Skip to content
Snippets Groups Projects
Select Git revision
  • 256958538ae2616e4aa14efab8c0d11df1e188db
  • android_panfrost default
  • master
  • v5.4-rc2
  • v5.4-rc1
  • v5.3
  • v5.3-rc8
  • v5.3-rc7
  • v5.3-rc6
  • v5.3-rc5
  • v5.3-rc4
  • v5.3-rc3
  • v5.3-rc2
  • v5.3-rc1
  • v5.2
  • v5.2-rc7
  • v5.2-rc6
  • v5.2-rc5
  • v5.2-rc4
  • v5.2-rc3
  • v5.2-rc2
  • v5.2-rc1
  • v5.1
23 results

qede_main.c

  • qede_main.c 103.84 KiB
    /* QLogic qede NIC Driver
    * Copyright (c) 2015 QLogic Corporation
    *
    * This software is available under the terms of the GNU General Public License
    * (GPL) Version 2, available from the file COPYING in the main directory of
    * this source tree.
    */
    
    #include <linux/module.h>
    #include <linux/pci.h>
    #include <linux/version.h>
    #include <linux/device.h>
    #include <linux/netdevice.h>
    #include <linux/etherdevice.h>
    #include <linux/skbuff.h>
    #include <linux/errno.h>
    #include <linux/list.h>
    #include <linux/string.h>
    #include <linux/dma-mapping.h>
    #include <linux/interrupt.h>
    #include <asm/byteorder.h>
    #include <asm/param.h>
    #include <linux/io.h>
    #include <linux/netdev_features.h>
    #include <linux/udp.h>
    #include <linux/tcp.h>
    #include <net/udp_tunnel.h>
    #include <linux/ip.h>
    #include <net/ipv6.h>
    #include <net/tcp.h>
    #include <linux/if_ether.h>
    #include <linux/if_vlan.h>
    #include <linux/pkt_sched.h>
    #include <linux/ethtool.h>
    #include <linux/in.h>
    #include <linux/random.h>
    #include <net/ip6_checksum.h>
    #include <linux/bitops.h>
    #include <linux/qed/qede_roce.h>
    #include "qede.h"
    
    static char version[] =
    	"QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
    
    MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
    MODULE_LICENSE("GPL");
    MODULE_VERSION(DRV_MODULE_VERSION);
    
    static uint debug;
    module_param(debug, uint, 0);
    MODULE_PARM_DESC(debug, " Default debug msglevel");
    
    static const struct qed_eth_ops *qed_ops;
    
    #define CHIP_NUM_57980S_40		0x1634
    #define CHIP_NUM_57980S_10		0x1666
    #define CHIP_NUM_57980S_MF		0x1636
    #define CHIP_NUM_57980S_100		0x1644
    #define CHIP_NUM_57980S_50		0x1654
    #define CHIP_NUM_57980S_25		0x1656
    #define CHIP_NUM_57980S_IOV		0x1664
    
    #ifndef PCI_DEVICE_ID_NX2_57980E
    #define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
    #define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
    #define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
    #define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
    #define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
    #define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
    #define PCI_DEVICE_ID_57980S_IOV	CHIP_NUM_57980S_IOV
    #endif
    
    enum qede_pci_private {
    	QEDE_PRIVATE_PF,
    	QEDE_PRIVATE_VF
    };
    
    static const struct pci_device_id qede_pci_tbl[] = {
    	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
    	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
    	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
    	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
    	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
    	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
    #ifdef CONFIG_QED_SRIOV
    	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
    #endif
    	{ 0 }
    };
    
    MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
    
    static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
    
    #define TX_TIMEOUT		(5 * HZ)
    
    static void qede_remove(struct pci_dev *pdev);
    static int qede_alloc_rx_buffer(struct qede_dev *edev,
    				struct qede_rx_queue *rxq);
    static void qede_link_update(void *dev, struct qed_link_output *link);
    
    #ifdef CONFIG_QED_SRIOV
    static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
    			    __be16 vlan_proto)
    {
    	struct qede_dev *edev = netdev_priv(ndev);
    
    	if (vlan > 4095) {
    		DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
    		return -EINVAL;
    	}
    
    	if (vlan_proto != htons(ETH_P_8021Q))
    		return -EPROTONOSUPPORT;
    
    	DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
    		   vlan, vf);
    
    	return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
    }
    
    static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
    {
    	struct qede_dev *edev = netdev_priv(ndev);
    
    	DP_VERBOSE(edev, QED_MSG_IOV,
    		   "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
    		   mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
    
    	if (!is_valid_ether_addr(mac)) {
    		DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
    		return -EINVAL;
    	}
    
    	return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
    }
    
    static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
    {
    	struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
    	struct qed_dev_info *qed_info = &edev->dev_info.common;
    	int rc;
    
    	DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
    
    	rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
    
    	/* Enable/Disable Tx switching for PF */
    	if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
    	    qed_info->mf_mode != QED_MF_NPAR && qed_info->tx_switching) {
    		struct qed_update_vport_params params;
    
    		memset(&params, 0, sizeof(params));
    		params.vport_id = 0;
    		params.update_tx_switching_flg = 1;
    		params.tx_switching_flg = num_vfs_param ? 1 : 0;
    		edev->ops->vport_update(edev->cdev, &params);
    	}
    
    	return rc;
    }
    #endif
    
    static struct pci_driver qede_pci_driver = {
    	.name = "qede",
    	.id_table = qede_pci_tbl,
    	.probe = qede_probe,
    	.remove = qede_remove,
    #ifdef CONFIG_QED_SRIOV
    	.sriov_configure = qede_sriov_configure,
    #endif
    };
    
    static void qede_force_mac(void *dev, u8 *mac, bool forced)
    {
    	struct qede_dev *edev = dev;
    
    	/* MAC hints take effect only if we haven't set one already */
    	if (is_valid_ether_addr(edev->ndev->dev_addr) && !forced)
    		return;
    
    	ether_addr_copy(edev->ndev->dev_addr, mac);
    	ether_addr_copy(edev->primary_mac, mac);
    }
    
    static struct qed_eth_cb_ops qede_ll_ops = {
    	{
    		.link_update = qede_link_update,
    	},
    	.force_mac = qede_force_mac,
    };
    
    static int qede_netdev_event(struct notifier_block *this, unsigned long event,
    			     void *ptr)
    {
    	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
    	struct ethtool_drvinfo drvinfo;
    	struct qede_dev *edev;
    
    	if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
    		goto done;
    
    	/* Check whether this is a qede device */
    	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
    		goto done;
    
    	memset(&drvinfo, 0, sizeof(drvinfo));
    	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
    	if (strcmp(drvinfo.driver, "qede"))
    		goto done;
    	edev = netdev_priv(ndev);
    
    	switch (event) {
    	case NETDEV_CHANGENAME:
    		/* Notify qed of the name change */
    		if (!edev->ops || !edev->ops->common)
    			goto done;
    		edev->ops->common->set_id(edev->cdev, edev->ndev->name, "qede");
    		break;
    	case NETDEV_CHANGEADDR:
    		edev = netdev_priv(ndev);
    		qede_roce_event_changeaddr(edev);
    		break;
    	}
    
    done:
    	return NOTIFY_DONE;
    }
    
    static struct notifier_block qede_netdev_notifier = {
    	.notifier_call = qede_netdev_event,
    };
    
    static
    int __init qede_init(void)
    {
    	int ret;
    
    	pr_info("qede_init: %s\n", version);
    
    	qed_ops = qed_get_eth_ops();
    	if (!qed_ops) {
    		pr_notice("Failed to get qed ethtool operations\n");
    		return -EINVAL;
    	}
    
    	/* Must register notifier before pci ops, since we might miss
    	 * interface rename after pci probe and netdev registeration.
    	 */
    	ret = register_netdevice_notifier(&qede_netdev_notifier);
    	if (ret) {
    		pr_notice("Failed to register netdevice_notifier\n");
    		qed_put_eth_ops();
    		return -EINVAL;
    	}
    
    	ret = pci_register_driver(&qede_pci_driver);
    	if (ret) {
    		pr_notice("Failed to register driver\n");
    		unregister_netdevice_notifier(&qede_netdev_notifier);
    		qed_put_eth_ops();
    		return -EINVAL;
    	}
    
    	return 0;
    }
    
    static void __exit qede_cleanup(void)
    {
    	if (debug & QED_LOG_INFO_MASK)
    		pr_info("qede_cleanup called\n");
    
    	unregister_netdevice_notifier(&qede_netdev_notifier);
    	pci_unregister_driver(&qede_pci_driver);
    	qed_put_eth_ops();
    }
    
    module_init(qede_init);
    module_exit(qede_cleanup);
    
    /* -------------------------------------------------------------------------
     * START OF FAST-PATH
     * -------------------------------------------------------------------------
     */
    
    /* Unmap the data and free skb */
    static int qede_free_tx_pkt(struct qede_dev *edev,
    			    struct qede_tx_queue *txq, int *len)
    {
    	u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX;
    	struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
    	struct eth_tx_1st_bd *first_bd;
    	struct eth_tx_bd *tx_data_bd;
    	int bds_consumed = 0;
    	int nbds;
    	bool data_split = txq->sw_tx_ring[idx].flags & QEDE_TSO_SPLIT_BD;
    	int i, split_bd_len = 0;
    
    	if (unlikely(!skb)) {
    		DP_ERR(edev,
    		       "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
    		       idx, txq->sw_tx_cons, txq->sw_tx_prod);
    		return -1;
    	}
    
    	*len = skb->len;
    
    	first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
    
    	bds_consumed++;
    
    	nbds = first_bd->data.nbds;
    
    	if (data_split) {
    		struct eth_tx_bd *split = (struct eth_tx_bd *)
    			qed_chain_consume(&txq->tx_pbl);
    		split_bd_len = BD_UNMAP_LEN(split);
    		bds_consumed++;
    	}
    	dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
    		       BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
    
    	/* Unmap the data of the skb frags */
    	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
    		tx_data_bd = (struct eth_tx_bd *)
    			qed_chain_consume(&txq->tx_pbl);
    		dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
    			       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
    	}
    
    	while (bds_consumed++ < nbds)
    		qed_chain_consume(&txq->tx_pbl);
    
    	/* Free skb */
    	dev_kfree_skb_any(skb);
    	txq->sw_tx_ring[idx].skb = NULL;
    	txq->sw_tx_ring[idx].flags = 0;
    
    	return 0;
    }
    
    /* Unmap the data and free skb when mapping failed during start_xmit */
    static void qede_free_failed_tx_pkt(struct qede_dev *edev,
    				    struct qede_tx_queue *txq,
    				    struct eth_tx_1st_bd *first_bd,
    				    int nbd, bool data_split)
    {
    	u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
    	struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
    	struct eth_tx_bd *tx_data_bd;
    	int i, split_bd_len = 0;
    
    	/* Return prod to its position before this skb was handled */
    	qed_chain_set_prod(&txq->tx_pbl,
    			   le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
    
    	first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
    
    	if (data_split) {
    		struct eth_tx_bd *split = (struct eth_tx_bd *)
    					  qed_chain_produce(&txq->tx_pbl);
    		split_bd_len = BD_UNMAP_LEN(split);
    		nbd--;
    	}
    
    	dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
    		       BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
    
    	/* Unmap the data of the skb frags */
    	for (i = 0; i < nbd; i++) {
    		tx_data_bd = (struct eth_tx_bd *)
    			qed_chain_produce(&txq->tx_pbl);
    		if (tx_data_bd->nbytes)
    			dma_unmap_page(&edev->pdev->dev,
    				       BD_UNMAP_ADDR(tx_data_bd),
    				       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
    	}
    
    	/* Return again prod to its position before this skb was handled */
    	qed_chain_set_prod(&txq->tx_pbl,
    			   le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
    
    	/* Free skb */
    	dev_kfree_skb_any(skb);
    	txq->sw_tx_ring[idx].skb = NULL;
    	txq->sw_tx_ring[idx].flags = 0;
    }
    
    static u32 qede_xmit_type(struct qede_dev *edev,
    			  struct sk_buff *skb, int *ipv6_ext)
    {
    	u32 rc = XMIT_L4_CSUM;
    	__be16 l3_proto;
    
    	if (skb->ip_summed != CHECKSUM_PARTIAL)
    		return XMIT_PLAIN;
    
    	l3_proto = vlan_get_protocol(skb);
    	if (l3_proto == htons(ETH_P_IPV6) &&
    	    (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
    		*ipv6_ext = 1;
    
    	if (skb->encapsulation) {
    		rc |= XMIT_ENC;
    		if (skb_is_gso(skb)) {
    			unsigned short gso_type = skb_shinfo(skb)->gso_type;
    
    			if ((gso_type & SKB_GSO_UDP_TUNNEL_CSUM) ||
    			    (gso_type & SKB_GSO_GRE_CSUM))
    				rc |= XMIT_ENC_GSO_L4_CSUM;
    
    			rc |= XMIT_LSO;
    			return rc;
    		}
    	}
    
    	if (skb_is_gso(skb))
    		rc |= XMIT_LSO;
    
    	return rc;
    }
    
    static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
    					 struct eth_tx_2nd_bd *second_bd,
    					 struct eth_tx_3rd_bd *third_bd)
    {
    	u8 l4_proto;
    	u16 bd2_bits1 = 0, bd2_bits2 = 0;
    
    	bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
    
    	bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
    		     ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
    		    << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
    
    	bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
    		      ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
    
    	if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
    		l4_proto = ipv6_hdr(skb)->nexthdr;
    	else
    		l4_proto = ip_hdr(skb)->protocol;
    
    	if (l4_proto == IPPROTO_UDP)
    		bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
    
    	if (third_bd)
    		third_bd->data.bitfields |=
    			cpu_to_le16(((tcp_hdrlen(skb) / 4) &
    				ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
    				ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
    
    	second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
    	second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
    }
    
    static int map_frag_to_bd(struct qede_dev *edev,
    			  skb_frag_t *frag, struct eth_tx_bd *bd)
    {
    	dma_addr_t mapping;
    
    	/* Map skb non-linear frag data for DMA */
    	mapping = skb_frag_dma_map(&edev->pdev->dev, frag, 0,
    				   skb_frag_size(frag), DMA_TO_DEVICE);
    	if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
    		DP_NOTICE(edev, "Unable to map frag - dropping packet\n");
    		return -ENOMEM;
    	}
    
    	/* Setup the data pointer of the frag data */
    	BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
    
    	return 0;
    }
    
    static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
    {
    	if (is_encap_pkt)
    		return (skb_inner_transport_header(skb) +
    			inner_tcp_hdrlen(skb) - skb->data);
    	else
    		return (skb_transport_header(skb) +
    			tcp_hdrlen(skb) - skb->data);
    }
    
    /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
    #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
    static bool qede_pkt_req_lin(struct qede_dev *edev, struct sk_buff *skb,
    			     u8 xmit_type)
    {
    	int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
    
    	if (xmit_type & XMIT_LSO) {
    		int hlen;
    
    		hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
    
    		/* linear payload would require its own BD */
    		if (skb_headlen(skb) > hlen)
    			allowed_frags--;
    	}
    
    	return (skb_shinfo(skb)->nr_frags > allowed_frags);
    }
    #endif
    
    static inline void qede_update_tx_producer(struct qede_tx_queue *txq)
    {
    	/* wmb makes sure that the BDs data is updated before updating the
    	 * producer, otherwise FW may read old data from the BDs.
    	 */
    	wmb();
    	barrier();
    	writel(txq->tx_db.raw, txq->doorbell_addr);
    
    	/* mmiowb is needed to synchronize doorbell writes from more than one
    	 * processor. It guarantees that the write arrives to the device before
    	 * the queue lock is released and another start_xmit is called (possibly
    	 * on another CPU). Without this barrier, the next doorbell can bypass
    	 * this doorbell. This is applicable to IA64/Altix systems.
    	 */
    	mmiowb();
    }
    
