Skip to content
Snippets Groups Projects
Select Git revision
  • 256958538ae2616e4aa14efab8c0d11df1e188db
  • android_panfrost default
  • master
  • v5.4-rc2
  • v5.4-rc1
  • v5.3
  • v5.3-rc8
  • v5.3-rc7
  • v5.3-rc6
  • v5.3-rc5
  • v5.3-rc4
  • v5.3-rc3
  • v5.3-rc2
  • v5.3-rc1
  • v5.2
  • v5.2-rc7
  • v5.2-rc6
  • v5.2-rc5
  • v5.2-rc4
  • v5.2-rc3
  • v5.2-rc2
  • v5.2-rc1
  • v5.1
23 results

qede_main.c

Blame
  • dm.c 59.66 KiB
    /*
     * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
     * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
     *
     * This file is released under the GPL.
     */
    
    #include "dm.h"
    #include "dm-uevent.h"
    
    #include <linux/init.h>
    #include <linux/module.h>
    #include <linux/mutex.h>
    #include <linux/moduleparam.h>
    #include <linux/blkpg.h>
    #include <linux/bio.h>
    #include <linux/buffer_head.h>
    #include <linux/mempool.h>
    #include <linux/slab.h>
    #include <linux/idr.h>
    #include <linux/hdreg.h>
    #include <linux/delay.h>
    
    #include <trace/events/block.h>
    
    #define DM_MSG_PREFIX "core"
    
    /*
     * Cookies are numeric values sent with CHANGE and REMOVE
     * uevents while resuming, removing or renaming the device.
     */
    #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
    #define DM_COOKIE_LENGTH 24
    
    static const char *_name = DM_NAME;
    
    static unsigned int major = 0;
    static unsigned int _major = 0;
    
    static DEFINE_IDR(_minor_idr);
    
    static DEFINE_SPINLOCK(_minor_lock);
    /*
     * For bio-based dm.
     * One of these is allocated per bio.
     */
    struct dm_io {
    	struct mapped_device *md;
    	int error;
    	atomic_t io_count;
    	struct bio *bio;
    	unsigned long start_time;
    	spinlock_t endio_lock;
    };
    
    /*
     * For bio-based dm.
     * One of these is allocated per target within a bio.  Hopefully
     * this will be simplified out one day.
     */
    struct dm_target_io {
    	struct dm_io *io;
    	struct dm_target *ti;
    	union map_info info;
    };
    
    /*
     * For request-based dm.
     * One of these is allocated per request.
     */
    struct dm_rq_target_io {
    	struct mapped_device *md;
    	struct dm_target *ti;
    	struct request *orig, clone;
    	int error;
    	union map_info info;
    };
    
    /*
     * For request-based dm.
     * One of these is allocated per bio.
     */
    struct dm_rq_clone_bio_info {
    	struct bio *orig;
    	struct dm_rq_target_io *tio;
    };
    
    union map_info *dm_get_mapinfo(struct bio *bio)
    {
    	if (bio && bio->bi_private)
    		return &((struct dm_target_io *)bio->bi_private)->info;
    	return NULL;
    }
    
    union map_info *dm_get_rq_mapinfo(struct request *rq)
    {
    	if (rq && rq->end_io_data)
    		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
    	return NULL;
    }
    EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
    
    #define MINOR_ALLOCED ((void *)-1)
    
    /*
     * Bits for the md->flags field.
     */
    #define DMF_BLOCK_IO_FOR_SUSPEND 0
    #define DMF_SUSPENDED 1
    #define DMF_FROZEN 2
    #define DMF_FREEING 3
    #define DMF_DELETING 4
    #define DMF_NOFLUSH_SUSPENDING 5
    #define DMF_MERGE_IS_OPTIONAL 6
    
    /*
     * Work processed by per-device workqueue.
     */
    struct mapped_device {
    	struct rw_semaphore io_lock;
    	struct mutex suspend_lock;
    	rwlock_t map_lock;
    	atomic_t holders;
    	atomic_t open_count;
    
    	unsigned long flags;
    
    	struct request_queue *queue;
    	unsigned type;
    	/* Protect queue and type against concurrent access. */
    	struct mutex type_lock;
    
    	struct gendisk *disk;
    	char name[16];
    
    	void *interface_ptr;
    
    	/*
    	 * A list of ios that arrived while we were suspended.
    	 */
    	atomic_t pending[2];
    	wait_queue_head_t wait;
    	struct work_struct work;
    	struct bio_list deferred;
    	spinlock_t deferred_lock;
    
    	/*
    	 * Processing queue (flush)
    	 */
    	struct workqueue_struct *wq;
    
    	/*
    	 * The current mapping.
    	 */
    	struct dm_table *map;
    
    	/*
    	 * io objects are allocated from here.
    	 */
    	mempool_t *io_pool;
    	mempool_t *tio_pool;
    
    	struct bio_set *bs;
    
    	/*
    	 * Event handling.
    	 */
    	atomic_t event_nr;
    	wait_queue_head_t eventq;
    	atomic_t uevent_seq;
    	struct list_head uevent_list;
    	spinlock_t uevent_lock; /* Protect access to uevent_list */
    
    	/*
    	 * freeze/thaw support require holding onto a super block
    	 */
    	struct super_block *frozen_sb;
    	struct block_device *bdev;
    
    	/* forced geometry settings */
    	struct hd_geometry geometry;
    
    	/* sysfs handle */
    	struct kobject kobj;
    
    	/* zero-length flush that will be cloned and submitted to targets */
    	struct bio flush_bio;
    };
    
    /*
     * For mempools pre-allocation at the table loading time.
     */
    struct dm_md_mempools {
    	mempool_t *io_pool;
    	mempool_t *tio_pool;
    	struct bio_set *bs;
    };
    
    #define MIN_IOS 256
    static struct kmem_cache *_io_cache;
    static struct kmem_cache *_tio_cache;
    static struct kmem_cache *_rq_tio_cache;
    static struct kmem_cache *_rq_bio_info_cache;
    
    static int __init local_init(void)
    {
    	int r = -ENOMEM;
    
    	/* allocate a slab for the dm_ios */
    	_io_cache = KMEM_CACHE(dm_io, 0);
    	if (!_io_cache)
    		return r;
    
    	/* allocate a slab for the target ios */
    	_tio_cache = KMEM_CACHE(dm_target_io, 0);
    	if (!_tio_cache)
    		goto out_free_io_cache;
    
    	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
    	if (!_rq_tio_cache)
    		goto out_free_tio_cache;
    
    	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
    	if (!_rq_bio_info_cache)
    		goto out_free_rq_tio_cache;
    
    	r = dm_uevent_init();
    	if (r)
    		goto out_free_rq_bio_info_cache;
    
