/kernel/locking/qspinlock.c b/kernel/locking/qspinlock.c
index ce2f75e32ae155b30cfe324c56f9bc526771b66a..5fc8c311b8fe59d46decc2c5a049ce6e860a07b8 100644
--- a/kernel/locking/qspinlock.c
+++ b/kernel/locking/qspinlock.c
@@ -267,6 +267,66 @@ static __always_inline u32  __pv_wait_head_or_lock(struct qspinlock *lock,
 #define queued_spin_lock_slowpath	native_queued_spin_lock_slowpath
 #endif
 
+/*
+ * queued_spin_lock_slowpath() can (load-)ACQUIRE the lock before
+ * issuing an _unordered_ store to set _Q_LOCKED_VAL.
+ *
+ * This means that the store can be delayed, but no later than the
+ * store-release from the unlock. This means that simply observing
+ * _Q_LOCKED_VAL is not sufficient to determine if the lock is acquired.
+ *
+ * There are two paths that can issue the unordered store:
+ *
+ *  (1) clear_pending_set_locked():	*,1,0 -> *,0,1
+ *
+ *  (2) set_locked():			t,0,0 -> t,0,1 ; t != 0
+ *      atomic_cmpxchg_relaxed():	t,0,0 -> 0,0,1
+ *
+ * However, in both cases we have other !0 state we've set before to queue
+ * ourseves:
+ *
+ * For (1) we have the atomic_cmpxchg_acquire() that set _Q_PENDING_VAL, our
+ * load is constrained by that ACQUIRE to not pass before that, and thus must
+ * observe the store.
+ *
+ * For (2) we have a more intersting scenario. We enqueue ourselves using
+ * xchg_tail(), which ends up being a RELEASE. This in itself is not
+ * sufficient, however that is followed by an smp_cond_acquire() on the same
+ * word, giving a RELEASE->ACQUIRE ordering. This again constrains our load and
+ * guarantees we must observe that store.
+ *
+ * Therefore both cases have other !0 state that is observable before the
+ * unordered locked byte store comes through. This means we can use that to
+ * wait for the lock store, and then wait for an unlock.
+ */
+#ifndef queued_spin_unlock_wait
+void queued_spin_unlock_wait(struct qspinlock *lock)
+{
+	u32 val;
+
+	for (;;) {
+		val = atomic_read(&lock->val);
+
+		if (!val) /* not locked, we're done */
+			goto done;
+
+		if (val & _Q_LOCKED_MASK) /* locked, go wait for unlock */
+			break;
+
+		/* not locked, but pending, wait until we observe the lock */
+		cpu_relax();
+	}
+
+	/* any unlock is good */
+	while (atomic_read(&lock->val) & _Q_LOCKED_MASK)
+		cpu_relax();
+
+done:
+	smp_rmb(); /* CTRL + RMB -> ACQUIRE */
+}
+EXPORT_SYMBOL(queued_spin_unlock_wait);
+#endif
+
 #endif /* _GEN_PV_LOCK_SLOWPATH */
 
 /**