    /* Main transmit function */
    static netdev_tx_t qede_start_xmit(struct sk_buff *skb,
    				   struct net_device *ndev)
    {
    	struct qede_dev *edev = netdev_priv(ndev);
    	struct netdev_queue *netdev_txq;
    	struct qede_tx_queue *txq;
    	struct eth_tx_1st_bd *first_bd;
    	struct eth_tx_2nd_bd *second_bd = NULL;
    	struct eth_tx_3rd_bd *third_bd = NULL;
    	struct eth_tx_bd *tx_data_bd = NULL;
    	u16 txq_index;
    	u8 nbd = 0;
    	dma_addr_t mapping;
    	int rc, frag_idx = 0, ipv6_ext = 0;
    	u8 xmit_type;
    	u16 idx;
    	u16 hlen;
    	bool data_split = false;
    
    	/* Get tx-queue context and netdev index */
    	txq_index = skb_get_queue_mapping(skb);
    	WARN_ON(txq_index >= QEDE_TSS_COUNT(edev));
    	txq = QEDE_TX_QUEUE(edev, txq_index);
    	netdev_txq = netdev_get_tx_queue(ndev, txq_index);
    
    	WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) < (MAX_SKB_FRAGS + 1));
    
    	xmit_type = qede_xmit_type(edev, skb, &ipv6_ext);
    
    #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
    	if (qede_pkt_req_lin(edev, skb, xmit_type)) {
    		if (skb_linearize(skb)) {
    			DP_NOTICE(edev,
    				  "SKB linearization failed - silently dropping this SKB\n");
    			dev_kfree_skb_any(skb);
    			return NETDEV_TX_OK;
    		}
    	}
    #endif
    
    	/* Fill the entry in the SW ring and the BDs in the FW ring */
    	idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
    	txq->sw_tx_ring[idx].skb = skb;
    	first_bd = (struct eth_tx_1st_bd *)
    		   qed_chain_produce(&txq->tx_pbl);
    	memset(first_bd, 0, sizeof(*first_bd));
    	first_bd->data.bd_flags.bitfields =
    		1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
    
    	/* Map skb linear data for DMA and set in the first BD */
    	mapping = dma_map_single(&edev->pdev->dev, skb->data,
    				 skb_headlen(skb), DMA_TO_DEVICE);
    	if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
    		DP_NOTICE(edev, "SKB mapping failed\n");
    		qede_free_failed_tx_pkt(edev, txq, first_bd, 0, false);
    		qede_update_tx_producer(txq);
    		return NETDEV_TX_OK;
    	}
    	nbd++;
    	BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
    
    	/* In case there is IPv6 with extension headers or LSO we need 2nd and
    	 * 3rd BDs.
    	 */
    	if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
    		second_bd = (struct eth_tx_2nd_bd *)
    			qed_chain_produce(&txq->tx_pbl);
    		memset(second_bd, 0, sizeof(*second_bd));
    
    		nbd++;
    		third_bd = (struct eth_tx_3rd_bd *)
    			qed_chain_produce(&txq->tx_pbl);
    		memset(third_bd, 0, sizeof(*third_bd));
    
    		nbd++;
    		/* We need to fill in additional data in second_bd... */
    		tx_data_bd = (struct eth_tx_bd *)second_bd;
    	}
    
    	if (skb_vlan_tag_present(skb)) {
    		first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
    		first_bd->data.bd_flags.bitfields |=
    			1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
    	}
    
    	/* Fill the parsing flags & params according to the requested offload */
    	if (xmit_type & XMIT_L4_CSUM) {
    		/* We don't re-calculate IP checksum as it is already done by
    		 * the upper stack
    		 */
    		first_bd->data.bd_flags.bitfields |=
    			1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
    
    		if (xmit_type & XMIT_ENC) {
    			first_bd->data.bd_flags.bitfields |=
    				1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
    			first_bd->data.bitfields |=
    			    1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
    		}
    
    		/* Legacy FW had flipped behavior in regard to this bit -
    		 * I.e., needed to set to prevent FW from touching encapsulated
    		 * packets when it didn't need to.
    		 */
    		if (unlikely(txq->is_legacy))
    			first_bd->data.bitfields ^=
    			    1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
    
    		/* If the packet is IPv6 with extension header, indicate that
    		 * to FW and pass few params, since the device cracker doesn't
    		 * support parsing IPv6 with extension header/s.
    		 */
    		if (unlikely(ipv6_ext))
    			qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
    	}
    
    	if (xmit_type & XMIT_LSO) {
    		first_bd->data.bd_flags.bitfields |=
    			(1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
    		third_bd->data.lso_mss =
    			cpu_to_le16(skb_shinfo(skb)->gso_size);
    
    		if (unlikely(xmit_type & XMIT_ENC)) {
    			first_bd->data.bd_flags.bitfields |=
    				1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
    
    			if (xmit_type & XMIT_ENC_GSO_L4_CSUM) {
    				u8 tmp = ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
    
    				first_bd->data.bd_flags.bitfields |= 1 << tmp;
    			}
    			hlen = qede_get_skb_hlen(skb, true);
    		} else {
    			first_bd->data.bd_flags.bitfields |=
    				1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
    			hlen = qede_get_skb_hlen(skb, false);
    		}
    
    		/* @@@TBD - if will not be removed need to check */
    		third_bd->data.bitfields |=
    			cpu_to_le16((1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT));
    
    		/* Make life easier for FW guys who can't deal with header and
    		 * data on same BD. If we need to split, use the second bd...
    		 */
    		if (unlikely(skb_headlen(skb) > hlen)) {
    			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
    				   "TSO split header size is %d (%x:%x)\n",
    				   first_bd->nbytes, first_bd->addr.hi,
    				   first_bd->addr.lo);
    
    			mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
    					   le32_to_cpu(first_bd->addr.lo)) +
    					   hlen;
    
    			BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
    					      le16_to_cpu(first_bd->nbytes) -
    					      hlen);
    
    			/* this marks the BD as one that has no
    			 * individual mapping
    			 */
    			txq->sw_tx_ring[idx].flags |= QEDE_TSO_SPLIT_BD;
    
    			first_bd->nbytes = cpu_to_le16(hlen);
    
    			tx_data_bd = (struct eth_tx_bd *)third_bd;
    			data_split = true;
    		}
    	} else {
    		first_bd->data.bitfields |=
    		    (skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
    		    ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
    	}
    
    	/* Handle fragmented skb */
    	/* special handle for frags inside 2nd and 3rd bds.. */
    	while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
    		rc = map_frag_to_bd(edev,
    				    &skb_shinfo(skb)->frags[frag_idx],
    				    tx_data_bd);
    		if (rc) {
    			qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
    						data_split);
    			qede_update_tx_producer(txq);
    			return NETDEV_TX_OK;
    		}
    
    		if (tx_data_bd == (struct eth_tx_bd *)second_bd)
    			tx_data_bd = (struct eth_tx_bd *)third_bd;
    		else
    			tx_data_bd = NULL;
    
    		frag_idx++;
    	}
    
    	/* map last frags into 4th, 5th .... */
    	for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
    		tx_data_bd = (struct eth_tx_bd *)
    			     qed_chain_produce(&txq->tx_pbl);
    
    		memset(tx_data_bd, 0, sizeof(*tx_data_bd));
    
    		rc = map_frag_to_bd(edev,
    				    &skb_shinfo(skb)->frags[frag_idx],
    				    tx_data_bd);
    		if (rc) {
    			qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
    						data_split);
    			qede_update_tx_producer(txq);
    			return NETDEV_TX_OK;
    		}
    	}
    
    	/* update the first BD with the actual num BDs */
    	first_bd->data.nbds = nbd;
    
    	netdev_tx_sent_queue(netdev_txq, skb->len);
    
    	skb_tx_timestamp(skb);
    
    	/* Advance packet producer only before sending the packet since mapping
    	 * of pages may fail.
    	 */
    	txq->sw_tx_prod++;
    
    	/* 'next page' entries are counted in the producer value */
    	txq->tx_db.data.bd_prod =
    		cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
    
    	if (!skb->xmit_more || netif_xmit_stopped(netdev_txq))
    		qede_update_tx_producer(txq);
    
    	if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
    		      < (MAX_SKB_FRAGS + 1))) {
    		if (skb->xmit_more)
    			qede_update_tx_producer(txq);
    
    		netif_tx_stop_queue(netdev_txq);
    		txq->stopped_cnt++;
    		DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
    			   "Stop queue was called\n");
    		/* paired memory barrier is in qede_tx_int(), we have to keep
    		 * ordering of set_bit() in netif_tx_stop_queue() and read of
    		 * fp->bd_tx_cons
    		 */
    		smp_mb();
    
    		if (qed_chain_get_elem_left(&txq->tx_pbl)
    		     >= (MAX_SKB_FRAGS + 1) &&
    		    (edev->state == QEDE_STATE_OPEN)) {
    			netif_tx_wake_queue(netdev_txq);
    			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
    				   "Wake queue was called\n");
    		}
    	}
    
    	return NETDEV_TX_OK;
    }
    
    int qede_txq_has_work(struct qede_tx_queue *txq)
    {
    	u16 hw_bd_cons;
    
    	/* Tell compiler that consumer and producer can change */
    	barrier();
    	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
    	if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
    		return 0;
    
    	return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
    }
    
    static int qede_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
    {
    	struct netdev_queue *netdev_txq;
    	u16 hw_bd_cons;
    	unsigned int pkts_compl = 0, bytes_compl = 0;
    	int rc;
    
    	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
    
    	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
    	barrier();
    
    	while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
    		int len = 0;
    
    		rc = qede_free_tx_pkt(edev, txq, &len);
    		if (rc) {
    			DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
    				  hw_bd_cons,
    				  qed_chain_get_cons_idx(&txq->tx_pbl));
    			break;
    		}
    
    		bytes_compl += len;
    		pkts_compl++;
    		txq->sw_tx_cons++;
    		txq->xmit_pkts++;
    	}
    
    	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
    
    	/* Need to make the tx_bd_cons update visible to start_xmit()
    	 * before checking for netif_tx_queue_stopped().  Without the
    	 * memory barrier, there is a small possibility that
    	 * start_xmit() will miss it and cause the queue to be stopped
    	 * forever.
    	 * On the other hand we need an rmb() here to ensure the proper
    	 * ordering of bit testing in the following
    	 * netif_tx_queue_stopped(txq) call.
    	 */
    	smp_mb();
    
    	if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
    		/* Taking tx_lock is needed to prevent reenabling the queue
    		 * while it's empty. This could have happen if rx_action() gets
    		 * suspended in qede_tx_int() after the condition before
    		 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
    		 *
    		 * stops the queue->sees fresh tx_bd_cons->releases the queue->
    		 * sends some packets consuming the whole queue again->
    		 * stops the queue
    		 */
    
    		__netif_tx_lock(netdev_txq, smp_processor_id());
    
    		if ((netif_tx_queue_stopped(netdev_txq)) &&
    		    (edev->state == QEDE_STATE_OPEN) &&
    		    (qed_chain_get_elem_left(&txq->tx_pbl)
    		      >= (MAX_SKB_FRAGS + 1))) {
    			netif_tx_wake_queue(netdev_txq);
    			DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
    				   "Wake queue was called\n");
    		}
    
    		__netif_tx_unlock(netdev_txq);
    	}
    
    	return 0;
    }
    
    bool qede_has_rx_work(struct qede_rx_queue *rxq)
    {
    	u16 hw_comp_cons, sw_comp_cons;
    
    	/* Tell compiler that status block fields can change */
    	barrier();
    
    	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
    	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
    
    	return hw_comp_cons != sw_comp_cons;
    }
    
    static bool qede_has_tx_work(struct qede_fastpath *fp)
    {
    	u8 tc;
    
    	for (tc = 0; tc < fp->edev->num_tc; tc++)
    		if (qede_txq_has_work(&fp->txqs[tc]))
    			return true;
    	return false;
    }
    
    static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
    {
    	qed_chain_consume(&rxq->rx_bd_ring);
    	rxq->sw_rx_cons++;
    }
    
    /* This function reuses the buffer(from an offset) from
     * consumer index to producer index in the bd ring
     */
    static inline void qede_reuse_page(struct qede_dev *edev,
    				   struct qede_rx_queue *rxq,
    				   struct sw_rx_data *curr_cons)
    {
    	struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
    	struct sw_rx_data *curr_prod;
    	dma_addr_t new_mapping;
    
    	curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
    	*curr_prod = *curr_cons;
    
    	new_mapping = curr_prod->mapping + curr_prod->page_offset;
    
    	rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
    	rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping));
    
    	rxq->sw_rx_prod++;
    	curr_cons->data = NULL;
    }
    
    /* In case of allocation failures reuse buffers
     * from consumer index to produce buffers for firmware
     */
    void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
    			     struct qede_dev *edev, u8 count)
    {
    	struct sw_rx_data *curr_cons;
    
    	for (; count > 0; count--) {
    		curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
    		qede_reuse_page(edev, rxq, curr_cons);
    		qede_rx_bd_ring_consume(rxq);
    	}
    }
    
    static inline int qede_realloc_rx_buffer(struct qede_dev *edev,
    					 struct qede_rx_queue *rxq,
    					 struct sw_rx_data *curr_cons)
    {
    	/* Move to the next segment in the page */
    	curr_cons->page_offset += rxq->rx_buf_seg_size;
    
    	if (curr_cons->page_offset == PAGE_SIZE) {
    		if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
    			/* Since we failed to allocate new buffer
    			 * current buffer can be used again.
    			 */
    			curr_cons->page_offset -= rxq->rx_buf_seg_size;
    
    			return -ENOMEM;
    		}
    
    		dma_unmap_page(&edev->pdev->dev, curr_cons->mapping,
    			       PAGE_SIZE, DMA_FROM_DEVICE);
    	} else {
    		/* Increment refcount of the page as we don't want
    		 * network stack to take the ownership of the page
    		 * which can be recycled multiple times by the driver.
    		 */
    		page_ref_inc(curr_cons->data);
    		qede_reuse_page(edev, rxq, curr_cons);
    	}
    
    	return 0;
    }
    
    static inline void qede_update_rx_prod(struct qede_dev *edev,
    				       struct qede_rx_queue *rxq)
    {
    	u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
    	u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
    	struct eth_rx_prod_data rx_prods = {0};
    
    	/* Update producers */
    	rx_prods.bd_prod = cpu_to_le16(bd_prod);
    	rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
    
    	/* Make sure that the BD and SGE data is updated before updating the
    	 * producers since FW might read the BD/SGE right after the producer
    	 * is updated.
    	 */
    	wmb();
    
    	internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
    			(u32 *)&rx_prods);
    