    	_major = major;
    	r = register_blkdev(_major, _name);
    	if (r < 0)
    		goto out_uevent_exit;
    
    	if (!_major)
    		_major = r;
    
    	return 0;
    
    out_uevent_exit:
    	dm_uevent_exit();
    out_free_rq_bio_info_cache:
    	kmem_cache_destroy(_rq_bio_info_cache);
    out_free_rq_tio_cache:
    	kmem_cache_destroy(_rq_tio_cache);
    out_free_tio_cache:
    	kmem_cache_destroy(_tio_cache);
    out_free_io_cache:
    	kmem_cache_destroy(_io_cache);
    
    	return r;
    }
    
    static void local_exit(void)
    {
    	kmem_cache_destroy(_rq_bio_info_cache);
    	kmem_cache_destroy(_rq_tio_cache);
    	kmem_cache_destroy(_tio_cache);
    	kmem_cache_destroy(_io_cache);
    	unregister_blkdev(_major, _name);
    	dm_uevent_exit();
    
    	_major = 0;
    
    	DMINFO("cleaned up");
    }
    
    static int (*_inits[])(void) __initdata = {
    	local_init,
    	dm_target_init,
    	dm_linear_init,
    	dm_stripe_init,
    	dm_io_init,
    	dm_kcopyd_init,
    	dm_interface_init,
    };
    
    static void (*_exits[])(void) = {
    	local_exit,
    	dm_target_exit,
    	dm_linear_exit,
    	dm_stripe_exit,
    	dm_io_exit,
    	dm_kcopyd_exit,
    	dm_interface_exit,
    };
    
    static int __init dm_init(void)
    {
    	const int count = ARRAY_SIZE(_inits);
    
    	int r, i;
    
    	for (i = 0; i < count; i++) {
    		r = _inits[i]();
    		if (r)
    			goto bad;
    	}
    
    	return 0;
    
          bad:
    	while (i--)
    		_exits[i]();
    
    	return r;
    }
    
    static void __exit dm_exit(void)
    {
    	int i = ARRAY_SIZE(_exits);
    
    	while (i--)
    		_exits[i]();
    
    	/*
    	 * Should be empty by this point.
    	 */
    	idr_remove_all(&_minor_idr);
    	idr_destroy(&_minor_idr);
    }
    
    /*
     * Block device functions
     */
    int dm_deleting_md(struct mapped_device *md)
    {
    	return test_bit(DMF_DELETING, &md->flags);
    }
    
    static int dm_blk_open(struct block_device *bdev, fmode_t mode)
    {
    	struct mapped_device *md;
    
    	spin_lock(&_minor_lock);
    
    	md = bdev->bd_disk->private_data;
    	if (!md)
    		goto out;
    
    	if (test_bit(DMF_FREEING, &md->flags) ||
    	    dm_deleting_md(md)) {
    		md = NULL;
    		goto out;
    	}
    
    	dm_get(md);
    	atomic_inc(&md->open_count);
    
    out:
    	spin_unlock(&_minor_lock);
    
    	return md ? 0 : -ENXIO;
    }
    
    static int dm_blk_close(struct gendisk *disk, fmode_t mode)
    {
    	struct mapped_device *md = disk->private_data;
    
    	spin_lock(&_minor_lock);
    
    	atomic_dec(&md->open_count);
    	dm_put(md);
    
    	spin_unlock(&_minor_lock);
    
    	return 0;
    }
    
    int dm_open_count(struct mapped_device *md)
    {
    	return atomic_read(&md->open_count);
    }
    
    /*
     * Guarantees nothing is using the device before it's deleted.
     */
    int dm_lock_for_deletion(struct mapped_device *md)
    {
    	int r = 0;
    
    	spin_lock(&_minor_lock);
    
    	if (dm_open_count(md))
    		r = -EBUSY;
    	else
    		set_bit(DMF_DELETING, &md->flags);
    
    	spin_unlock(&_minor_lock);
    
    	return r;
    }
    
    static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
    {
    	struct mapped_device *md = bdev->bd_disk->private_data;
    
    	return dm_get_geometry(md, geo);
    }
    
    static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
    			unsigned int cmd, unsigned long arg)
    {
    	struct mapped_device *md = bdev->bd_disk->private_data;
    	struct dm_table *map = dm_get_live_table(md);
    	struct dm_target *tgt;
    	int r = -ENOTTY;
    
    	if (!map || !dm_table_get_size(map))
    		goto out;
    
    	/* We only support devices that have a single target */
    	if (dm_table_get_num_targets(map) != 1)
    		goto out;
    
    	tgt = dm_table_get_target(map, 0);
    
    	if (dm_suspended_md(md)) {
    		r = -EAGAIN;
    		goto out;
    	}
    
    	if (tgt->type->ioctl)
    		r = tgt->type->ioctl(tgt, cmd, arg);
    
    out:
    	dm_table_put(map);
    
    	return r;
    }
    
    static struct dm_io *alloc_io(struct mapped_device *md)
    {
    	return mempool_alloc(md->io_pool, GFP_NOIO);
    }
    
    static void free_io(struct mapped_device *md, struct dm_io *io)
    {
    	mempool_free(io, md->io_pool);
    }
    
    static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
    {
    	mempool_free(tio, md->tio_pool);
    }
    
    static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
    					    gfp_t gfp_mask)
    {
    	return mempool_alloc(md->tio_pool, gfp_mask);
    }
    
    static void free_rq_tio(struct dm_rq_target_io *tio)
    {
    	mempool_free(tio, tio->md->tio_pool);
    }
    
    static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
    {
    	return mempool_alloc(md->io_pool, GFP_ATOMIC);
    }
    
    static void free_bio_info(struct dm_rq_clone_bio_info *info)
    {
    	mempool_free(info, info->tio->md->io_pool);
    }
    
    static int md_in_flight(struct mapped_device *md)
    {
    	return atomic_read(&md->pending[READ]) +
    	       atomic_read(&md->pending[WRITE]);
    }
    
    static void start_io_acct(struct dm_io *io)
    {
    	struct mapped_device *md = io->md;
    	int cpu;
    	int rw = bio_data_dir(io->bio);
    
    	io->start_time = jiffies;
    
    	cpu = part_stat_lock();
    	part_round_stats(cpu, &dm_disk(md)->part0);
    	part_stat_unlock();
    	atomic_set(&dm_disk(md)->part0.in_flight[rw],
    		atomic_inc_return(&md->pending[rw]));
    }
    
    static void end_io_acct(struct dm_io *io)
    {
    	struct mapped_device *md = io->md;
    	struct bio *bio = io->bio;
    	unsigned long duration = jiffies - io->start_time;
    	int pending, cpu;
    	int rw = bio_data_dir(bio);
    
    	cpu = part_stat_lock();
    	part_round_stats(cpu, &dm_disk(md)->part0);
    	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
    	part_stat_unlock();
    