    	/* mmiowb is needed to synchronize doorbell writes from more than one
    	 * processor. It guarantees that the write arrives to the device before
    	 * the napi lock is released and another qede_poll is called (possibly
    	 * on another CPU). Without this barrier, the next doorbell can bypass
    	 * this doorbell. This is applicable to IA64/Altix systems.
    	 */
    	mmiowb();
    }
    
    static u32 qede_get_rxhash(struct qede_dev *edev,
    			   u8 bitfields,
    			   __le32 rss_hash, enum pkt_hash_types *rxhash_type)
    {
    	enum rss_hash_type htype;
    
    	htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
    
    	if ((edev->ndev->features & NETIF_F_RXHASH) && htype) {
    		*rxhash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
    				(htype == RSS_HASH_TYPE_IPV6)) ?
    				PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
    		return le32_to_cpu(rss_hash);
    	}
    	*rxhash_type = PKT_HASH_TYPE_NONE;
    	return 0;
    }
    
    static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
    {
    	skb_checksum_none_assert(skb);
    
    	if (csum_flag & QEDE_CSUM_UNNECESSARY)
    		skb->ip_summed = CHECKSUM_UNNECESSARY;
    
    	if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY)
    		skb->csum_level = 1;
    }
    
    static inline void qede_skb_receive(struct qede_dev *edev,
    				    struct qede_fastpath *fp,
    				    struct sk_buff *skb, u16 vlan_tag)
    {
    	if (vlan_tag)
    		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
    
    	napi_gro_receive(&fp->napi, skb);
    }
    
    static void qede_set_gro_params(struct qede_dev *edev,
    				struct sk_buff *skb,
    				struct eth_fast_path_rx_tpa_start_cqe *cqe)
    {
    	u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
    
    	if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
    	    PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
    		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
    	else
    		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
    
    	skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
    					cqe->header_len;
    }
    
    static int qede_fill_frag_skb(struct qede_dev *edev,
    			      struct qede_rx_queue *rxq,
    			      u8 tpa_agg_index, u16 len_on_bd)
    {
    	struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
    							 NUM_RX_BDS_MAX];
    	struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
    	struct sk_buff *skb = tpa_info->skb;
    
    	if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
    		goto out;
    
    	/* Add one frag and update the appropriate fields in the skb */
    	skb_fill_page_desc(skb, tpa_info->frag_id++,
    			   current_bd->data, current_bd->page_offset,
    			   len_on_bd);
    
    	if (unlikely(qede_realloc_rx_buffer(edev, rxq, current_bd))) {
    		/* Incr page ref count to reuse on allocation failure
    		 * so that it doesn't get freed while freeing SKB.
    		 */
    		page_ref_inc(current_bd->data);
    		goto out;
    	}
    
    	qed_chain_consume(&rxq->rx_bd_ring);
    	rxq->sw_rx_cons++;
    
    	skb->data_len += len_on_bd;
    	skb->truesize += rxq->rx_buf_seg_size;
    	skb->len += len_on_bd;
    
    	return 0;
    
    out:
    	tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
    	qede_recycle_rx_bd_ring(rxq, edev, 1);
    	return -ENOMEM;
    }
    
    static void qede_tpa_start(struct qede_dev *edev,
    			   struct qede_rx_queue *rxq,
    			   struct eth_fast_path_rx_tpa_start_cqe *cqe)
    {
    	struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
    	struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring);
    	struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
    	struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
    	dma_addr_t mapping = tpa_info->replace_buf_mapping;
    	struct sw_rx_data *sw_rx_data_cons;
    	struct sw_rx_data *sw_rx_data_prod;
    	enum pkt_hash_types rxhash_type;
    	u32 rxhash;
    
    	sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
    	sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
    
    	/* Use pre-allocated replacement buffer - we can't release the agg.
    	 * start until its over and we don't want to risk allocation failing
    	 * here, so re-allocate when aggregation will be over.
    	 */
    	sw_rx_data_prod->mapping = replace_buf->mapping;
    
    	sw_rx_data_prod->data = replace_buf->data;
    	rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping));
    	rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping));
    	sw_rx_data_prod->page_offset = replace_buf->page_offset;
    
    	rxq->sw_rx_prod++;
    
    	/* move partial skb from cons to pool (don't unmap yet)
    	 * save mapping, incase we drop the packet later on.
    	 */
    	tpa_info->start_buf = *sw_rx_data_cons;
    	mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi),
    			   le32_to_cpu(rx_bd_cons->addr.lo));
    
    	tpa_info->start_buf_mapping = mapping;
    	rxq->sw_rx_cons++;
    
    	/* set tpa state to start only if we are able to allocate skb
    	 * for this aggregation, otherwise mark as error and aggregation will
    	 * be dropped
    	 */
    	tpa_info->skb = netdev_alloc_skb(edev->ndev,
    					 le16_to_cpu(cqe->len_on_first_bd));
    	if (unlikely(!tpa_info->skb)) {
    		DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
    		tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
    		goto cons_buf;
    	}
    
    	skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd));
    	memcpy(&tpa_info->start_cqe, cqe, sizeof(tpa_info->start_cqe));
    
    	/* Start filling in the aggregation info */
    	tpa_info->frag_id = 0;
    	tpa_info->agg_state = QEDE_AGG_STATE_START;
    
    	rxhash = qede_get_rxhash(edev, cqe->bitfields,
    				 cqe->rss_hash, &rxhash_type);
    	skb_set_hash(tpa_info->skb, rxhash, rxhash_type);
    	if ((le16_to_cpu(cqe->pars_flags.flags) >>
    	     PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
    		    PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
    		tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
    	else
    		tpa_info->vlan_tag = 0;
    
    	/* This is needed in order to enable forwarding support */
    	qede_set_gro_params(edev, tpa_info->skb, cqe);
    
    cons_buf: /* We still need to handle bd_len_list to consume buffers */
    	if (likely(cqe->ext_bd_len_list[0]))
    		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
    				   le16_to_cpu(cqe->ext_bd_len_list[0]));
    
    	if (unlikely(cqe->ext_bd_len_list[1])) {
    		DP_ERR(edev,
    		       "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
    		tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
    	}
    }
    
    #ifdef CONFIG_INET
    static void qede_gro_ip_csum(struct sk_buff *skb)
    {
    	const struct iphdr *iph = ip_hdr(skb);
    	struct tcphdr *th;
    
    	skb_set_transport_header(skb, sizeof(struct iphdr));
    	th = tcp_hdr(skb);
    
    	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
    				  iph->saddr, iph->daddr, 0);
    
    	tcp_gro_complete(skb);
    }
    
    static void qede_gro_ipv6_csum(struct sk_buff *skb)
    {
    	struct ipv6hdr *iph = ipv6_hdr(skb);
    	struct tcphdr *th;
    
    	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
    	th = tcp_hdr(skb);
    
    	th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
    				  &iph->saddr, &iph->daddr, 0);
    	tcp_gro_complete(skb);
    }
    #endif
    
    static void qede_gro_receive(struct qede_dev *edev,
    			     struct qede_fastpath *fp,
    			     struct sk_buff *skb,
    			     u16 vlan_tag)
    {
    	/* FW can send a single MTU sized packet from gro flow
    	 * due to aggregation timeout/last segment etc. which
    	 * is not expected to be a gro packet. If a skb has zero
    	 * frags then simply push it in the stack as non gso skb.
    	 */
    	if (unlikely(!skb->data_len)) {
    		skb_shinfo(skb)->gso_type = 0;
    		skb_shinfo(skb)->gso_size = 0;
    		goto send_skb;
    	}
    
    #ifdef CONFIG_INET
    	if (skb_shinfo(skb)->gso_size) {
    		skb_set_network_header(skb, 0);
    
    		switch (skb->protocol) {
    		case htons(ETH_P_IP):
    			qede_gro_ip_csum(skb);
    			break;
    		case htons(ETH_P_IPV6):
    			qede_gro_ipv6_csum(skb);
    			break;
    		default:
    			DP_ERR(edev,
    			       "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
    			       ntohs(skb->protocol));
    		}
    	}
    #endif
    
    send_skb:
    	skb_record_rx_queue(skb, fp->rxq->rxq_id);
    	qede_skb_receive(edev, fp, skb, vlan_tag);
    }
    
    static inline void qede_tpa_cont(struct qede_dev *edev,
    				 struct qede_rx_queue *rxq,
    				 struct eth_fast_path_rx_tpa_cont_cqe *cqe)
    {
    	int i;
    
    	for (i = 0; cqe->len_list[i]; i++)
    		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
    				   le16_to_cpu(cqe->len_list[i]));
    
    	if (unlikely(i > 1))
    		DP_ERR(edev,
    		       "Strange - TPA cont with more than a single len_list entry\n");
    }
    
    static void qede_tpa_end(struct qede_dev *edev,
    			 struct qede_fastpath *fp,
    			 struct eth_fast_path_rx_tpa_end_cqe *cqe)
    {
    	struct qede_rx_queue *rxq = fp->rxq;
    	struct qede_agg_info *tpa_info;
    	struct sk_buff *skb;
    	int i;
    
    	tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
    	skb = tpa_info->skb;
    
    	for (i = 0; cqe->len_list[i]; i++)
    		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
    				   le16_to_cpu(cqe->len_list[i]));
    	if (unlikely(i > 1))
    		DP_ERR(edev,
    		       "Strange - TPA emd with more than a single len_list entry\n");
    
    	if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
    		goto err;
    
    	/* Sanity */
    	if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
    		DP_ERR(edev,
    		       "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
    		       cqe->num_of_bds, tpa_info->frag_id);
    	if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
    		DP_ERR(edev,
    		       "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
    		       le16_to_cpu(cqe->total_packet_len), skb->len);
    
    	memcpy(skb->data,
    	       page_address(tpa_info->start_buf.data) +
    		tpa_info->start_cqe.placement_offset +
    		tpa_info->start_buf.page_offset,
    	       le16_to_cpu(tpa_info->start_cqe.len_on_first_bd));
    
    	/* Recycle [mapped] start buffer for the next replacement */
    	tpa_info->replace_buf = tpa_info->start_buf;
    	tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
    
    	/* Finalize the SKB */
    	skb->protocol = eth_type_trans(skb, edev->ndev);
    	skb->ip_summed = CHECKSUM_UNNECESSARY;
    
    	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
    	 * to skb_shinfo(skb)->gso_segs
    	 */
    	NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
    
    	qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
    
    	tpa_info->agg_state = QEDE_AGG_STATE_NONE;
    
    	return;
    err:
    	/* The BD starting the aggregation is still mapped; Re-use it for
    	 * future aggregations [as replacement buffer]
    	 */
    	memcpy(&tpa_info->replace_buf, &tpa_info->start_buf,
    	       sizeof(struct sw_rx_data));
    	tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
    	tpa_info->start_buf.data = NULL;
    	tpa_info->agg_state = QEDE_AGG_STATE_NONE;
    	dev_kfree_skb_any(tpa_info->skb);
    	tpa_info->skb = NULL;
    }
    
    static bool qede_tunn_exist(u16 flag)
    {
    	return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
    			  PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
    }
    
    static u8 qede_check_tunn_csum(u16 flag)
    {
    	u16 csum_flag = 0;
    	u8 tcsum = 0;
    
    	if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
    		    PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
    		csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
    			     PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
    
    	if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
    		    PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
    		csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
    			     PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
    		tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
    	}
    
    	csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
    		     PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
    		     PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
    		     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
    
    	if (csum_flag & flag)
    		return QEDE_CSUM_ERROR;
    
    	return QEDE_CSUM_UNNECESSARY | tcsum;
    }
    
    static u8 qede_check_notunn_csum(u16 flag)
    {
    	u16 csum_flag = 0;
    	u8 csum = 0;
    
    	if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
    		    PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
    		csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
    			     PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
    		csum = QEDE_CSUM_UNNECESSARY;
    	}
    
    	csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
    		     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
    
    	if (csum_flag & flag)
    		return QEDE_CSUM_ERROR;
    
    	return csum;
    }
    
    static u8 qede_check_csum(u16 flag)
    {
    	if (!qede_tunn_exist(flag))
    		return qede_check_notunn_csum(flag);
    	else
    		return qede_check_tunn_csum(flag);
    }
    
    static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe,
    				      u16 flag)
    {
    	u8 tun_pars_flg = cqe->tunnel_pars_flags.flags;
    
    	if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK <<
    			     ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) ||
    	    (flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
    		     PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT)))
    		return true;
    
    	return false;
    }
    
    static int qede_rx_int(struct qede_fastpath *fp, int budget)
    {
    	struct qede_dev *edev = fp->edev;
    	struct qede_rx_queue *rxq = fp->rxq;
    
    	u16 hw_comp_cons, sw_comp_cons, sw_rx_index, parse_flag;
    	int rx_pkt = 0;
    	u8 csum_flag;
    
    	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
    	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
    
    	/* Memory barrier to prevent the CPU from doing speculative reads of CQE
    	 * / BD in the while-loop before reading hw_comp_cons. If the CQE is
    	 * read before it is written by FW, then FW writes CQE and SB, and then
    	 * the CPU reads the hw_comp_cons, it will use an old CQE.
    	 */
    	rmb();
    
    	/* Loop to complete all indicated BDs */
    	while (sw_comp_cons != hw_comp_cons) {
    		struct eth_fast_path_rx_reg_cqe *fp_cqe;
    		enum pkt_hash_types rxhash_type;
    		enum eth_rx_cqe_type cqe_type;
    		struct sw_rx_data *sw_rx_data;
    		union eth_rx_cqe *cqe;
    		struct sk_buff *skb;
    		struct page *data;
    		__le16 flags;
    		u16 len, pad;
    		u32 rx_hash;
    
    		/* Get the CQE from the completion ring */
    		cqe = (union eth_rx_cqe *)
    			qed_chain_consume(&rxq->rx_comp_ring);
    		cqe_type = cqe->fast_path_regular.type;
    
    		if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
    			edev->ops->eth_cqe_completion(
    					edev->cdev, fp->id,
    					(struct eth_slow_path_rx_cqe *)cqe);
    			goto next_cqe;
    		}
    
    		if (cqe_type != ETH_RX_CQE_TYPE_REGULAR) {
    			switch (cqe_type) {
    			case ETH_RX_CQE_TYPE_TPA_START:
    				qede_tpa_start(edev, rxq,
    					       &cqe->fast_path_tpa_start);
    				goto next_cqe;
    			case ETH_RX_CQE_TYPE_TPA_CONT:
    				qede_tpa_cont(edev, rxq,
    					      &cqe->fast_path_tpa_cont);
    				goto next_cqe;
    			case ETH_RX_CQE_TYPE_TPA_END:
    				qede_tpa_end(edev, fp,
    					     &cqe->fast_path_tpa_end);
    				goto next_rx_only;
    			default:
    				break;
    			}
    		}
    
    		/* Get the data from the SW ring */
    		sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
    		sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
    		data = sw_rx_data->data;
    
    		fp_cqe = &cqe->fast_path_regular;
    		len =  le16_to_cpu(fp_cqe->len_on_first_bd);
    		pad = fp_cqe->placement_offset;
    		flags = cqe->fast_path_regular.pars_flags.flags;
    
    		/* If this is an error packet then drop it */
    		parse_flag = le16_to_cpu(flags);
    
    		csum_flag = qede_check_csum(parse_flag);
    		if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
    			if (qede_pkt_is_ip_fragmented(&cqe->fast_path_regular,
    						      parse_flag)) {
    				rxq->rx_ip_frags++;
    				goto alloc_skb;
    			}
    
    			DP_NOTICE(edev,
    				  "CQE in CONS = %u has error, flags = %x, dropping incoming packet\n",
    				  sw_comp_cons, parse_flag);
    			rxq->rx_hw_errors++;
    			qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
    			goto next_cqe;
    		}
    
    alloc_skb:
    		skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
    		if (unlikely(!skb)) {
    			DP_NOTICE(edev,
    				  "skb allocation failed, dropping incoming packet\n");
    			qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
    			rxq->rx_alloc_errors++;
    			goto next_cqe;
    		}
    
    		/* Copy data into SKB */
    		if (len + pad <= edev->rx_copybreak) {
    			memcpy(skb_put(skb, len),
    			       page_address(data) + pad +
    				sw_rx_data->page_offset, len);
    			qede_reuse_page(edev, rxq, sw_rx_data);
    		} else {
    			struct skb_frag_struct *frag;
    			unsigned int pull_len;
    			unsigned char *va;
    
    			frag = &skb_shinfo(skb)->frags[0];
    
    			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, data,
    					pad + sw_rx_data->page_offset,
    					len, rxq->rx_buf_seg_size);
    
    			va = skb_frag_address(frag);
    			pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE);
    
    			/* Align the pull_len to optimize memcpy */
    			memcpy(skb->data, va, ALIGN(pull_len, sizeof(long)));
    
    			skb_frag_size_sub(frag, pull_len);
    			frag->page_offset += pull_len;
    			skb->data_len -= pull_len;
    			skb->tail += pull_len;
    
    			if (unlikely(qede_realloc_rx_buffer(edev, rxq,
    							    sw_rx_data))) {
    				DP_ERR(edev, "Failed to allocate rx buffer\n");
    				/* Incr page ref count to reuse on allocation
    				 * failure so that it doesn't get freed while
    				 * freeing SKB.
    				 */
    
    				page_ref_inc(sw_rx_data->data);
    				rxq->rx_alloc_errors++;
    				qede_recycle_rx_bd_ring(rxq, edev,
    							fp_cqe->bd_num);
    				dev_kfree_skb_any(skb);
    				goto next_cqe;
    			}
    		}
    
    		qede_rx_bd_ring_consume(rxq);
    
    		if (fp_cqe->bd_num != 1) {
    			u16 pkt_len = le16_to_cpu(fp_cqe->pkt_len);
    			u8 num_frags;
    
    			pkt_len -= len;
    
    			for (num_frags = fp_cqe->bd_num - 1; num_frags > 0;
    			     num_frags--) {
    				u16 cur_size = pkt_len > rxq->rx_buf_size ?
    						rxq->rx_buf_size : pkt_len;
    				if (unlikely(!cur_size)) {
    					DP_ERR(edev,
    					       "Still got %d BDs for mapping jumbo, but length became 0\n",
    					       num_frags);
    					qede_recycle_rx_bd_ring(rxq, edev,
    								num_frags);
    					dev_kfree_skb_any(skb);
    					goto next_cqe;
    				}
    
    				if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
    					qede_recycle_rx_bd_ring(rxq, edev,
    								num_frags);
    					dev_kfree_skb_any(skb);
    					goto next_cqe;
    				}
    
    				sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
    				sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
    				qede_rx_bd_ring_consume(rxq);
    
    				dma_unmap_page(&edev->pdev->dev,
    					       sw_rx_data->mapping,
    					       PAGE_SIZE, DMA_FROM_DEVICE);
    
    				skb_fill_page_desc(skb,
    						   skb_shinfo(skb)->nr_frags++,
    						   sw_rx_data->data, 0,
    						   cur_size);
    
    				skb->truesize += PAGE_SIZE;
    				skb->data_len += cur_size;
    				skb->len += cur_size;
    				pkt_len -= cur_size;
    			}
    
    			if (unlikely(pkt_len))
    				DP_ERR(edev,
    				       "Mapped all BDs of jumbo, but still have %d bytes\n",
    				       pkt_len);
    		}
    
    		skb->protocol = eth_type_trans(skb, edev->ndev);
    
    		rx_hash = qede_get_rxhash(edev, fp_cqe->bitfields,
    					  fp_cqe->rss_hash, &rxhash_type);
    
    		skb_set_hash(skb, rx_hash, rxhash_type);
    
    		qede_set_skb_csum(skb, csum_flag);
    
    		skb_record_rx_queue(skb, fp->rxq->rxq_id);
    
    		qede_skb_receive(edev, fp, skb, le16_to_cpu(fp_cqe->vlan_tag));
    next_rx_only:
    		rx_pkt++;
    
    next_cqe: /* don't consume bd rx buffer */
    		qed_chain_recycle_consumed(&rxq->rx_comp_ring);
    		sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
    		/* CR TPA - revisit how to handle budget in TPA perhaps
    		 * increase on "end"
    		 */
    		if (rx_pkt == budget)
    			break;
    	} /* repeat while sw_comp_cons != hw_comp_cons... */
    
    	/* Update producers */
    	qede_update_rx_prod(edev, rxq);
    
    	rxq->rcv_pkts += rx_pkt;
    
    	return rx_pkt;
    }
    
    static int qede_poll(struct napi_struct *napi, int budget)
    {
    	struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
    						napi);
    	struct qede_dev *edev = fp->edev;
    	int rx_work_done = 0;
    	u8 tc;
    
    	for (tc = 0; tc < edev->num_tc; tc++)
    		if (likely(fp->type & QEDE_FASTPATH_TX) &&
    		    qede_txq_has_work(&fp->txqs[tc]))
    			qede_tx_int(edev, &fp->txqs[tc]);
    
    	rx_work_done = (likely(fp->type & QEDE_FASTPATH_RX) &&
    			qede_has_rx_work(fp->rxq)) ?
    			qede_rx_int(fp, budget) : 0;
    	if (rx_work_done < budget) {
    		qed_sb_update_sb_idx(fp->sb_info);
    		/* *_has_*_work() reads the status block,
    		 * thus we need to ensure that status block indices
    		 * have been actually read (qed_sb_update_sb_idx)
    		 * prior to this check (*_has_*_work) so that
    		 * we won't write the "newer" value of the status block
    		 * to HW (if there was a DMA right after
    		 * qede_has_rx_work and if there is no rmb, the memory
    		 * reading (qed_sb_update_sb_idx) may be postponed
    		 * to right before *_ack_sb). In this case there
    		 * will never be another interrupt until there is
    		 * another update of the status block, while there
    		 * is still unhandled work.
    		 */
    		rmb();
    
    		/* Fall out from the NAPI loop if needed */
    		if (!((likely(fp->type & QEDE_FASTPATH_RX) &&
    		       qede_has_rx_work(fp->rxq)) ||
    		      (likely(fp->type & QEDE_FASTPATH_TX) &&
    		       qede_has_tx_work(fp)))) {
    			napi_complete(napi);
    
    			/* Update and reenable interrupts */
    			qed_sb_ack(fp->sb_info, IGU_INT_ENABLE,
    				   1 /*update*/);
    		} else {
    			rx_work_done = budget;
    		}
    	}
    
    	return rx_work_done;
    }
    
    static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
    {
    	struct qede_fastpath *fp = fp_cookie;
    
    	qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
    
    	napi_schedule_irqoff(&fp->napi);
    	return IRQ_HANDLED;
    }
    
    /* -------------------------------------------------------------------------
     * END OF FAST-PATH
     * -------------------------------------------------------------------------
     */
    
    static int qede_open(struct net_device *ndev);
    static int qede_close(struct net_device *ndev);
    static int qede_set_mac_addr(struct net_device *ndev, void *p);
    static void qede_set_rx_mode(struct net_device *ndev);
    static void qede_config_rx_mode(struct net_device *ndev);
    
    static int qede_set_ucast_rx_mac(struct qede_dev *edev,
    				 enum qed_filter_xcast_params_type opcode,
    				 unsigned char mac[ETH_ALEN])
    {
    	struct qed_filter_params filter_cmd;
    
    	memset(&filter_cmd, 0, sizeof(filter_cmd));
    	filter_cmd.type = QED_FILTER_TYPE_UCAST;
    	filter_cmd.filter.ucast.type = opcode;
    	filter_cmd.filter.ucast.mac_valid = 1;
    	ether_addr_copy(filter_cmd.filter.ucast.mac, mac);
    
    	return edev->ops->filter_config(edev->cdev, &filter_cmd);
    }
    
    static int qede_set_ucast_rx_vlan(struct qede_dev *edev,
    				  enum qed_filter_xcast_params_type opcode,
    				  u16 vid)
    {
    	struct qed_filter_params filter_cmd;
    
    	memset(&filter_cmd, 0, sizeof(filter_cmd));
    	filter_cmd.type = QED_FILTER_TYPE_UCAST;
    	filter_cmd.filter.ucast.type = opcode;
    	filter_cmd.filter.ucast.vlan_valid = 1;
    	filter_cmd.filter.ucast.vlan = vid;
    
    	return edev->ops->filter_config(edev->cdev, &filter_cmd);
    }
    
    void qede_fill_by_demand_stats(struct qede_dev *edev)
    {
    	struct qed_eth_stats stats;
    
    	edev->ops->get_vport_stats(edev->cdev, &stats);
    	edev->stats.no_buff_discards = stats.no_buff_discards;
    	edev->stats.packet_too_big_discard = stats.packet_too_big_discard;
    	edev->stats.ttl0_discard = stats.ttl0_discard;
    	edev->stats.rx_ucast_bytes = stats.rx_ucast_bytes;
    	edev->stats.rx_mcast_bytes = stats.rx_mcast_bytes;
    	edev->stats.rx_bcast_bytes = stats.rx_bcast_bytes;
    	edev->stats.rx_ucast_pkts = stats.rx_ucast_pkts;
    	edev->stats.rx_mcast_pkts = stats.rx_mcast_pkts;
    	edev->stats.rx_bcast_pkts = stats.rx_bcast_pkts;
    	edev->stats.mftag_filter_discards = stats.mftag_filter_discards;
    	edev->stats.mac_filter_discards = stats.mac_filter_discards;
    
    	edev->stats.tx_ucast_bytes = stats.tx_ucast_bytes;
    	edev->stats.tx_mcast_bytes = stats.tx_mcast_bytes;
    	edev->stats.tx_bcast_bytes = stats.tx_bcast_bytes;
    	edev->stats.tx_ucast_pkts = stats.tx_ucast_pkts;
    	edev->stats.tx_mcast_pkts = stats.tx_mcast_pkts;
    	edev->stats.tx_bcast_pkts = stats.tx_bcast_pkts;
    	edev->stats.tx_err_drop_pkts = stats.tx_err_drop_pkts;
    	edev->stats.coalesced_pkts = stats.tpa_coalesced_pkts;
    	edev->stats.coalesced_events = stats.tpa_coalesced_events;
    	edev->stats.coalesced_aborts_num = stats.tpa_aborts_num;
    	edev->stats.non_coalesced_pkts = stats.tpa_not_coalesced_pkts;
    	edev->stats.coalesced_bytes = stats.tpa_coalesced_bytes;
    
    	edev->stats.rx_64_byte_packets = stats.rx_64_byte_packets;
    	edev->stats.rx_65_to_127_byte_packets = stats.rx_65_to_127_byte_packets;
    	edev->stats.rx_128_to_255_byte_packets =
    				stats.rx_128_to_255_byte_packets;
    	edev->stats.rx_256_to_511_byte_packets =
    				stats.rx_256_to_511_byte_packets;
    	edev->stats.rx_512_to_1023_byte_packets =
    				stats.rx_512_to_1023_byte_packets;
    	edev->stats.rx_1024_to_1518_byte_packets =
    				stats.rx_1024_to_1518_byte_packets;
    	edev->stats.rx_1519_to_1522_byte_packets =
    				stats.rx_1519_to_1522_byte_packets;
    	edev->stats.rx_1519_to_2047_byte_packets =
    				stats.rx_1519_to_2047_byte_packets;
    	edev->stats.rx_2048_to_4095_byte_packets =
    				stats.rx_2048_to_4095_byte_packets;
    	edev->stats.rx_4096_to_9216_byte_packets =
    				stats.rx_4096_to_9216_byte_packets;
    	edev->stats.rx_9217_to_16383_byte_packets =
    				stats.rx_9217_to_16383_byte_packets;
    	edev->stats.rx_crc_errors = stats.rx_crc_errors;
    	edev->stats.rx_mac_crtl_frames = stats.rx_mac_crtl_frames;
    	edev->stats.rx_pause_frames = stats.rx_pause_frames;
    	edev->stats.rx_pfc_frames = stats.rx_pfc_frames;
    	edev->stats.rx_align_errors = stats.rx_align_errors;
    	edev->stats.rx_carrier_errors = stats.rx_carrier_errors;
    	edev->stats.rx_oversize_packets = stats.rx_oversize_packets;
    	edev->stats.rx_jabbers = stats.rx_jabbers;
    	edev->stats.rx_undersize_packets = stats.rx_undersize_packets;
    	edev->stats.rx_fragments = stats.rx_fragments;
    	edev->stats.tx_64_byte_packets = stats.tx_64_byte_packets;
    	edev->stats.tx_65_to_127_byte_packets = stats.tx_65_to_127_byte_packets;
    	edev->stats.tx_128_to_255_byte_packets =
    				stats.tx_128_to_255_byte_packets;
    	edev->stats.tx_256_to_511_byte_packets =
    				stats.tx_256_to_511_byte_packets;
    	edev->stats.tx_512_to_1023_byte_packets =
    				stats.tx_512_to_1023_byte_packets;
    	edev->stats.tx_1024_to_1518_byte_packets =
    				stats.tx_1024_to_1518_byte_packets;
    	edev->stats.tx_1519_to_2047_byte_packets =
    				stats.tx_1519_to_2047_byte_packets;
    	edev->stats.tx_2048_to_4095_byte_packets =
    				stats.tx_2048_to_4095_byte_packets;
    	edev->stats.tx_4096_to_9216_byte_packets =
    				stats.tx_4096_to_9216_byte_packets;
    	edev->stats.tx_9217_to_16383_byte_packets =
    				stats.tx_9217_to_16383_byte_packets;
    	edev->stats.tx_pause_frames = stats.tx_pause_frames;
    	edev->stats.tx_pfc_frames = stats.tx_pfc_frames;
    	edev->stats.tx_lpi_entry_count = stats.tx_lpi_entry_count;
    	edev->stats.tx_total_collisions = stats.tx_total_collisions;
    	edev->stats.brb_truncates = stats.brb_truncates;
    	edev->stats.brb_discards = stats.brb_discards;
    	edev->stats.tx_mac_ctrl_frames = stats.tx_mac_ctrl_frames;
    }
    
    static
    struct rtnl_link_stats64 *qede_get_stats64(struct net_device *dev,
    					   struct rtnl_link_stats64 *stats)
    {
    	struct qede_dev *edev = netdev_priv(dev);
    
    	qede_fill_by_demand_stats(edev);
    
    	stats->rx_packets = edev->stats.rx_ucast_pkts +
    			    edev->stats.rx_mcast_pkts +
    			    edev->stats.rx_bcast_pkts;
    	stats->tx_packets = edev->stats.tx_ucast_pkts +
    			    edev->stats.tx_mcast_pkts +
    			    edev->stats.tx_bcast_pkts;
    
    	stats->rx_bytes = edev->stats.rx_ucast_bytes +
    			  edev->stats.rx_mcast_bytes +
    			  edev->stats.rx_bcast_bytes;
    
    	stats->tx_bytes = edev->stats.tx_ucast_bytes +
    			  edev->stats.tx_mcast_bytes +
    			  edev->stats.tx_bcast_bytes;
    
    	stats->tx_errors = edev->stats.tx_err_drop_pkts;
    	stats->multicast = edev->stats.rx_mcast_pkts +
    			   edev->stats.rx_bcast_pkts;
    
    	stats->rx_fifo_errors = edev->stats.no_buff_discards;
    
    	stats->collisions = edev->stats.tx_total_collisions;
    	stats->rx_crc_errors = edev->stats.rx_crc_errors;
    	stats->rx_frame_errors = edev->stats.rx_align_errors;
    
    	return stats;
    }
    
    #ifdef CONFIG_QED_SRIOV
    static int qede_get_vf_config(struct net_device *dev, int vfidx,
    			      struct ifla_vf_info *ivi)
    {
    	struct qede_dev *edev = netdev_priv(dev);
    
    	if (!edev->ops)
    		return -EINVAL;
    
    	return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
    }
    
    static int qede_set_vf_rate(struct net_device *dev, int vfidx,
    			    int min_tx_rate, int max_tx_rate)
    {
    	struct qede_dev *edev = netdev_priv(dev);
    
    	return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
    					max_tx_rate);
    }
    
    static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
    {
    	struct qede_dev *edev = netdev_priv(dev);
    
    	if (!edev->ops)
    		return -EINVAL;
    
    	return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
    }
    
    static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
    				  int link_state)
    {
    	struct qede_dev *edev = netdev_priv(dev);
    
    	if (!edev->ops)
    		return -EINVAL;
    
    	return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
    }
    #endif
    
    static void qede_config_accept_any_vlan(struct qede_dev *edev, bool action)
    {
    	struct qed_update_vport_params params;
    	int rc;
    