    	/*
    	 * After this is decremented the bio must not be touched if it is
    	 * a flush.
    	 */
    	pending = atomic_dec_return(&md->pending[rw]);
    	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
    	pending += atomic_read(&md->pending[rw^0x1]);
    
    	/* nudge anyone waiting on suspend queue */
    	if (!pending)
    		wake_up(&md->wait);
    }
    
    /*
     * Add the bio to the list of deferred io.
     */
    static void queue_io(struct mapped_device *md, struct bio *bio)
    {
    	unsigned long flags;
    
    	spin_lock_irqsave(&md->deferred_lock, flags);
    	bio_list_add(&md->deferred, bio);
    	spin_unlock_irqrestore(&md->deferred_lock, flags);
    	queue_work(md->wq, &md->work);
    }
    
    /*
     * Everyone (including functions in this file), should use this
     * function to access the md->map field, and make sure they call
     * dm_table_put() when finished.
     */
    struct dm_table *dm_get_live_table(struct mapped_device *md)
    {
    	struct dm_table *t;
    	unsigned long flags;
    
    	read_lock_irqsave(&md->map_lock, flags);
    	t = md->map;
    	if (t)
    		dm_table_get(t);
    	read_unlock_irqrestore(&md->map_lock, flags);
    
    	return t;
    }
    
    /*
     * Get the geometry associated with a dm device
     */
    int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
    {
    	*geo = md->geometry;
    
    	return 0;
    }
    
    /*
     * Set the geometry of a device.
     */
    int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
    {
    	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
    
    	if (geo->start > sz) {
    		DMWARN("Start sector is beyond the geometry limits.");
    		return -EINVAL;
    	}
    
    	md->geometry = *geo;
    
    	return 0;
    }
    
    /*-----------------------------------------------------------------
     * CRUD START:
     *   A more elegant soln is in the works that uses the queue
     *   merge fn, unfortunately there are a couple of changes to
     *   the block layer that I want to make for this.  So in the
     *   interests of getting something for people to use I give
     *   you this clearly demarcated crap.
     *---------------------------------------------------------------*/
    
    static int __noflush_suspending(struct mapped_device *md)
    {
    	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
    }
    
    /*
     * Decrements the number of outstanding ios that a bio has been
     * cloned into, completing the original io if necc.
     */
    static void dec_pending(struct dm_io *io, int error)
    {
    	unsigned long flags;
    	int io_error;
    	struct bio *bio;
    	struct mapped_device *md = io->md;
    
    	/* Push-back supersedes any I/O errors */
    	if (unlikely(error)) {
    		spin_lock_irqsave(&io->endio_lock, flags);
    		if (!(io->error > 0 && __noflush_suspending(md)))
    			io->error = error;
    		spin_unlock_irqrestore(&io->endio_lock, flags);
    	}
    
    	if (atomic_dec_and_test(&io->io_count)) {
    		if (io->error == DM_ENDIO_REQUEUE) {
    			/*
    			 * Target requested pushing back the I/O.
    			 */
    			spin_lock_irqsave(&md->deferred_lock, flags);
    			if (__noflush_suspending(md))
    				bio_list_add_head(&md->deferred, io->bio);
    			else
    				/* noflush suspend was interrupted. */
    				io->error = -EIO;
    			spin_unlock_irqrestore(&md->deferred_lock, flags);
    		}
    
    		io_error = io->error;
    		bio = io->bio;
    		end_io_acct(io);
    		free_io(md, io);
    
    		if (io_error == DM_ENDIO_REQUEUE)
    			return;
    
    		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
    			/*
    			 * Preflush done for flush with data, reissue
    			 * without REQ_FLUSH.
    			 */
    			bio->bi_rw &= ~REQ_FLUSH;
    			queue_io(md, bio);
    		} else {
    			/* done with normal IO or empty flush */
    			trace_block_bio_complete(md->queue, bio, io_error);
    			bio_endio(bio, io_error);
    		}
    	}
    }
    
    static void clone_endio(struct bio *bio, int error)
    {
    	int r = 0;
    	struct dm_target_io *tio = bio->bi_private;
    	struct dm_io *io = tio->io;
    	struct mapped_device *md = tio->io->md;
    	dm_endio_fn endio = tio->ti->type->end_io;
    
    	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
    		error = -EIO;
    
    	if (endio) {
    		r = endio(tio->ti, bio, error, &tio->info);
    		if (r < 0 || r == DM_ENDIO_REQUEUE)
    			/*
    			 * error and requeue request are handled
    			 * in dec_pending().
    			 */
    			error = r;
    		else if (r == DM_ENDIO_INCOMPLETE)
    			/* The target will handle the io */
    			return;
    		else if (r) {
    			DMWARN("unimplemented target endio return value: %d", r);
    			BUG();
    		}
    	}
    
    	/*
    	 * Store md for cleanup instead of tio which is about to get freed.
    	 */
    	bio->bi_private = md->bs;
    
    	free_tio(md, tio);
    	bio_put(bio);
    	dec_pending(io, error);
    }
    
    /*
     * Partial completion handling for request-based dm
     */
    static void end_clone_bio(struct bio *clone, int error)
    {
    	struct dm_rq_clone_bio_info *info = clone->bi_private;
    	struct dm_rq_target_io *tio = info->tio;
    	struct bio *bio = info->orig;
    	unsigned int nr_bytes = info->orig->bi_size;
    
    	bio_put(clone);
    
    	if (tio->error)
    		/*
    		 * An error has already been detected on the request.
    		 * Once error occurred, just let clone->end_io() handle
    		 * the remainder.
    		 */
    		return;
    	else if (error) {
    		/*
    		 * Don't notice the error to the upper layer yet.
    		 * The error handling decision is made by the target driver,
    		 * when the request is completed.
    		 */
    		tio->error = error;
    		return;
    	}
    
    	/*
    	 * I/O for the bio successfully completed.
    	 * Notice the data completion to the upper layer.
    	 */
    
    	/*
    	 * bios are processed from the head of the list.
    	 * So the completing bio should always be rq->bio.
    	 * If it's not, something wrong is happening.
    	 */
    	if (tio->orig->bio != bio)
    		DMERR("bio completion is going in the middle of the request");
    
    	/*
    	 * Update the original request.
    	 * Do not use blk_end_request() here, because it may complete
    	 * the original request before the clone, and break the ordering.
    	 */
    	blk_update_request(tio->orig, 0, nr_bytes);
    }
    
    /*
     * Don't touch any member of the md after calling this function because
     * the md may be freed in dm_put() at the end of this function.
     * Or do dm_get() before calling this function and dm_put() later.
     */
    static void rq_completed(struct mapped_device *md, int rw, int run_queue)
    {
    	atomic_dec(&md->pending[rw]);
    
    	/* nudge anyone waiting on suspend queue */
    	if (!md_in_flight(md))
    		wake_up(&md->wait);
    
    	if (run_queue)
    		blk_run_queue(md->queue);
    
    	/*
    	 * dm_put() must be at the end of this function. See the comment above
    	 */
    	dm_put(md);
    }
    
    static void free_rq_clone(struct request *clone)
    {
    	struct dm_rq_target_io *tio = clone->end_io_data;
    
    	blk_rq_unprep_clone(clone);
    	free_rq_tio(tio);
    }
    
    /*
     * Complete the clone and the original request.
     * Must be called without queue lock.
     */
    static void dm_end_request(struct request *clone, int error)
    {
    	int rw = rq_data_dir(clone);
    	struct dm_rq_target_io *tio = clone->end_io_data;
    	struct mapped_device *md = tio->md;
    	struct request *rq = tio->orig;
    
    	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
    		rq->errors = clone->errors;
    		rq->resid_len = clone->resid_len;
    
    		if (rq->sense)
    			/*
    			 * We are using the sense buffer of the original
    			 * request.
    			 * So setting the length of the sense data is enough.
    			 */
    			rq->sense_len = clone->sense_len;
    	}
    
    	free_rq_clone(clone);
    	blk_end_request_all(rq, error);
    	rq_completed(md, rw, true);
    }
    
    static void dm_unprep_request(struct request *rq)
    {
    	struct request *clone = rq->special;
    
    	rq->special = NULL;
    	rq->cmd_flags &= ~REQ_DONTPREP;
    
    	free_rq_clone(clone);
    }
    
    /*
     * Requeue the original request of a clone.
     */
    void dm_requeue_unmapped_request(struct request *clone)
    {
    	int rw = rq_data_dir(clone);
    	struct dm_rq_target_io *tio = clone->end_io_data;
    	struct mapped_device *md = tio->md;
    	struct request *rq = tio->orig;
    	struct request_queue *q = rq->q;
    	unsigned long flags;
    
    	dm_unprep_request(rq);
    
    	spin_lock_irqsave(q->queue_lock, flags);
    	blk_requeue_request(q, rq);
    	spin_unlock_irqrestore(q->queue_lock, flags);
    
    	rq_completed(md, rw, 0);
    }
    EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
    
    static void __stop_queue(struct request_queue *q)
    {
    	blk_stop_queue(q);
    }
    
    static void stop_queue(struct request_queue *q)
    {
    	unsigned long flags;
    
    	spin_lock_irqsave(q->queue_lock, flags);
    	__stop_queue(q);
    	spin_unlock_irqrestore(q->queue_lock, flags);
    }
    
    static void __start_queue(struct request_queue *q)
    {
    	if (blk_queue_stopped(q))
    		blk_start_queue(q);
    }
    
    static void start_queue(struct request_queue *q)
    {
    	unsigned long flags;
    
    	spin_lock_irqsave(q->queue_lock, flags);
    	__start_queue(q);
    	spin_unlock_irqrestore(q->queue_lock, flags);
    }
    
    static void dm_done(struct request *clone, int error, bool mapped)
    {
    	int r = error;
    	struct dm_rq_target_io *tio = clone->end_io_data;
    	dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
    
    	if (mapped && rq_end_io)
    		r = rq_end_io(tio->ti, clone, error, &tio->info);
    
    	if (r <= 0)
    		/* The target wants to complete the I/O */
    		dm_end_request(clone, r);
    	else if (r == DM_ENDIO_INCOMPLETE)
    		/* The target will handle the I/O */
    		return;
    	else if (r == DM_ENDIO_REQUEUE)
    		/* The target wants to requeue the I/O */
    		dm_requeue_unmapped_request(clone);
    	else {
    		DMWARN("unimplemented target endio return value: %d", r);
    		BUG();
    	}
    }
    
    /*
     * Request completion handler for request-based dm
     */
    static void dm_softirq_done(struct request *rq)
    {
    	bool mapped = true;
    	struct request *clone = rq->completion_data;
    	struct dm_rq_target_io *tio = clone->end_io_data;
    
    	if (rq->cmd_flags & REQ_FAILED)
    		mapped = false;
    
    	dm_done(clone, tio->error, mapped);
    }
    
    /*
     * Complete the clone and the original request with the error status
     * through softirq context.
     */
    static void dm_complete_request(struct request *clone, int error)
    {
    	struct dm_rq_target_io *tio = clone->end_io_data;
    	struct request *rq = tio->orig;
    
    	tio->error = error;
    	rq->completion_data = clone;
    	blk_complete_request(rq);
    }
    
    /*
     * Complete the not-mapped clone and the original request with the error status
     * through softirq context.
     * Target's rq_end_io() function isn't called.
     * This may be used when the target's map_rq() function fails.
     */
    void dm_kill_unmapped_request(struct request *clone, int error)
    {
    	struct dm_rq_target_io *tio = clone->end_io_data;
    	struct request *rq = tio->orig;
    
    	rq->cmd_flags |= REQ_FAILED;
    	dm_complete_request(clone, error);
    }
    EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
    
    /*
     * Called with the queue lock held
     */
    static void end_clone_request(struct request *clone, int error)
    {
    	/*
    	 * For just cleaning up the information of the queue in which
    	 * the clone was dispatched.
    	 * The clone is *NOT* freed actually here because it is alloced from
    	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
    	 */
    	__blk_put_request(clone->q, clone);
    
    	/*
    	 * Actual request completion is done in a softirq context which doesn't
    	 * hold the queue lock.  Otherwise, deadlock could occur because:
    	 *     - another request may be submitted by the upper level driver
    	 *       of the stacking during the completion
    	 *     - the submission which requires queue lock may be done
    	 *       against this queue
    	 */
    	dm_complete_request(clone, error);
    }
    
    /*
     * Return maximum size of I/O possible at the supplied sector up to the current
     * target boundary.
     */
    static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
    {
    	sector_t target_offset = dm_target_offset(ti, sector);
    
    	return ti->len - target_offset;
    }
    
    static sector_t max_io_len(sector_t sector, struct dm_target *ti)
    {
    	sector_t len = max_io_len_target_boundary(sector, ti);
    
    	/*
    	 * Does the target need to split even further ?
    	 */
    	if (ti->split_io) {
    		sector_t boundary;
    		sector_t offset = dm_target_offset(ti, sector);
    		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
    			   - offset;
    		if (len > boundary)
    			len = boundary;
    	}
    
    	return len;
    }
    
    static void __map_bio(struct dm_target *ti, struct bio *clone,
    		      struct dm_target_io *tio)
    {
    	int r;
    	sector_t sector;
    	struct mapped_device *md;
    
    	clone->bi_end_io = clone_endio;
    	clone->bi_private = tio;
    