    	/* Proceed only if action actually needs to be performed */
    	if (edev->accept_any_vlan == action)
    		return;
    
    	memset(&params, 0, sizeof(params));
    
    	params.vport_id = 0;
    	params.accept_any_vlan = action;
    	params.update_accept_any_vlan_flg = 1;
    
    	rc = edev->ops->vport_update(edev->cdev, &params);
    	if (rc) {
    		DP_ERR(edev, "Failed to %s accept-any-vlan\n",
    		       action ? "enable" : "disable");
    	} else {
    		DP_INFO(edev, "%s accept-any-vlan\n",
    			action ? "enabled" : "disabled");
    		edev->accept_any_vlan = action;
    	}
    }
    
    static int qede_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
    {
    	struct qede_dev *edev = netdev_priv(dev);
    	struct qede_vlan *vlan, *tmp;
    	int rc;
    
    	DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan 0x%04x\n", vid);
    
    	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
    	if (!vlan) {
    		DP_INFO(edev, "Failed to allocate struct for vlan\n");
    		return -ENOMEM;
    	}
    	INIT_LIST_HEAD(&vlan->list);
    	vlan->vid = vid;
    	vlan->configured = false;
    
    	/* Verify vlan isn't already configured */
    	list_for_each_entry(tmp, &edev->vlan_list, list) {
    		if (tmp->vid == vlan->vid) {
    			DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
    				   "vlan already configured\n");
    			kfree(vlan);
    			return -EEXIST;
    		}
    	}
    
    	/* If interface is down, cache this VLAN ID and return */
    	if (edev->state != QEDE_STATE_OPEN) {
    		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
    			   "Interface is down, VLAN %d will be configured when interface is up\n",
    			   vid);
    		if (vid != 0)
    			edev->non_configured_vlans++;
    		list_add(&vlan->list, &edev->vlan_list);
    
    		return 0;
    	}
    
    	/* Check for the filter limit.
    	 * Note - vlan0 has a reserved filter and can be added without
    	 * worrying about quota
    	 */
    	if ((edev->configured_vlans < edev->dev_info.num_vlan_filters) ||
    	    (vlan->vid == 0)) {
    		rc = qede_set_ucast_rx_vlan(edev,
    					    QED_FILTER_XCAST_TYPE_ADD,
    					    vlan->vid);
    		if (rc) {
    			DP_ERR(edev, "Failed to configure VLAN %d\n",
    			       vlan->vid);
    			kfree(vlan);
    			return -EINVAL;
    		}
    		vlan->configured = true;
    
    		/* vlan0 filter isn't consuming out of our quota */
    		if (vlan->vid != 0)
    			edev->configured_vlans++;
    	} else {
    		/* Out of quota; Activate accept-any-VLAN mode */
    		if (!edev->non_configured_vlans)
    			qede_config_accept_any_vlan(edev, true);
    
    		edev->non_configured_vlans++;
    	}
    
    	list_add(&vlan->list, &edev->vlan_list);
    
    	return 0;
    }
    
    static void qede_del_vlan_from_list(struct qede_dev *edev,
    				    struct qede_vlan *vlan)
    {
    	/* vlan0 filter isn't consuming out of our quota */
    	if (vlan->vid != 0) {
    		if (vlan->configured)
    			edev->configured_vlans--;
    		else
    			edev->non_configured_vlans--;
    	}
    
    	list_del(&vlan->list);
    	kfree(vlan);
    }
    
    static int qede_configure_vlan_filters(struct qede_dev *edev)
    {
    	int rc = 0, real_rc = 0, accept_any_vlan = 0;
    	struct qed_dev_eth_info *dev_info;
    	struct qede_vlan *vlan = NULL;
    
    	if (list_empty(&edev->vlan_list))
    		return 0;
    
    	dev_info = &edev->dev_info;
    
    	/* Configure non-configured vlans */
    	list_for_each_entry(vlan, &edev->vlan_list, list) {
    		if (vlan->configured)
    			continue;
    
    		/* We have used all our credits, now enable accept_any_vlan */
    		if ((vlan->vid != 0) &&
    		    (edev->configured_vlans == dev_info->num_vlan_filters)) {
    			accept_any_vlan = 1;
    			continue;
    		}
    
    		DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan %d\n", vlan->vid);
    
    		rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_ADD,
    					    vlan->vid);
    		if (rc) {
    			DP_ERR(edev, "Failed to configure VLAN %u\n",
    			       vlan->vid);
    			real_rc = rc;
    			continue;
    		}
    
    		vlan->configured = true;
    		/* vlan0 filter doesn't consume our VLAN filter's quota */
    		if (vlan->vid != 0) {
    			edev->non_configured_vlans--;
    			edev->configured_vlans++;
    		}
    	}
    
    	/* enable accept_any_vlan mode if we have more VLANs than credits,
    	 * or remove accept_any_vlan mode if we've actually removed
    	 * a non-configured vlan, and all remaining vlans are truly configured.
    	 */
    
    	if (accept_any_vlan)
    		qede_config_accept_any_vlan(edev, true);
    	else if (!edev->non_configured_vlans)
    		qede_config_accept_any_vlan(edev, false);
    
    	return real_rc;
    }
    
    static int qede_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
    {
    	struct qede_dev *edev = netdev_priv(dev);
    	struct qede_vlan *vlan = NULL;
    	int rc;
    
    	DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Removing vlan 0x%04x\n", vid);
    
    	/* Find whether entry exists */
    	list_for_each_entry(vlan, &edev->vlan_list, list)
    		if (vlan->vid == vid)
    			break;
    
    	if (!vlan || (vlan->vid != vid)) {
    		DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
    			   "Vlan isn't configured\n");
    		return 0;
    	}
    
    	if (edev->state != QEDE_STATE_OPEN) {
    		/* As interface is already down, we don't have a VPORT
    		 * instance to remove vlan filter. So just update vlan list
    		 */
    		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
    			   "Interface is down, removing VLAN from list only\n");
    		qede_del_vlan_from_list(edev, vlan);
    		return 0;
    	}
    
    	/* Remove vlan */
    	if (vlan->configured) {
    		rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_DEL,
    					    vid);
    		if (rc) {
    			DP_ERR(edev, "Failed to remove VLAN %d\n", vid);
    			return -EINVAL;
    		}
    	}
    
    	qede_del_vlan_from_list(edev, vlan);
    
    	/* We have removed a VLAN - try to see if we can
    	 * configure non-configured VLAN from the list.
    	 */
    	rc = qede_configure_vlan_filters(edev);
    
    	return rc;
    }
    
    static void qede_vlan_mark_nonconfigured(struct qede_dev *edev)
    {
    	struct qede_vlan *vlan = NULL;
    
    	if (list_empty(&edev->vlan_list))
    		return;
    
    	list_for_each_entry(vlan, &edev->vlan_list, list) {
    		if (!vlan->configured)
    			continue;
    
    		vlan->configured = false;
    
    		/* vlan0 filter isn't consuming out of our quota */
    		if (vlan->vid != 0) {
    			edev->non_configured_vlans++;
    			edev->configured_vlans--;
    		}
    
    		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
    			   "marked vlan %d as non-configured\n", vlan->vid);
    	}
    
    	edev->accept_any_vlan = false;
    }
    
    static int qede_set_features(struct net_device *dev, netdev_features_t features)
    {
    	struct qede_dev *edev = netdev_priv(dev);
    	netdev_features_t changes = features ^ dev->features;
    	bool need_reload = false;
    
    	/* No action needed if hardware GRO is disabled during driver load */
    	if (changes & NETIF_F_GRO) {
    		if (dev->features & NETIF_F_GRO)
    			need_reload = !edev->gro_disable;
    		else
    			need_reload = edev->gro_disable;
    	}
    
    	if (need_reload && netif_running(edev->ndev)) {
    		dev->features = features;
    		qede_reload(edev, NULL, NULL);
    		return 1;
    	}
    
    	return 0;
    }
    
    static void qede_udp_tunnel_add(struct net_device *dev,
    				struct udp_tunnel_info *ti)
    {
    	struct qede_dev *edev = netdev_priv(dev);
    	u16 t_port = ntohs(ti->port);
    
    	switch (ti->type) {
    	case UDP_TUNNEL_TYPE_VXLAN:
    		if (edev->vxlan_dst_port)
    			return;
    
    		edev->vxlan_dst_port = t_port;
    
    		DP_VERBOSE(edev, QED_MSG_DEBUG, "Added vxlan port=%d\n",
    			   t_port);
    
    		set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
    		break;
    	case UDP_TUNNEL_TYPE_GENEVE:
    		if (edev->geneve_dst_port)
    			return;
    
    		edev->geneve_dst_port = t_port;
    
    		DP_VERBOSE(edev, QED_MSG_DEBUG, "Added geneve port=%d\n",
    			   t_port);
    		set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
    		break;
    	default:
    		return;
    	}
    
    	schedule_delayed_work(&edev->sp_task, 0);
    }
    
    static void qede_udp_tunnel_del(struct net_device *dev,
    				struct udp_tunnel_info *ti)
    {
    	struct qede_dev *edev = netdev_priv(dev);
    	u16 t_port = ntohs(ti->port);
    
    	switch (ti->type) {
    	case UDP_TUNNEL_TYPE_VXLAN:
    		if (t_port != edev->vxlan_dst_port)
    			return;
    
    		edev->vxlan_dst_port = 0;
    
    		DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted vxlan port=%d\n",
    			   t_port);
    
    		set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
    		break;
    	case UDP_TUNNEL_TYPE_GENEVE:
    		if (t_port != edev->geneve_dst_port)
    			return;
    
    		edev->geneve_dst_port = 0;
    
    		DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted geneve port=%d\n",
    			   t_port);
    		set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
    		break;
    	default:
    		return;
    	}
    
    	schedule_delayed_work(&edev->sp_task, 0);
    }
    
    /* 8B udp header + 8B base tunnel header + 32B option length */
    #define QEDE_MAX_TUN_HDR_LEN 48
    
    static netdev_features_t qede_features_check(struct sk_buff *skb,
    					     struct net_device *dev,
    					     netdev_features_t features)
    {
    	if (skb->encapsulation) {
    		u8 l4_proto = 0;
    
    		switch (vlan_get_protocol(skb)) {
    		case htons(ETH_P_IP):
    			l4_proto = ip_hdr(skb)->protocol;
    			break;
    		case htons(ETH_P_IPV6):
    			l4_proto = ipv6_hdr(skb)->nexthdr;
    			break;
    		default:
    			return features;
    		}
    
    		/* Disable offloads for geneve tunnels, as HW can't parse
    		 * the geneve header which has option length greater than 32B.
    		 */
    		if ((l4_proto == IPPROTO_UDP) &&
    		    ((skb_inner_mac_header(skb) -
    		      skb_transport_header(skb)) > QEDE_MAX_TUN_HDR_LEN))
    			return features & ~(NETIF_F_CSUM_MASK |
    					    NETIF_F_GSO_MASK);
    	}
    
    	return features;
    }
    
    static const struct net_device_ops qede_netdev_ops = {
    	.ndo_open = qede_open,
    	.ndo_stop = qede_close,
    	.ndo_start_xmit = qede_start_xmit,
    	.ndo_set_rx_mode = qede_set_rx_mode,
    	.ndo_set_mac_address = qede_set_mac_addr,
    	.ndo_validate_addr = eth_validate_addr,
    	.ndo_change_mtu = qede_change_mtu,
    #ifdef CONFIG_QED_SRIOV
    	.ndo_set_vf_mac = qede_set_vf_mac,
    	.ndo_set_vf_vlan = qede_set_vf_vlan,
    #endif
    	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
    	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
    	.ndo_set_features = qede_set_features,
    	.ndo_get_stats64 = qede_get_stats64,
    #ifdef CONFIG_QED_SRIOV
    	.ndo_set_vf_link_state = qede_set_vf_link_state,
    	.ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
    	.ndo_get_vf_config = qede_get_vf_config,
    	.ndo_set_vf_rate = qede_set_vf_rate,
    #endif
    	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
    	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
    	.ndo_features_check = qede_features_check,
    };
    
    /* -------------------------------------------------------------------------
     * START OF PROBE / REMOVE
     * -------------------------------------------------------------------------
     */
    
    static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
    					    struct pci_dev *pdev,
    					    struct qed_dev_eth_info *info,
    					    u32 dp_module, u8 dp_level)
    {
    	struct net_device *ndev;
    	struct qede_dev *edev;
    
    	ndev = alloc_etherdev_mqs(sizeof(*edev),
    				  info->num_queues, info->num_queues);
    	if (!ndev) {
    		pr_err("etherdev allocation failed\n");
    		return NULL;
    	}
    
    	edev = netdev_priv(ndev);
    	edev->ndev = ndev;
    	edev->cdev = cdev;
    	edev->pdev = pdev;
    	edev->dp_module = dp_module;
    	edev->dp_level = dp_level;
    	edev->ops = qed_ops;
    	edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
    	edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
    
    	DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
    		info->num_queues, info->num_queues);
    
    	SET_NETDEV_DEV(ndev, &pdev->dev);
    
    	memset(&edev->stats, 0, sizeof(edev->stats));
    	memcpy(&edev->dev_info, info, sizeof(*info));
    
    	edev->num_tc = edev->dev_info.num_tc;
    
    	INIT_LIST_HEAD(&edev->vlan_list);
    
    	return edev;
    }
    
    static void qede_init_ndev(struct qede_dev *edev)
    {
    	struct net_device *ndev = edev->ndev;
    	struct pci_dev *pdev = edev->pdev;
    	u32 hw_features;
    
    	pci_set_drvdata(pdev, ndev);
    
    	ndev->mem_start = edev->dev_info.common.pci_mem_start;
    	ndev->base_addr = ndev->mem_start;
    	ndev->mem_end = edev->dev_info.common.pci_mem_end;
    	ndev->irq = edev->dev_info.common.pci_irq;
    
    	ndev->watchdog_timeo = TX_TIMEOUT;
    
    	ndev->netdev_ops = &qede_netdev_ops;
    
    	qede_set_ethtool_ops(ndev);
    
    	/* user-changeble features */
    	hw_features = NETIF_F_GRO | NETIF_F_SG |
    		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
    		      NETIF_F_TSO | NETIF_F_TSO6;
    
    	/* Encap features*/
    	hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
    		       NETIF_F_TSO_ECN | NETIF_F_GSO_UDP_TUNNEL_CSUM |
    		       NETIF_F_GSO_GRE_CSUM;
    	ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
    				NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO_ECN |
    				NETIF_F_TSO6 | NETIF_F_GSO_GRE |
    				NETIF_F_GSO_UDP_TUNNEL | NETIF_F_RXCSUM |
    				NETIF_F_GSO_UDP_TUNNEL_CSUM |
    				NETIF_F_GSO_GRE_CSUM;
    
    	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
    			      NETIF_F_HIGHDMA;
    	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
    			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
    			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
    
    	ndev->hw_features = hw_features;
    
    	/* Set network device HW mac */
    	ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
    }
    
    /* This function converts from 32b param to two params of level and module
     * Input 32b decoding:
     * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
     * 'happy' flow, e.g. memory allocation failed.
     * b30 - enable all INFO prints. INFO prints are for major steps in the flow
     * and provide important parameters.
     * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
     * module. VERBOSE prints are for tracking the specific flow in low level.
     *
     * Notice that the level should be that of the lowest required logs.
     */
    void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
    {
    	*p_dp_level = QED_LEVEL_NOTICE;
    	*p_dp_module = 0;
    
    	if (debug & QED_LOG_VERBOSE_MASK) {
    		*p_dp_level = QED_LEVEL_VERBOSE;
    		*p_dp_module = (debug & 0x3FFFFFFF);
    	} else if (debug & QED_LOG_INFO_MASK) {
    		*p_dp_level = QED_LEVEL_INFO;
    	} else if (debug & QED_LOG_NOTICE_MASK) {
    		*p_dp_level = QED_LEVEL_NOTICE;
    	}
    }
    
    static void qede_free_fp_array(struct qede_dev *edev)
    {
    	if (edev->fp_array) {
    		struct qede_fastpath *fp;
    		int i;
    
    		for_each_queue(i) {
    			fp = &edev->fp_array[i];
    
    			kfree(fp->sb_info);
    			kfree(fp->rxq);
    			kfree(fp->txqs);
    		}
    		kfree(edev->fp_array);
    	}
    
    	edev->num_queues = 0;
    	edev->fp_num_tx = 0;
    	edev->fp_num_rx = 0;
    }
    
    static int qede_alloc_fp_array(struct qede_dev *edev)
    {
    	u8 fp_combined, fp_rx = edev->fp_num_rx;
    	struct qede_fastpath *fp;
    	int i;
    
    	edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
    				 sizeof(*edev->fp_array), GFP_KERNEL);
    	if (!edev->fp_array) {
    		DP_NOTICE(edev, "fp array allocation failed\n");
    		goto err;
    	}
    
    	fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
    
    	/* Allocate the FP elements for Rx queues followed by combined and then
    	 * the Tx. This ordering should be maintained so that the respective
    	 * queues (Rx or Tx) will be together in the fastpath array and the
    	 * associated ids will be sequential.
    	 */
    	for_each_queue(i) {
    		fp = &edev->fp_array[i];
    
    		fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL);
    		if (!fp->sb_info) {
    			DP_NOTICE(edev, "sb info struct allocation failed\n");
    			goto err;
    		}
    
    		if (fp_rx) {
    			fp->type = QEDE_FASTPATH_RX;
    			fp_rx--;
    		} else if (fp_combined) {
    			fp->type = QEDE_FASTPATH_COMBINED;
    			fp_combined--;
    		} else {
    			fp->type = QEDE_FASTPATH_TX;
    		}
    
    		if (fp->type & QEDE_FASTPATH_TX) {
    			fp->txqs = kcalloc(edev->num_tc, sizeof(*fp->txqs),
    					   GFP_KERNEL);
    			if (!fp->txqs) {
    				DP_NOTICE(edev,
    					  "TXQ array allocation failed\n");
    				goto err;
    			}
    		}
    
    		if (fp->type & QEDE_FASTPATH_RX) {
    			fp->rxq = kcalloc(1, sizeof(*fp->rxq), GFP_KERNEL);
    			if (!fp->rxq) {
    				DP_NOTICE(edev,
    					  "RXQ struct allocation failed\n");
    				goto err;
    			}
    		}
    	}
    
    	return 0;
    err:
    	qede_free_fp_array(edev);
    	return -ENOMEM;
    }
    
    static void qede_sp_task(struct work_struct *work)
    {
    	struct qede_dev *edev = container_of(work, struct qede_dev,
    					     sp_task.work);
    	struct qed_dev *cdev = edev->cdev;
    
    	mutex_lock(&edev->qede_lock);
    
    	if (edev->state == QEDE_STATE_OPEN) {
    		if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
    			qede_config_rx_mode(edev->ndev);
    	}
    
    	if (test_and_clear_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags)) {
    		struct qed_tunn_params tunn_params;
    
    		memset(&tunn_params, 0, sizeof(tunn_params));
    		tunn_params.update_vxlan_port = 1;
    		tunn_params.vxlan_port = edev->vxlan_dst_port;
    		qed_ops->tunn_config(cdev, &tunn_params);
    	}
    
    	if (test_and_clear_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags)) {
    		struct qed_tunn_params tunn_params;
    
    		memset(&tunn_params, 0, sizeof(tunn_params));
    		tunn_params.update_geneve_port = 1;
    		tunn_params.geneve_port = edev->geneve_dst_port;
    		qed_ops->tunn_config(cdev, &tunn_params);
    	}
    
    	mutex_unlock(&edev->qede_lock);
    }
    
    static void qede_update_pf_params(struct qed_dev *cdev)
    {
    	struct qed_pf_params pf_params;
    
    	/* 64 rx + 64 tx */
    	memset(&pf_params, 0, sizeof(struct qed_pf_params));
    	pf_params.eth_pf_params.num_cons = 128;
    	qed_ops->common->update_pf_params(cdev, &pf_params);
    }
    
    enum qede_probe_mode {
    	QEDE_PROBE_NORMAL,
    };
    
    static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
    			bool is_vf, enum qede_probe_mode mode)
    {
    	struct qed_probe_params probe_params;
    	struct qed_slowpath_params sp_params;
    	struct qed_dev_eth_info dev_info;
    	struct qede_dev *edev;
    	struct qed_dev *cdev;
    	int rc;
    
    	if (unlikely(dp_level & QED_LEVEL_INFO))
    		pr_notice("Starting qede probe\n");
    
    	memset(&probe_params, 0, sizeof(probe_params));
    	probe_params.protocol = QED_PROTOCOL_ETH;
    	probe_params.dp_module = dp_module;
    	probe_params.dp_level = dp_level;
    	probe_params.is_vf = is_vf;
    	cdev = qed_ops->common->probe(pdev, &probe_params);
    	if (!cdev) {
    		rc = -ENODEV;
    		goto err0;
    	}
    
    	qede_update_pf_params(cdev);
    
    	/* Start the Slowpath-process */
    	memset(&sp_params, 0, sizeof(sp_params));
    	sp_params.int_mode = QED_INT_MODE_MSIX;
    	sp_params.drv_major = QEDE_MAJOR_VERSION;
    	sp_params.drv_minor = QEDE_MINOR_VERSION;
    	sp_params.drv_rev = QEDE_REVISION_VERSION;
    	sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
    	strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
    	rc = qed_ops->common->slowpath_start(cdev, &sp_params);
    	if (rc) {
    		pr_notice("Cannot start slowpath\n");
    		goto err1;
    	}
    
    	/* Learn information crucial for qede to progress */
    	rc = qed_ops->fill_dev_info(cdev, &dev_info);
    	if (rc)
    		goto err2;
    
    	edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
    				   dp_level);
    	if (!edev) {
    		rc = -ENOMEM;
    		goto err2;
    	}
    
    	if (is_vf)
    		edev->flags |= QEDE_FLAG_IS_VF;
    
    	qede_init_ndev(edev);
    
    	rc = qede_roce_dev_add(edev);
    	if (rc)
    		goto err3;
    
    	rc = register_netdev(edev->ndev);
    	if (rc) {
    		DP_NOTICE(edev, "Cannot register net-device\n");
    		goto err4;
    	}
    
    	edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION);
    
    	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
    
    #ifdef CONFIG_DCB
    	if (!IS_VF(edev))
    		qede_set_dcbnl_ops(edev->ndev);
    #endif
    
    	INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
    	mutex_init(&edev->qede_lock);
    	edev->rx_copybreak = QEDE_RX_HDR_SIZE;
    
    	DP_INFO(edev, "Ending successfully qede probe\n");
    
    	return 0;
    
    err4:
    	qede_roce_dev_remove(edev);
    err3:
    	free_netdev(edev->ndev);
    err2:
    	qed_ops->common->slowpath_stop(cdev);
    err1:
    	qed_ops->common->remove(cdev);
    err0:
    	return rc;
    }
    
    static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
    {
    	bool is_vf = false;
    	u32 dp_module = 0;
    	u8 dp_level = 0;
    
    	switch ((enum qede_pci_private)id->driver_data) {
    	case QEDE_PRIVATE_VF:
    		if (debug & QED_LOG_VERBOSE_MASK)
    			dev_err(&pdev->dev, "Probing a VF\n");
    		is_vf = true;
    		break;
    	default:
    		if (debug & QED_LOG_VERBOSE_MASK)
    			dev_err(&pdev->dev, "Probing a PF\n");
    	}
    
    	qede_config_debug(debug, &dp_module, &dp_level);
    
    	return __qede_probe(pdev, dp_module, dp_level, is_vf,
    			    QEDE_PROBE_NORMAL);
    }
    
    enum qede_remove_mode {
    	QEDE_REMOVE_NORMAL,
    };
    
    static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
    {
    	struct net_device *ndev = pci_get_drvdata(pdev);
    	struct qede_dev *edev = netdev_priv(ndev);
    	struct qed_dev *cdev = edev->cdev;
    
    	DP_INFO(edev, "Starting qede_remove\n");
    
    	cancel_delayed_work_sync(&edev->sp_task);
    
    	unregister_netdev(ndev);
    
    	qede_roce_dev_remove(edev);
    
    	edev->ops->common->set_power_state(cdev, PCI_D0);
    
    	pci_set_drvdata(pdev, NULL);
    
    	free_netdev(ndev);
    
    	/* Use global ops since we've freed edev */
    	qed_ops->common->slowpath_stop(cdev);
    	qed_ops->common->remove(cdev);
    
    	dev_info(&pdev->dev, "Ending qede_remove successfully\n");
    }
    
    static void qede_remove(struct pci_dev *pdev)
    {
    	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
    }
    
    /* -------------------------------------------------------------------------
     * START OF LOAD / UNLOAD
     * -------------------------------------------------------------------------
     */
    
    static int qede_set_num_queues(struct qede_dev *edev)
    {
    	int rc;
    	u16 rss_num;
    
    	/* Setup queues according to possible resources*/
    	if (edev->req_queues)
    		rss_num = edev->req_queues;
    	else
    		rss_num = netif_get_num_default_rss_queues() *
    			  edev->dev_info.common.num_hwfns;
    
    	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
    
    	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
    	if (rc > 0) {
    		/* Managed to request interrupts for our queues */
    		edev->num_queues = rc;
    		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
    			QEDE_QUEUE_CNT(edev), rss_num);
    		rc = 0;
    	}
    
    	edev->fp_num_tx = edev->req_num_tx;
    	edev->fp_num_rx = edev->req_num_rx;
    
    	return rc;
    }
    
    static void qede_free_mem_sb(struct qede_dev *edev,
    			     struct qed_sb_info *sb_info)
    {
    	if (sb_info->sb_virt)
    		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
    				  (void *)sb_info->sb_virt, sb_info->sb_phys);
    }
    
    /* This function allocates fast-path status block memory */
    static int qede_alloc_mem_sb(struct qede_dev *edev,
    			     struct qed_sb_info *sb_info, u16 sb_id)
    {
    	struct status_block *sb_virt;
    	dma_addr_t sb_phys;
    	int rc;
    
    	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
    				     sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
    	if (!sb_virt) {
    		DP_ERR(edev, "Status block allocation failed\n");
    		return -ENOMEM;
    	}
    
    	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
    					sb_virt, sb_phys, sb_id,
    					QED_SB_TYPE_L2_QUEUE);
    	if (rc) {
    		DP_ERR(edev, "Status block initialization failed\n");
    		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
    				  sb_virt, sb_phys);
    		return rc;
    	}
    
    	return 0;
    }
    
    static void qede_free_rx_buffers(struct qede_dev *edev,
    				 struct qede_rx_queue *rxq)
    {
    	u16 i;
    
    	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
    		struct sw_rx_data *rx_buf;
    		struct page *data;
    
    		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
    		data = rx_buf->data;
    
    		dma_unmap_page(&edev->pdev->dev,
    			       rx_buf->mapping, PAGE_SIZE, DMA_FROM_DEVICE);
    
    		rx_buf->data = NULL;
    		__free_page(data);
    	}
    }
    
    static void qede_free_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq)
    {
    	int i;
    
    	if (edev->gro_disable)
    		return;
    
    	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
    		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
    		struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
    
    		if (replace_buf->data) {
    			dma_unmap_page(&edev->pdev->dev,
    				       replace_buf->mapping,
    				       PAGE_SIZE, DMA_FROM_DEVICE);
    			__free_page(replace_buf->data);
    		}
    	}
    }
    
    static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
    {
    	qede_free_sge_mem(edev, rxq);
    
    	/* Free rx buffers */
    	qede_free_rx_buffers(edev, rxq);
    
    	/* Free the parallel SW ring */
    	kfree(rxq->sw_rx_ring);
    
    	/* Free the real RQ ring used by FW */
    	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
    	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
    }
    
    static int qede_alloc_rx_buffer(struct qede_dev *edev,
    				struct qede_rx_queue *rxq)
    {
    	struct sw_rx_data *sw_rx_data;
    	struct eth_rx_bd *rx_bd;
    	dma_addr_t mapping;
    	struct page *data;
    
    	data = alloc_pages(GFP_ATOMIC, 0);
    	if (unlikely(!data)) {
    		DP_NOTICE(edev, "Failed to allocate Rx data [page]\n");
    		return -ENOMEM;
    	}
    
    	/* Map the entire page as it would be used
    	 * for multiple RX buffer segment size mapping.
    	 */
    	mapping = dma_map_page(&edev->pdev->dev, data, 0,
    			       PAGE_SIZE, DMA_FROM_DEVICE);
    	if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
    		__free_page(data);
    		DP_NOTICE(edev, "Failed to map Rx buffer\n");
    		return -ENOMEM;
    	}
    
    	sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
    	sw_rx_data->page_offset = 0;
    	sw_rx_data->data = data;
    	sw_rx_data->mapping = mapping;
    
    	/* Advance PROD and get BD pointer */
    	rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
    	WARN_ON(!rx_bd);
    	rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
    	rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping));
    
    	rxq->sw_rx_prod++;
    
    	return 0;
    }
    
    static int qede_alloc_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq)
    {
    	dma_addr_t mapping;
    	int i;
    
    	if (edev->gro_disable)
    		return 0;
    
    	if (edev->ndev->mtu > PAGE_SIZE) {
    		edev->gro_disable = 1;
    		return 0;
    	}
    
    	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
    		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
    		struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
    
    		replace_buf->data = alloc_pages(GFP_ATOMIC, 0);
    		if (unlikely(!replace_buf->data)) {
    			DP_NOTICE(edev,
    				  "Failed to allocate TPA skb pool [replacement buffer]\n");
    			goto err;
    		}
    
    		mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0,
    				       rxq->rx_buf_size, DMA_FROM_DEVICE);
    		if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
    			DP_NOTICE(edev,
    				  "Failed to map TPA replacement buffer\n");
    			goto err;
    		}
    
    		replace_buf->mapping = mapping;
    		tpa_info->replace_buf.page_offset = 0;
    
    		tpa_info->replace_buf_mapping = mapping;
    		tpa_info->agg_state = QEDE_AGG_STATE_NONE;
    	}
    
    	return 0;
    err:
    	qede_free_sge_mem(edev, rxq);
    	edev->gro_disable = 1;
    	return -ENOMEM;
    }
    
    /* This function allocates all memory needed per Rx queue */
    static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
    {
    	int i, rc, size;
    
    	rxq->num_rx_buffers = edev->q_num_rx_buffers;
    
    	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
    
    	if (rxq->rx_buf_size > PAGE_SIZE)
    		rxq->rx_buf_size = PAGE_SIZE;
    
    	/* Segment size to spilt a page in multiple equal parts */
    	rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size);
    
    	/* Allocate the parallel driver ring for Rx buffers */
    	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
    	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
    	if (!rxq->sw_rx_ring) {
    		DP_ERR(edev, "Rx buffers ring allocation failed\n");
    		rc = -ENOMEM;
    		goto err;
    	}
    
    	/* Allocate FW Rx ring  */
    	rc = edev->ops->common->chain_alloc(edev->cdev,
    					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
    					    QED_CHAIN_MODE_NEXT_PTR,
    					    QED_CHAIN_CNT_TYPE_U16,
    					    RX_RING_SIZE,
    					    sizeof(struct eth_rx_bd),
    					    &rxq->rx_bd_ring);
    
    	if (rc)
    		goto err;
    