    	/*
    	 * Map the clone.  If r == 0 we don't need to do
    	 * anything, the target has assumed ownership of
    	 * this io.
    	 */
    	atomic_inc(&tio->io->io_count);
    	sector = clone->bi_sector;
    	r = ti->type->map(ti, clone, &tio->info);
    	if (r == DM_MAPIO_REMAPPED) {
    		/* the bio has been remapped so dispatch it */
    
    		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
    				      tio->io->bio->bi_bdev->bd_dev, sector);
    
    		generic_make_request(clone);
    	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
    		/* error the io and bail out, or requeue it if needed */
    		md = tio->io->md;
    		dec_pending(tio->io, r);
    		/*
    		 * Store bio_set for cleanup.
    		 */
    		clone->bi_private = md->bs;
    		bio_put(clone);
    		free_tio(md, tio);
    	} else if (r) {
    		DMWARN("unimplemented target map return value: %d", r);
    		BUG();
    	}
    }
    
    struct clone_info {
    	struct mapped_device *md;
    	struct dm_table *map;
    	struct bio *bio;
    	struct dm_io *io;
    	sector_t sector;
    	sector_t sector_count;
    	unsigned short idx;
    };
    
    static void dm_bio_destructor(struct bio *bio)
    {
    	struct bio_set *bs = bio->bi_private;
    
    	bio_free(bio, bs);
    }
    
    /*
     * Creates a little bio that just does part of a bvec.
     */
    static struct bio *split_bvec(struct bio *bio, sector_t sector,
    			      unsigned short idx, unsigned int offset,
    			      unsigned int len, struct bio_set *bs)
    {
    	struct bio *clone;
    	struct bio_vec *bv = bio->bi_io_vec + idx;
    
    	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
    	clone->bi_destructor = dm_bio_destructor;
    	*clone->bi_io_vec = *bv;
    
    	clone->bi_sector = sector;
    	clone->bi_bdev = bio->bi_bdev;
    	clone->bi_rw = bio->bi_rw;
    	clone->bi_vcnt = 1;
    	clone->bi_size = to_bytes(len);
    	clone->bi_io_vec->bv_offset = offset;
    	clone->bi_io_vec->bv_len = clone->bi_size;
    	clone->bi_flags |= 1 << BIO_CLONED;
    
    	if (bio_integrity(bio)) {
    		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
    		bio_integrity_trim(clone,
    				   bio_sector_offset(bio, idx, offset), len);
    	}
    
    	return clone;
    }
    
    /*
     * Creates a bio that consists of range of complete bvecs.
     */
    static struct bio *clone_bio(struct bio *bio, sector_t sector,
    			     unsigned short idx, unsigned short bv_count,
    			     unsigned int len, struct bio_set *bs)
    {
    	struct bio *clone;
    
    	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
    	__bio_clone(clone, bio);
    	clone->bi_destructor = dm_bio_destructor;
    	clone->bi_sector = sector;
    	clone->bi_idx = idx;
    	clone->bi_vcnt = idx + bv_count;
    	clone->bi_size = to_bytes(len);
    	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
    
    	if (bio_integrity(bio)) {
    		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
    
    		if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
    			bio_integrity_trim(clone,
    					   bio_sector_offset(bio, idx, 0), len);
    	}
    
    	return clone;
    }
    
    static struct dm_target_io *alloc_tio(struct clone_info *ci,
    				      struct dm_target *ti)
    {
    	struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
    
    	tio->io = ci->io;
    	tio->ti = ti;
    	memset(&tio->info, 0, sizeof(tio->info));
    
    	return tio;
    }
    
    static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
    				   unsigned request_nr, sector_t len)
    {
    	struct dm_target_io *tio = alloc_tio(ci, ti);
    	struct bio *clone;
    
    	tio->info.target_request_nr = request_nr;
    
    	/*
    	 * Discard requests require the bio's inline iovecs be initialized.
    	 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
    	 * and discard, so no need for concern about wasted bvec allocations.
    	 */
    	clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
    	__bio_clone(clone, ci->bio);
    	clone->bi_destructor = dm_bio_destructor;
    	if (len) {
    		clone->bi_sector = ci->sector;
    		clone->bi_size = to_bytes(len);
    	}
    
    	__map_bio(ti, clone, tio);
    }
    
    static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
    				    unsigned num_requests, sector_t len)
    {
    	unsigned request_nr;
    
    	for (request_nr = 0; request_nr < num_requests; request_nr++)
    		__issue_target_request(ci, ti, request_nr, len);
    }
    
    static int __clone_and_map_empty_flush(struct clone_info *ci)
    {
    	unsigned target_nr = 0;
    	struct dm_target *ti;
    
    	BUG_ON(bio_has_data(ci->bio));
    	while ((ti = dm_table_get_target(ci->map, target_nr++)))
    		__issue_target_requests(ci, ti, ti->num_flush_requests, 0);
    
    	return 0;
    }
    
    /*
     * Perform all io with a single clone.
     */
    static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
    {
    	struct bio *clone, *bio = ci->bio;
    	struct dm_target_io *tio;
    
    	tio = alloc_tio(ci, ti);
    	clone = clone_bio(bio, ci->sector, ci->idx,
    			  bio->bi_vcnt - ci->idx, ci->sector_count,
    			  ci->md->bs);
    	__map_bio(ti, clone, tio);
    	ci->sector_count = 0;
    }
    
    static int __clone_and_map_discard(struct clone_info *ci)
    {
    	struct dm_target *ti;
    	sector_t len;
    
    	do {
    		ti = dm_table_find_target(ci->map, ci->sector);
    		if (!dm_target_is_valid(ti))
    			return -EIO;
    
    		/*
    		 * Even though the device advertised discard support,
    		 * that does not mean every target supports it, and
    		 * reconfiguration might also have changed that since the
    		 * check was performed.
    		 */
    		if (!ti->num_discard_requests)
    			return -EOPNOTSUPP;
    
    		len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
    
    		__issue_target_requests(ci, ti, ti->num_discard_requests, len);
    
    		ci->sector += len;
    	} while (ci->sector_count -= len);
    
    	return 0;
    }
    
    static int __clone_and_map(struct clone_info *ci)
    {
    	struct bio *clone, *bio = ci->bio;
    	struct dm_target *ti;
    	sector_t len = 0, max;
    	struct dm_target_io *tio;
    
    	if (unlikely(bio->bi_rw & REQ_DISCARD))
    		return __clone_and_map_discard(ci);
    
    	ti = dm_table_find_target(ci->map, ci->sector);
    	if (!dm_target_is_valid(ti))
    		return -EIO;
    
    	max = max_io_len(ci->sector, ti);
    
    	if (ci->sector_count <= max) {
    		/*
    		 * Optimise for the simple case where we can do all of
    		 * the remaining io with a single clone.
    		 */
    		__clone_and_map_simple(ci, ti);
    