    	/* Allocate FW completion ring */
    	rc = edev->ops->common->chain_alloc(edev->cdev,
    					    QED_CHAIN_USE_TO_CONSUME,
    					    QED_CHAIN_MODE_PBL,
    					    QED_CHAIN_CNT_TYPE_U16,
    					    RX_RING_SIZE,
    					    sizeof(union eth_rx_cqe),
    					    &rxq->rx_comp_ring);
    	if (rc)
    		goto err;
    
    	/* Allocate buffers for the Rx ring */
    	for (i = 0; i < rxq->num_rx_buffers; i++) {
    		rc = qede_alloc_rx_buffer(edev, rxq);
    		if (rc) {
    			DP_ERR(edev,
    			       "Rx buffers allocation failed at index %d\n", i);
    			goto err;
    		}
    	}
    
    	rc = qede_alloc_sge_mem(edev, rxq);
    err:
    	return rc;
    }
    
    static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
    {
    	/* Free the parallel SW ring */
    	kfree(txq->sw_tx_ring);
    
    	/* Free the real RQ ring used by FW */
    	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
    }
    
    /* This function allocates all memory needed per Tx queue */
    static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
    {
    	int size, rc;
    	union eth_tx_bd_types *p_virt;
    
    	txq->num_tx_buffers = edev->q_num_tx_buffers;
    
    	/* Allocate the parallel driver ring for Tx buffers */
    	size = sizeof(*txq->sw_tx_ring) * NUM_TX_BDS_MAX;
    	txq->sw_tx_ring = kzalloc(size, GFP_KERNEL);
    	if (!txq->sw_tx_ring) {
    		DP_NOTICE(edev, "Tx buffers ring allocation failed\n");
    		goto err;
    	}
    
    	rc = edev->ops->common->chain_alloc(edev->cdev,
    					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
    					    QED_CHAIN_MODE_PBL,
    					    QED_CHAIN_CNT_TYPE_U16,
    					    NUM_TX_BDS_MAX,
    					    sizeof(*p_virt), &txq->tx_pbl);
    	if (rc)
    		goto err;
    
    	return 0;
    
    err:
    	qede_free_mem_txq(edev, txq);
    	return -ENOMEM;
    }
    
    /* This function frees all memory of a single fp */
    static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
    {
    	int tc;
    
    	qede_free_mem_sb(edev, fp->sb_info);
    
    	if (fp->type & QEDE_FASTPATH_RX)
    		qede_free_mem_rxq(edev, fp->rxq);
    
    	if (fp->type & QEDE_FASTPATH_TX)
    		for (tc = 0; tc < edev->num_tc; tc++)
    			qede_free_mem_txq(edev, &fp->txqs[tc]);
    }
    
    /* This function allocates all memory needed for a single fp (i.e. an entity
     * which contains status block, one rx queue and/or multiple per-TC tx queues.
     */
    static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
    {
    	int rc, tc;
    
    	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
    	if (rc)
    		goto err;
    
    	if (fp->type & QEDE_FASTPATH_RX) {
    		rc = qede_alloc_mem_rxq(edev, fp->rxq);
    		if (rc)
    			goto err;
    	}
    
    	if (fp->type & QEDE_FASTPATH_TX) {
    		for (tc = 0; tc < edev->num_tc; tc++) {
    			rc = qede_alloc_mem_txq(edev, &fp->txqs[tc]);
    			if (rc)
    				goto err;
    		}
    	}
    
    	return 0;
    err:
    	return rc;
    }
    
    static void qede_free_mem_load(struct qede_dev *edev)
    {
    	int i;
    
    	for_each_queue(i) {
    		struct qede_fastpath *fp = &edev->fp_array[i];
    
    		qede_free_mem_fp(edev, fp);
    	}
    }
    
    /* This function allocates all qede memory at NIC load. */
    static int qede_alloc_mem_load(struct qede_dev *edev)
    {
    	int rc = 0, queue_id;
    
    	for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
    		struct qede_fastpath *fp = &edev->fp_array[queue_id];
    
    		rc = qede_alloc_mem_fp(edev, fp);
    		if (rc) {
    			DP_ERR(edev,
    			       "Failed to allocate memory for fastpath - rss id = %d\n",
    			       queue_id);
    			qede_free_mem_load(edev);
    			return rc;
    		}
    	}
    
    	return 0;
    }
    
    /* This function inits fp content and resets the SB, RXQ and TXQ structures */
    static void qede_init_fp(struct qede_dev *edev)
    {
    	int queue_id, rxq_index = 0, txq_index = 0, tc;
    	struct qede_fastpath *fp;
    
    	for_each_queue(queue_id) {
    		fp = &edev->fp_array[queue_id];
    
    		fp->edev = edev;
    		fp->id = queue_id;
    
    		memset((void *)&fp->napi, 0, sizeof(fp->napi));
    
    		memset((void *)fp->sb_info, 0, sizeof(*fp->sb_info));
    
    		if (fp->type & QEDE_FASTPATH_RX) {
    			memset((void *)fp->rxq, 0, sizeof(*fp->rxq));
    			fp->rxq->rxq_id = rxq_index++;
    		}
    
    		if (fp->type & QEDE_FASTPATH_TX) {
    			memset((void *)fp->txqs, 0,
    			       (edev->num_tc * sizeof(*fp->txqs)));
    			for (tc = 0; tc < edev->num_tc; tc++) {
    				fp->txqs[tc].index = txq_index +
    				    tc * QEDE_TSS_COUNT(edev);
    				if (edev->dev_info.is_legacy)
    					fp->txqs[tc].is_legacy = true;
    			}
    			txq_index++;
    		}
    
    		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
    			 edev->ndev->name, queue_id);
    	}
    
    	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO);
    }
    
    static int qede_set_real_num_queues(struct qede_dev *edev)
    {
    	int rc = 0;
    
    	rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_COUNT(edev));
    	if (rc) {
    		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
    		return rc;
    	}
    
    	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
    	if (rc) {
    		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
    		return rc;
    	}
    
    	return 0;
    }
    
    static void qede_napi_disable_remove(struct qede_dev *edev)
    {
    	int i;
    
    	for_each_queue(i) {
    		napi_disable(&edev->fp_array[i].napi);
    
    		netif_napi_del(&edev->fp_array[i].napi);
    	}
    }
    
    static void qede_napi_add_enable(struct qede_dev *edev)
    {
    	int i;
    
    	/* Add NAPI objects */
    	for_each_queue(i) {
    		netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
    			       qede_poll, NAPI_POLL_WEIGHT);
    		napi_enable(&edev->fp_array[i].napi);
    	}
    }
    
    static void qede_sync_free_irqs(struct qede_dev *edev)
    {
    	int i;
    
    	for (i = 0; i < edev->int_info.used_cnt; i++) {
    		if (edev->int_info.msix_cnt) {
    			synchronize_irq(edev->int_info.msix[i].vector);
    			free_irq(edev->int_info.msix[i].vector,
    				 &edev->fp_array[i]);
    		} else {
    			edev->ops->common->simd_handler_clean(edev->cdev, i);
    		}
    	}
    
    	edev->int_info.used_cnt = 0;
    }
    
    static int qede_req_msix_irqs(struct qede_dev *edev)
    {
    	int i, rc;
    
    	/* Sanitize number of interrupts == number of prepared RSS queues */
    	if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
    		DP_ERR(edev,
    		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
    		       QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
    		return -EINVAL;
    	}
    
    	for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
    		rc = request_irq(edev->int_info.msix[i].vector,
    				 qede_msix_fp_int, 0, edev->fp_array[i].name,
    				 &edev->fp_array[i]);
    		if (rc) {
    			DP_ERR(edev, "Request fp %d irq failed\n", i);
    			qede_sync_free_irqs(edev);
    			return rc;
    		}
    		DP_VERBOSE(edev, NETIF_MSG_INTR,
    			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
    			   edev->fp_array[i].name, i,
    			   &edev->fp_array[i]);
    		edev->int_info.used_cnt++;
    	}
    
    	return 0;
    }
    
    static void qede_simd_fp_handler(void *cookie)
    {
    	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
    
    	napi_schedule_irqoff(&fp->napi);
    }
    
    static int qede_setup_irqs(struct qede_dev *edev)
    {
    	int i, rc = 0;
    
    	/* Learn Interrupt configuration */
    	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
    	if (rc)
    		return rc;
    
    	if (edev->int_info.msix_cnt) {
    		rc = qede_req_msix_irqs(edev);
    		if (rc)
    			return rc;
    		edev->ndev->irq = edev->int_info.msix[0].vector;
    	} else {
    		const struct qed_common_ops *ops;
    
    		/* qed should learn receive the RSS ids and callbacks */
    		ops = edev->ops->common;
    		for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
    			ops->simd_handler_config(edev->cdev,
    						 &edev->fp_array[i], i,
    						 qede_simd_fp_handler);
    		edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
    	}
    	return 0;
    }
    
    static int qede_drain_txq(struct qede_dev *edev,
    			  struct qede_tx_queue *txq, bool allow_drain)
    {
    	int rc, cnt = 1000;
    
    	while (txq->sw_tx_cons != txq->sw_tx_prod) {
    		if (!cnt) {
    			if (allow_drain) {
    				DP_NOTICE(edev,
    					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
    					  txq->index);
    				rc = edev->ops->common->drain(edev->cdev);
    				if (rc)
    					return rc;
    				return qede_drain_txq(edev, txq, false);
    			}
    			DP_NOTICE(edev,
    				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
    				  txq->index, txq->sw_tx_prod,
    				  txq->sw_tx_cons);
    			return -ENODEV;
    		}
    		cnt--;
    		usleep_range(1000, 2000);
    		barrier();
    	}
    
    	/* FW finished processing, wait for HW to transmit all tx packets */
    	usleep_range(1000, 2000);
    
    	return 0;
    }
    
    static int qede_stop_queues(struct qede_dev *edev)
    {
    	struct qed_update_vport_params vport_update_params;
    	struct qed_dev *cdev = edev->cdev;
    	int rc, tc, i;
    
    	/* Disable the vport */
    	memset(&vport_update_params, 0, sizeof(vport_update_params));
    	vport_update_params.vport_id = 0;
    	vport_update_params.update_vport_active_flg = 1;
    	vport_update_params.vport_active_flg = 0;
    	vport_update_params.update_rss_flg = 0;
    
    	rc = edev->ops->vport_update(cdev, &vport_update_params);
    	if (rc) {
    		DP_ERR(edev, "Failed to update vport\n");
    		return rc;
    	}
    
    	/* Flush Tx queues. If needed, request drain from MCP */
    	for_each_queue(i) {
    		struct qede_fastpath *fp = &edev->fp_array[i];
    
    		if (fp->type & QEDE_FASTPATH_TX) {
    			for (tc = 0; tc < edev->num_tc; tc++) {
    				struct qede_tx_queue *txq = &fp->txqs[tc];
    
    				rc = qede_drain_txq(edev, txq, true);
    				if (rc)
    					return rc;
    			}
    		}
    	}
    
    	/* Stop all Queues in reverse order */
    	for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
    		struct qed_stop_rxq_params rx_params;
    
    		/* Stop the Tx Queue(s) */
    		if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
    			for (tc = 0; tc < edev->num_tc; tc++) {
    				struct qed_stop_txq_params tx_params;
    				u8 val;
    
    				tx_params.rss_id = i;
    				val = edev->fp_array[i].txqs[tc].index;
    				tx_params.tx_queue_id = val;
    				rc = edev->ops->q_tx_stop(cdev, &tx_params);
    				if (rc) {
    					DP_ERR(edev, "Failed to stop TXQ #%d\n",
    					       tx_params.tx_queue_id);
    					return rc;
    				}
    			}
    		}
    
    		/* Stop the Rx Queue */
    		if (edev->fp_array[i].type & QEDE_FASTPATH_RX) {
    			memset(&rx_params, 0, sizeof(rx_params));
    			rx_params.rss_id = i;
    			rx_params.rx_queue_id = edev->fp_array[i].rxq->rxq_id;
    
    			rc = edev->ops->q_rx_stop(cdev, &rx_params);
    			if (rc) {
    				DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
    				return rc;
    			}
    		}
    	}
    
    	/* Stop the vport */
    	rc = edev->ops->vport_stop(cdev, 0);
    	if (rc)
    		DP_ERR(edev, "Failed to stop VPORT\n");
    
    	return rc;
    }
    
    static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
    {
    	int rc, tc, i;
    	int vlan_removal_en = 1;
    	struct qed_dev *cdev = edev->cdev;
    	struct qed_update_vport_params vport_update_params;
    	struct qed_queue_start_common_params q_params;
    	struct qed_dev_info *qed_info = &edev->dev_info.common;
    	struct qed_start_vport_params start = {0};
    	bool reset_rss_indir = false;
    
    	if (!edev->num_queues) {
    		DP_ERR(edev,
    		       "Cannot update V-VPORT as active as there are no Rx queues\n");
    		return -EINVAL;
    	}
    
    	start.gro_enable = !edev->gro_disable;
    	start.mtu = edev->ndev->mtu;
    	start.vport_id = 0;
    	start.drop_ttl0 = true;
    	start.remove_inner_vlan = vlan_removal_en;
    	start.clear_stats = clear_stats;
    
    	rc = edev->ops->vport_start(cdev, &start);
    
    	if (rc) {
    		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
    		return rc;
    	}
    
    	DP_VERBOSE(edev, NETIF_MSG_IFUP,
    		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
    		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
    
    	for_each_queue(i) {
    		struct qede_fastpath *fp = &edev->fp_array[i];
    		dma_addr_t p_phys_table;
    		u32 page_cnt;
    
    		if (fp->type & QEDE_FASTPATH_RX) {
    			struct qede_rx_queue *rxq = fp->rxq;
    			__le16 *val;
    
    			memset(&q_params, 0, sizeof(q_params));
    			q_params.rss_id = i;
    			q_params.queue_id = rxq->rxq_id;
    			q_params.vport_id = 0;
    			q_params.sb = fp->sb_info->igu_sb_id;
    			q_params.sb_idx = RX_PI;
    
    			p_phys_table =
    			    qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
    			page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
    
    			rc = edev->ops->q_rx_start(cdev, &q_params,
    						   rxq->rx_buf_size,
    						   rxq->rx_bd_ring.p_phys_addr,
    						   p_phys_table,
    						   page_cnt,
    						   &rxq->hw_rxq_prod_addr);
    			if (rc) {
    				DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
    				       rc);
    				return rc;
    			}
    
    			val = &fp->sb_info->sb_virt->pi_array[RX_PI];
    			rxq->hw_cons_ptr = val;
    
    			qede_update_rx_prod(edev, rxq);
    		}
    
    		if (!(fp->type & QEDE_FASTPATH_TX))
    			continue;
    
    		for (tc = 0; tc < edev->num_tc; tc++) {
    			struct qede_tx_queue *txq = &fp->txqs[tc];
    
    			p_phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
    			page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
    
    			memset(&q_params, 0, sizeof(q_params));
    			q_params.rss_id = i;
    			q_params.queue_id = txq->index;
    			q_params.vport_id = 0;
    			q_params.sb = fp->sb_info->igu_sb_id;
    			q_params.sb_idx = TX_PI(tc);
    
    			rc = edev->ops->q_tx_start(cdev, &q_params,
    						   p_phys_table, page_cnt,
    						   &txq->doorbell_addr);
    			if (rc) {
    				DP_ERR(edev, "Start TXQ #%d failed %d\n",
    				       txq->index, rc);
    				return rc;
    			}
    
    			txq->hw_cons_ptr =
    				&fp->sb_info->sb_virt->pi_array[TX_PI(tc)];
    			SET_FIELD(txq->tx_db.data.params,
    				  ETH_DB_DATA_DEST, DB_DEST_XCM);
    			SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
    				  DB_AGG_CMD_SET);
    			SET_FIELD(txq->tx_db.data.params,
    				  ETH_DB_DATA_AGG_VAL_SEL,
    				  DQ_XCM_ETH_TX_BD_PROD_CMD);
    
    			txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
    		}
    	}
    
    	/* Prepare and send the vport enable */
    	memset(&vport_update_params, 0, sizeof(vport_update_params));
    	vport_update_params.vport_id = start.vport_id;
    	vport_update_params.update_vport_active_flg = 1;
    	vport_update_params.vport_active_flg = 1;
    
    	if ((qed_info->mf_mode == QED_MF_NPAR || pci_num_vf(edev->pdev)) &&
    	    qed_info->tx_switching) {
    		vport_update_params.update_tx_switching_flg = 1;
    		vport_update_params.tx_switching_flg = 1;
    	}
    
    	/* Fill struct with RSS params */
    	if (QEDE_RSS_COUNT(edev) > 1) {
    		vport_update_params.update_rss_flg = 1;
    
    		/* Need to validate current RSS config uses valid entries */
    		for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
    			if (edev->rss_params.rss_ind_table[i] >=
    			    QEDE_RSS_COUNT(edev)) {
    				reset_rss_indir = true;
    				break;
    			}
    		}
    
    		if (!(edev->rss_params_inited & QEDE_RSS_INDIR_INITED) ||
    		    reset_rss_indir) {
    			u16 val;
    
    			for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
    				u16 indir_val;
    
    				val = QEDE_RSS_COUNT(edev);
    				indir_val = ethtool_rxfh_indir_default(i, val);
    				edev->rss_params.rss_ind_table[i] = indir_val;
    			}
    			edev->rss_params_inited |= QEDE_RSS_INDIR_INITED;
    		}
    
    		if (!(edev->rss_params_inited & QEDE_RSS_KEY_INITED)) {
    			netdev_rss_key_fill(edev->rss_params.rss_key,
    					    sizeof(edev->rss_params.rss_key));
    			edev->rss_params_inited |= QEDE_RSS_KEY_INITED;
    		}
    
    		if (!(edev->rss_params_inited & QEDE_RSS_CAPS_INITED)) {
    			edev->rss_params.rss_caps = QED_RSS_IPV4 |
    						    QED_RSS_IPV6 |
    						    QED_RSS_IPV4_TCP |
    						    QED_RSS_IPV6_TCP;
    			edev->rss_params_inited |= QEDE_RSS_CAPS_INITED;
    		}
    
    		memcpy(&vport_update_params.rss_params, &edev->rss_params,
    		       sizeof(vport_update_params.rss_params));
    	} else {
    		memset(&vport_update_params.rss_params, 0,
    		       sizeof(vport_update_params.rss_params));
    	}
    
    	rc = edev->ops->vport_update(cdev, &vport_update_params);
    	if (rc) {
    		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
    		return rc;
    	}
    
    	return 0;
    }
    
    static int qede_set_mcast_rx_mac(struct qede_dev *edev,
    				 enum qed_filter_xcast_params_type opcode,
    				 unsigned char *mac, int num_macs)
    {
    	struct qed_filter_params filter_cmd;
    	int i;
    
    	memset(&filter_cmd, 0, sizeof(filter_cmd));
    	filter_cmd.type = QED_FILTER_TYPE_MCAST;
    	filter_cmd.filter.mcast.type = opcode;
    	filter_cmd.filter.mcast.num = num_macs;
    
    	for (i = 0; i < num_macs; i++, mac += ETH_ALEN)
    		ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac);
    
    	return edev->ops->filter_config(edev->cdev, &filter_cmd);
    }
    
    enum qede_unload_mode {
    	QEDE_UNLOAD_NORMAL,
    };
    
    static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode)
    {
    	struct qed_link_params link_params;
    	int rc;
    
    	DP_INFO(edev, "Starting qede unload\n");
    
    	qede_roce_dev_event_close(edev);
    	mutex_lock(&edev->qede_lock);
    	edev->state = QEDE_STATE_CLOSED;
    
    	/* Close OS Tx */
    	netif_tx_disable(edev->ndev);
    	netif_carrier_off(edev->ndev);
    
    	/* Reset the link */
    	memset(&link_params, 0, sizeof(link_params));
    	link_params.link_up = false;
    	edev->ops->common->set_link(edev->cdev, &link_params);
    	rc = qede_stop_queues(edev);
    	if (rc) {
    		qede_sync_free_irqs(edev);
    		goto out;
    	}
    
    	DP_INFO(edev, "Stopped Queues\n");
    
    	qede_vlan_mark_nonconfigured(edev);
    	edev->ops->fastpath_stop(edev->cdev);
    
    	/* Release the interrupts */
    	qede_sync_free_irqs(edev);
    	edev->ops->common->set_fp_int(edev->cdev, 0);
    
    	qede_napi_disable_remove(edev);
    
    	qede_free_mem_load(edev);
    	qede_free_fp_array(edev);
    
    out:
    	mutex_unlock(&edev->qede_lock);
    	DP_INFO(edev, "Ending qede unload\n");
    }
    
    enum qede_load_mode {
    	QEDE_LOAD_NORMAL,
    	QEDE_LOAD_RELOAD,
    };
    
    static int qede_load(struct qede_dev *edev, enum qede_load_mode mode)
    {
    	struct qed_link_params link_params;
    	struct qed_link_output link_output;
    	int rc;
    
    	DP_INFO(edev, "Starting qede load\n");
    
    	rc = qede_set_num_queues(edev);
    	if (rc)
    		goto err0;
    
    	rc = qede_alloc_fp_array(edev);
    	if (rc)
    		goto err0;
    
    	qede_init_fp(edev);
    
    	rc = qede_alloc_mem_load(edev);
    	if (rc)
    		goto err1;
    	DP_INFO(edev, "Allocated %d RSS queues on %d TC/s\n",
    		QEDE_QUEUE_CNT(edev), edev->num_tc);
    
    	rc = qede_set_real_num_queues(edev);
    	if (rc)
    		goto err2;
    
    	qede_napi_add_enable(edev);
    	DP_INFO(edev, "Napi added and enabled\n");
    
    	rc = qede_setup_irqs(edev);
    	if (rc)
    		goto err3;
    	DP_INFO(edev, "Setup IRQs succeeded\n");
    
    	rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
    	if (rc)
    		goto err4;
    	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
    
    	/* Add primary mac and set Rx filters */
    	ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr);
    
    	mutex_lock(&edev->qede_lock);
    	edev->state = QEDE_STATE_OPEN;
    	mutex_unlock(&edev->qede_lock);
    
    	/* Program un-configured VLANs */
    	qede_configure_vlan_filters(edev);
    
    	/* Ask for link-up using current configuration */
    	memset(&link_params, 0, sizeof(link_params));
    	link_params.link_up = true;
    	edev->ops->common->set_link(edev->cdev, &link_params);
    
    	/* Query whether link is already-up */
    	memset(&link_output, 0, sizeof(link_output));
    	edev->ops->common->get_link(edev->cdev, &link_output);
    	qede_roce_dev_event_open(edev);
    	qede_link_update(edev, &link_output);
    
    	DP_INFO(edev, "Ending successfully qede load\n");
    
    	return 0;
    
    err4:
    	qede_sync_free_irqs(edev);
    	memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
    err3:
    	qede_napi_disable_remove(edev);
    err2:
    	qede_free_mem_load(edev);
    err1:
    	edev->ops->common->set_fp_int(edev->cdev, 0);
    	qede_free_fp_array(edev);
    	edev->num_queues = 0;
    	edev->fp_num_tx = 0;
    	edev->fp_num_rx = 0;
    err0:
    	return rc;
    }
    
    void qede_reload(struct qede_dev *edev,
    		 void (*func)(struct qede_dev *, union qede_reload_args *),
    		 union qede_reload_args *args)
    {
    	qede_unload(edev, QEDE_UNLOAD_NORMAL);
    	/* Call function handler to update parameters
    	 * needed for function load.
    	 */
    	if (func)
    		func(edev, args);
    
    	qede_load(edev, QEDE_LOAD_RELOAD);
    
    	mutex_lock(&edev->qede_lock);
    	qede_config_rx_mode(edev->ndev);
    	mutex_unlock(&edev->qede_lock);
    }
    
    /* called with rtnl_lock */
    static int qede_open(struct net_device *ndev)
    {
    	struct qede_dev *edev = netdev_priv(ndev);
    	int rc;
    
    	netif_carrier_off(ndev);
    
    	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
    
    	rc = qede_load(edev, QEDE_LOAD_NORMAL);
    
    	if (rc)
    		return rc;
    
    	udp_tunnel_get_rx_info(ndev);
    
    	return 0;
    }
    
    static int qede_close(struct net_device *ndev)
    {
    	struct qede_dev *edev = netdev_priv(ndev);
    
    	qede_unload(edev, QEDE_UNLOAD_NORMAL);
    
    	return 0;
    }
    
    static void qede_link_update(void *dev, struct qed_link_output *link)
    {
    	struct qede_dev *edev = dev;
    
    	if (!netif_running(edev->ndev)) {
    		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
    		return;
    	}
    
    	if (link->link_up) {
    		if (!netif_carrier_ok(edev->ndev)) {
    			DP_NOTICE(edev, "Link is up\n");
    			netif_tx_start_all_queues(edev->ndev);
    			netif_carrier_on(edev->ndev);
    		}
    	} else {
    		if (netif_carrier_ok(edev->ndev)) {
    			DP_NOTICE(edev, "Link is down\n");
    			netif_tx_disable(edev->ndev);
    			netif_carrier_off(edev->ndev);
    		}
    	}
    }
    
    static int qede_set_mac_addr(struct net_device *ndev, void *p)
    {
    	struct qede_dev *edev = netdev_priv(ndev);
    	struct sockaddr *addr = p;
    	int rc;
    
    	ASSERT_RTNL(); /* @@@TBD To be removed */
    
    	DP_INFO(edev, "Set_mac_addr called\n");
    
    	if (!is_valid_ether_addr(addr->sa_data)) {
    		DP_NOTICE(edev, "The MAC address is not valid\n");
    		return -EFAULT;
    	}
    
    	if (!edev->ops->check_mac(edev->cdev, addr->sa_data)) {
    		DP_NOTICE(edev, "qed prevents setting MAC\n");
    		return -EINVAL;
    	}
    
    	ether_addr_copy(ndev->dev_addr, addr->sa_data);
    
    	if (!netif_running(ndev))  {
    		DP_NOTICE(edev, "The device is currently down\n");
    		return 0;
    	}
    
    	/* Remove the previous primary mac */
    	rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
    				   edev->primary_mac);
    	if (rc)
    		return rc;
    
    	/* Add MAC filter according to the new unicast HW MAC address */
    	ether_addr_copy(edev->primary_mac, ndev->dev_addr);
    	return qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
    				      edev->primary_mac);
    }
    
    static int
    qede_configure_mcast_filtering(struct net_device *ndev,
    			       enum qed_filter_rx_mode_type *accept_flags)
    {
    	struct qede_dev *edev = netdev_priv(ndev);
    	unsigned char *mc_macs, *temp;
    	struct netdev_hw_addr *ha;
    	int rc = 0, mc_count;
    	size_t size;
    
    	size = 64 * ETH_ALEN;
    
    	mc_macs = kzalloc(size, GFP_KERNEL);
    	if (!mc_macs) {
    		DP_NOTICE(edev,
    			  "Failed to allocate memory for multicast MACs\n");
    		rc = -ENOMEM;
    		goto exit;
    	}
    
    	temp = mc_macs;
    
    	/* Remove all previously configured MAC filters */
    	rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
    				   mc_macs, 1);
    	if (rc)
    		goto exit;
    
    	netif_addr_lock_bh(ndev);
    
    	mc_count = netdev_mc_count(ndev);
    	if (mc_count < 64) {
    		netdev_for_each_mc_addr(ha, ndev) {
    			ether_addr_copy(temp, ha->addr);
    			temp += ETH_ALEN;
    		}
    	}
    
    	netif_addr_unlock_bh(ndev);
    
    	/* Check for all multicast @@@TBD resource allocation */
    	if ((ndev->flags & IFF_ALLMULTI) ||
    	    (mc_count > 64)) {
    		if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR)
    			*accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC;
    	} else {
    		/* Add all multicast MAC filters */
    		rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
    					   mc_macs, mc_count);
    	}
    
    exit:
    	kfree(mc_macs);
    	return rc;
    }
    
    static void qede_set_rx_mode(struct net_device *ndev)
    {
    	struct qede_dev *edev = netdev_priv(ndev);
    
    	DP_INFO(edev, "qede_set_rx_mode called\n");
    
    	if (edev->state != QEDE_STATE_OPEN) {
    		DP_INFO(edev,
    			"qede_set_rx_mode called while interface is down\n");
    	} else {
    		set_bit(QEDE_SP_RX_MODE, &edev->sp_flags);
    		schedule_delayed_work(&edev->sp_task, 0);
    	}
    }
    
    /* Must be called with qede_lock held */
    static void qede_config_rx_mode(struct net_device *ndev)
    {
    	enum qed_filter_rx_mode_type accept_flags = QED_FILTER_TYPE_UCAST;
    	struct qede_dev *edev = netdev_priv(ndev);
    	struct qed_filter_params rx_mode;
    	unsigned char *uc_macs, *temp;
    	struct netdev_hw_addr *ha;
    	int rc, uc_count;
    	size_t size;
    
    	netif_addr_lock_bh(ndev);
    
    	uc_count = netdev_uc_count(ndev);
    	size = uc_count * ETH_ALEN;
    
    	uc_macs = kzalloc(size, GFP_ATOMIC);
    	if (!uc_macs) {
    		DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n");
    		netif_addr_unlock_bh(ndev);
    		return;
    	}
    
    	temp = uc_macs;
    	netdev_for_each_uc_addr(ha, ndev) {
    		ether_addr_copy(temp, ha->addr);
    		temp += ETH_ALEN;
    	}
    
    	netif_addr_unlock_bh(ndev);
    
    	/* Configure the struct for the Rx mode */
    	memset(&rx_mode, 0, sizeof(struct qed_filter_params));
    	rx_mode.type = QED_FILTER_TYPE_RX_MODE;
    
    	/* Remove all previous unicast secondary macs and multicast macs
    	 * (configrue / leave the primary mac)
    	 */
    	rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE,
    				   edev->primary_mac);
    	if (rc)
    		goto out;
    
    	/* Check for promiscuous */
    	if ((ndev->flags & IFF_PROMISC) ||
    	    (uc_count > 15)) { /* @@@TBD resource allocation - 1 */
    		accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC;
    	} else {
    		/* Add MAC filters according to the unicast secondary macs */
    		int i;
    
    		temp = uc_macs;
    		for (i = 0; i < uc_count; i++) {
    			rc = qede_set_ucast_rx_mac(edev,
    						   QED_FILTER_XCAST_TYPE_ADD,
    						   temp);
    			if (rc)
    				goto out;
    
    			temp += ETH_ALEN;
    		}
    
    		rc = qede_configure_mcast_filtering(ndev, &accept_flags);
    		if (rc)
    			goto out;
    	}
    
    	/* take care of VLAN mode */
    	if (ndev->flags & IFF_PROMISC) {
    		qede_config_accept_any_vlan(edev, true);
    	} else if (!edev->non_configured_vlans) {
    		/* It's possible that accept_any_vlan mode is set due to a
    		 * previous setting of IFF_PROMISC. If vlan credits are
    		 * sufficient, disable accept_any_vlan.
    		 */
    		qede_config_accept_any_vlan(edev, false);
    	}
    
    	rx_mode.filter.accept_flags = accept_flags;
    	edev->ops->filter_config(edev->cdev, &rx_mode);
    out:
    	kfree(uc_macs);
    }