    	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
    		/*
    		 * There are some bvecs that don't span targets.
    		 * Do as many of these as possible.
    		 */
    		int i;
    		sector_t remaining = max;
    		sector_t bv_len;
    
    		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
    			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
    
    			if (bv_len > remaining)
    				break;
    
    			remaining -= bv_len;
    			len += bv_len;
    		}
    
    		tio = alloc_tio(ci, ti);
    		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
    				  ci->md->bs);
    		__map_bio(ti, clone, tio);
    
    		ci->sector += len;
    		ci->sector_count -= len;
    		ci->idx = i;
    
    	} else {
    		/*
    		 * Handle a bvec that must be split between two or more targets.
    		 */
    		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
    		sector_t remaining = to_sector(bv->bv_len);
    		unsigned int offset = 0;
    
    		do {
    			if (offset) {
    				ti = dm_table_find_target(ci->map, ci->sector);
    				if (!dm_target_is_valid(ti))
    					return -EIO;
    
    				max = max_io_len(ci->sector, ti);
    			}
    
    			len = min(remaining, max);
    
    			tio = alloc_tio(ci, ti);
    			clone = split_bvec(bio, ci->sector, ci->idx,
    					   bv->bv_offset + offset, len,
    					   ci->md->bs);
    
    			__map_bio(ti, clone, tio);
    
    			ci->sector += len;
    			ci->sector_count -= len;
    			offset += to_bytes(len);
    		} while (remaining -= len);
    
    		ci->idx++;
    	}
    
    	return 0;
    }
    
    /*
     * Split the bio into several clones and submit it to targets.
     */
    static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
    {
    	struct clone_info ci;
    	int error = 0;
    
    	ci.map = dm_get_live_table(md);
    	if (unlikely(!ci.map)) {
    		bio_io_error(bio);
    		return;
    	}
    
    	ci.md = md;
    	ci.io = alloc_io(md);
    	ci.io->error = 0;
    	atomic_set(&ci.io->io_count, 1);
    	ci.io->bio = bio;
    	ci.io->md = md;
    	spin_lock_init(&ci.io->endio_lock);
    	ci.sector = bio->bi_sector;
    	ci.idx = bio->bi_idx;
    
    	start_io_acct(ci.io);
    	if (bio->bi_rw & REQ_FLUSH) {
    		ci.bio = &ci.md->flush_bio;
    		ci.sector_count = 0;
    		error = __clone_and_map_empty_flush(&ci);
    		/* dec_pending submits any data associated with flush */
    	} else {
    		ci.bio = bio;
    		ci.sector_count = bio_sectors(bio);
    		while (ci.sector_count && !error)
    			error = __clone_and_map(&ci);
    	}
    
    	/* drop the extra reference count */
    	dec_pending(ci.io, error);
    	dm_table_put(ci.map);
    }
    /*-----------------------------------------------------------------
     * CRUD END
     *---------------------------------------------------------------*/
    
    static int dm_merge_bvec(struct request_queue *q,
    			 struct bvec_merge_data *bvm,
    			 struct bio_vec *biovec)
    {
    	struct mapped_device *md = q->queuedata;
    	struct dm_table *map = dm_get_live_table(md);
    	struct dm_target *ti;
    	sector_t max_sectors;
    	int max_size = 0;
    
    	if (unlikely(!map))
    		goto out;
    
    	ti = dm_table_find_target(map, bvm->bi_sector);
    	if (!dm_target_is_valid(ti))
    		goto out_table;
    
    	/*
    	 * Find maximum amount of I/O that won't need splitting
    	 */
    	max_sectors = min(max_io_len(bvm->bi_sector, ti),
    			  (sector_t) BIO_MAX_SECTORS);
    	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
    	if (max_size < 0)
    		max_size = 0;
    
    	/*
    	 * merge_bvec_fn() returns number of bytes
    	 * it can accept at this offset
    	 * max is precomputed maximal io size
    	 */
    	if (max_size && ti->type->merge)
    		max_size = ti->type->merge(ti, bvm, biovec, max_size);
    	/*
    	 * If the target doesn't support merge method and some of the devices
    	 * provided their merge_bvec method (we know this by looking at
    	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
    	 * entries.  So always set max_size to 0, and the code below allows
    	 * just one page.
    	 */
    	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
    
    		max_size = 0;
    
    out_table:
    	dm_table_put(map);
    
    out:
    	/*
    	 * Always allow an entire first page
    	 */
    	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
    		max_size = biovec->bv_len;
    
    	return max_size;
    }
    
    /*
     * The request function that just remaps the bio built up by
     * dm_merge_bvec.
     */
    static int _dm_request(struct request_queue *q, struct bio *bio)
    {
    	int rw = bio_data_dir(bio);
    	struct mapped_device *md = q->queuedata;
    	int cpu;
    
    	down_read(&md->io_lock);
    
    	cpu = part_stat_lock();
    	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
    	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
    	part_stat_unlock();
    
    	/* if we're suspended, we have to queue this io for later */
    	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
    		up_read(&md->io_lock);
    
    		if (bio_rw(bio) != READA)
    			queue_io(md, bio);
    		else
    			bio_io_error(bio);
    		return 0;
    	}
    
    	__split_and_process_bio(md, bio);
    	up_read(&md->io_lock);
    	return 0;
    }
    
    static int dm_request_based(struct mapped_device *md)
    {
    	return blk_queue_stackable(md->queue);
    }
    
    static int dm_request(struct request_queue *q, struct bio *bio)
    {
    	struct mapped_device *md = q->queuedata;
    
    	if (dm_request_based(md))
    		return blk_queue_bio(q, bio);
    
    	return _dm_request(q, bio);
    }
    
    void dm_dispatch_request(struct request *rq)
    {
    	int r;
    
    	if (blk_queue_io_stat(rq->q))
    		rq->cmd_flags |= REQ_IO_STAT;
    
    	rq->start_time = jiffies;
    	r = blk_insert_cloned_request(rq->q, rq);
    	if (r)
    		dm_complete_request(rq, r);
    }
    EXPORT_SYMBOL_GPL(dm_dispatch_request);
    
    static void dm_rq_bio_destructor(struct bio *bio)
    {
    	struct dm_rq_clone_bio_info *info = bio->bi_private;
    	struct mapped_device *md = info->tio->md;
    
    	free_bio_info(info);
    	bio_free(bio, md->bs);
    }
    
    static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
    				 void *data)
    {
    	struct dm_rq_target_io *tio = data;
    	struct mapped_device *md = tio->md;
    	struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
    
    	if (!info)
    		return -ENOMEM;
    
    	info->orig = bio_orig;
    	info->tio = tio;
    	bio->bi_end_io = end_clone_bio;
    	bio->bi_private = info;
    	bio->bi_destructor = dm_rq_bio_destructor;
    
    	return 0;
    }
    
    static int setup_clone(struct request *clone, struct request *rq,
    		       struct dm_rq_target_io *tio)
    {
    	int r;
    
    	r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
    			      dm_rq_bio_constructor, tio);
    	if (r)
    		return r;
    
    	clone->cmd = rq->cmd;
    	clone->cmd_len = rq->cmd_len;
    	clone->sense = rq->sense;
    	clone->buffer = rq->buffer;
    	clone->end_io = end_clone_request;
    	clone->end_io_data = tio;
    
    	return 0;
    }
    
    static struct request *clone_rq(struct request *rq, struct mapped_device *md,
    				gfp_t gfp_mask)
    {
    	struct request *clone;
    	struct dm_rq_target_io *tio;
    
    	tio = alloc_rq_tio(md, gfp_mask);
    	if (!tio)
    		return NULL;
    
    	tio->md = md;
    	tio->ti = NULL;
    	tio->orig = rq;
    	tio->error = 0;
    	memset(&tio->info, 0, sizeof(tio->info));
    
    	clone = &tio->clone;
    	if (setup_clone(clone, rq, tio)) {
    		/* -ENOMEM */
    		free_rq_tio(tio);
    		return NULL;
    	}
    
    	return clone;
    }
    
    /*
     * Called with the queue lock held.
     */
    static int dm_prep_fn(struct request_queue *q, struct request *rq)
    {
    	struct mapped_device *md = q->queuedata;
    	struct request *clone;
    
    	if (unlikely(rq->special)) {
    		DMWARN("Already has something in rq->special.");
    		return BLKPREP_KILL;
    	}
    
    	clone = clone_rq(rq, md, GFP_ATOMIC);
    	if (!clone)
    		return BLKPREP_DEFER;
    
    	rq->special = clone;
    	rq->cmd_flags |= REQ_DONTPREP;
    
    	return BLKPREP_OK;
    }
    
    /*
     * Returns:
     * 0  : the request has been processed (not requeued)
     * !0 : the request has been requeued
     */
    static int map_request(struct dm_target *ti, struct request *clone,
    		       struct mapped_device *md)
    {
    	int r, requeued = 0;
    	struct dm_rq_target_io *tio = clone->end_io_data;
    
    	/*
    	 * Hold the md reference here for the in-flight I/O.
    	 * We can't rely on the reference count by device opener,
    	 * because the device may be closed during the request completion
    	 * when all bios are completed.
    	 * See the comment in rq_completed() too.
    	 */
    	dm_get(md);
    
    	tio->ti = ti;
    	r = ti->type->map_rq(ti, clone, &tio->info);
    	switch (r) {
    	case DM_MAPIO_SUBMITTED:
    		/* The target has taken the I/O to submit by itself later */
    		break;
    	case DM_MAPIO_REMAPPED:
    		/* The target has remapped the I/O so dispatch it */
    		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
    				     blk_rq_pos(tio->orig));
    		dm_dispatch_request(clone);
    		break;
    	case DM_MAPIO_REQUEUE:
    		/* The target wants to requeue the I/O */
    		dm_requeue_unmapped_request(clone);
    		requeued = 1;
    		break;
    	default:
    		if (r > 0) {
    			DMWARN("unimplemented target map return value: %d", r);
    			BUG();
    		}
    
    		/* The target wants to complete the I/O */
    		dm_kill_unmapped_request(clone, r);
    		break;
    	}
    
    	return requeued;
    }
    
    /*
     * q->request_fn for request-based dm.
     * Called with the queue lock held.
     */
    static void dm_request_fn(struct request_queue *q)
    {
    	struct mapped_device *md = q->queuedata;
    	struct dm_table *map = dm_get_live_table(md);
    	struct dm_target *ti;
    	struct request *rq, *clone;
    	sector_t pos;
    
    	/*
    	 * For suspend, check blk_queue_stopped() and increment
    	 * ->pending within a single queue_lock not to increment the
    	 * number of in-flight I/Os after the queue is stopped in
    	 * dm_suspend().
    	 */
    	while (!blk_queue_stopped(q)) {
    		rq = blk_peek_request(q);
    		if (!rq)
    			goto delay_and_out;
    
    		/* always use block 0 to find the target for flushes for now */
    		pos = 0;
    		if (!(rq->cmd_flags & REQ_FLUSH))
    			pos = blk_rq_pos(rq);
    
    		ti = dm_table_find_target(map, pos);
    		BUG_ON(!dm_target_is_valid(ti));
    
    		if (ti->type->busy && ti->type->busy(ti))
    			goto delay_and_out;
    
    		blk_start_request(rq);
    		clone = rq->special;
    		atomic_inc(&md->pending[rq_data_dir(clone)]);
    
    		spin_unlock(q->queue_lock);
    		if (map_request(ti, clone, md))
    			goto requeued;
    
    		BUG_ON(!irqs_disabled());
    		spin_lock(q->queue_lock);
    	}
    
    	goto out;
    
    requeued:
    	BUG_ON(!irqs_disabled());
    	spin_lock(q->queue_lock);
    
    delay_and_out:
    	blk_delay_queue(q, HZ / 10);
    out:
    	dm_table_put(map);
    
    	return;
    }
    
    int dm_underlying_device_busy(struct request_queue *q)
    {
    	return blk_lld_busy(q);
    }
    EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
    
    static int dm_lld_busy(struct request_queue *q)
    {
    	int r;
    	struct mapped_device *md = q->queuedata;
    	struct dm_table *map = dm_get_live_table(md);
    
    	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
    		r = 1;
    	else
    		r = dm_table_any_busy_target(map);
    
    	dm_table_put(map);
    
    	return r;
    }
    
    static int dm_any_congested(void *congested_data, int bdi_bits)
    {
    	int r = bdi_bits;
    	struct mapped_device *md = congested_data;
    	struct dm_table *map;
    
    	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
    		map = dm_get_live_table(md);
    		if (map) {
    			/*
    			 * Request-based dm cares about only own queue for
    			 * the query about congestion status of request_queue
    			 */
    			if (dm_request_based(md))
    				r = md->queue->backing_dev_info.state &
    				    bdi_bits;
    			else
    				r = dm_table_any_congested(map, bdi_bits);
    
    			dm_table_put(map);
    		}
    	}
    
    	return r;
    }
    
    /*-----------------------------------------------------------------
     * An IDR is used to keep track of allocated minor numbers.
     *---------------------------------------------------------------*/
    static void free_minor(int minor)
    {
    	spin_lock(&_minor_lock);
    	idr_remove(&_minor_idr, minor);
    	spin_unlock(&_minor_lock);
    }
    
    /*
     * See if the device with a specific minor # is free.
     */
    static int specific_minor(int minor)
    {
    	int r, m;
    
    	if (minor >= (1 << MINORBITS))
    		return -EINVAL;
    
    	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
    	if (!r)
    		return -ENOMEM;
    
    	spin_lock(&_minor_lock);
    
    	if (idr_find(&_minor_idr, minor)) {
    		r = -EBUSY;
    		goto out;
    	}
    
    	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
    	if (r)
    		goto out;
    
    	if (m != minor) {
    		idr_remove(&_minor_idr, m);
    		r = -EBUSY;
    		goto out;
    	}
    
    out:
    	spin_unlock(&_minor_lock);
    	return r;
    }
    
    static int next_free_minor(int *minor)
    {
    	int r, m;
    
    	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
    	if (!r)
    		return -ENOMEM;
    
    	spin_lock(&_minor_lock);
    
    	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
    	if (r)
    		goto out;
    
    	if (m >= (1 << MINORBITS)) {
    		idr_remove(&_minor_idr, m);
    		r = -ENOSPC;
    		goto out;
    	}
    
    	*minor = m;
    
    out:
    	spin_unlock(&_minor_lock);
    	return r;
    }
    
    static const struct block_device_operations dm_blk_dops;
    
    static void dm_wq_work(struct work_struct *work);
    
    static void dm_init_md_queue(struct mapped_device *md)
    {
    	/*
    	 * Request-based dm devices cannot be stacked on top of bio-based dm
    	 * devices.  The type of this dm device has not been decided yet.
    	 * The type is decided at the first table loading time.
    	 * To prevent problematic device stacking, clear the queue flag
    	 * for request stacking support until then.
    	 *
    	 * This queue is new, so no concurrency on the queue_flags.
    	 */
    	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
    
    	md->queue->queuedata = md;
    	md->queue->backing_dev_info.congested_fn = dm_any_congested;
    	md->queue->backing_dev_info.congested_data = md;
    	blk_queue_make_request(md->queue, dm_request);
    	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
    	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
    }
    
    /*
     * Allocate and initialise a blank device with a given minor.
     */
    static struct mapped_device *alloc_dev(int minor)
    {
    	int r;
    	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
    	void *old_md;
    
    	if (!md) {
    		DMWARN("unable to allocate device, out of memory.");
    		return NULL;
    	}
    
    	if (!try_module_get(THIS_MODULE))
    		goto bad_module_get;
    
    	/* get a minor number for the dev */
    	if (minor == DM_ANY_MINOR)
    		r = next_free_minor(&minor);
    	else
    		r = specific_minor(minor);
    	if (r < 0)
    		goto bad_minor;
    
    	md->type = DM_TYPE_NONE;
    	init_rwsem(&md->io_lock);
    	mutex_init(&md->suspend_lock);
    	mutex_init(&md->type_lock);
    	spin_lock_init(&md->deferred_lock);
    	rwlock_init(&md->map_lock);
    	atomic_set(&md->holders, 1);
    	atomic_set(&md->open_count, 0);
    	atomic_set(&md->event_nr, 0);
    	atomic_set(&md->uevent_seq, 0);
    	INIT_LIST_HEAD(&md->uevent_list);
    	spin_lock_init(&md->uevent_lock);
    
    	md->queue = blk_alloc_queue(GFP_KERNEL);
    	if (!md->queue)
    		goto bad_queue;
    
    	dm_init_md_queue(md);
    
    	md->disk = alloc_disk(1);
    	if (!md->disk)
    		goto bad_disk;
    
    	atomic_set(&md->pending[0], 0);
    	atomic_set(&md->pending[1], 0);
    	init_waitqueue_head(&md->wait);
    	INIT_WORK(&md->work, dm_wq_work);
    	init_waitqueue_head(&md->eventq);
    
    	md->disk->major = _major;
    	md->disk->first_minor = minor;
    	md->disk->fops = &dm_blk_dops;
    	md->disk->queue = md->queue;
    	md->disk->private_data = md;
    	sprintf(md->disk->disk_name, "dm-%d", minor);
    	add_disk(md->disk);
    	format_dev_t(md->name, MKDEV(_major, minor));
    
    	md->wq = alloc_workqueue("kdmflush",
    				 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
    	if (!md->wq)
    		goto bad_thread;
    
    	md->bdev = bdget_disk(md->disk, 0);
    	if (!md->bdev)
    		goto bad_bdev;
    
    	bio_init(&md->flush_bio);
    	md->flush_bio.bi_bdev = md->bdev;
    	md->flush_bio.bi_rw = WRITE_FLUSH;
    
    	/* Populate the mapping, nobody knows we exist yet */
    	spin_lock(&_minor_lock);
    	old_md = idr_replace(&_minor_idr, md, minor);
    	spin_unlock(&_minor_lock);
    
    	BUG_ON(old_md != MINOR_ALLOCED);
    
    	return md;
    
    bad_bdev:
    	destroy_workqueue(md->wq);
    bad_thread:
    	del_gendisk(md->disk);
    	put_disk(md->disk);
    bad_disk:
    	blk_cleanup_queue(md->queue);
    bad_queue:
    	free_minor(minor);
    bad_minor:
    	module_put(THIS_MODULE);
    bad_module_get:
    	kfree(md);
    	return NULL;
    }
    
    static void unlock_fs(struct mapped_device *md);
    
    static void free_dev(struct mapped_device *md)
    {
    	int minor = MINOR(disk_devt(md->disk));
    
    	unlock_fs(md);
    	bdput(md->bdev);
    	destroy_workqueue(md->wq);
    	if (md->tio_pool)
    		mempool_destroy(md->tio_pool);
    	if (md->io_pool)
    		mempool_destroy(md->io_pool);
    	if (md->bs)
    		bioset_free(md->bs);
    	blk_integrity_unregister(md->disk);
    	del_gendisk(md->disk);
    	free_minor(minor);
    
    	spin_lock(&_minor_lock);
    	md->disk->private_data = NULL;
    	spin_unlock(&_minor_lock);
    
    	put_disk(md->disk);
    	blk_cleanup_queue(md->queue);
    	module_put(THIS_MODULE);
    	kfree(md);
    }
    
    static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
    {
    	struct dm_md_mempools *p;
    
    	if (md->io_pool && md->tio_pool && md->bs)
    		/* the md already has necessary mempools */
    		goto out;
    
    	p = dm_table_get_md_mempools(t);
    	BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
    
    	md->io_pool = p->io_pool;
    	p->io_pool = NULL;
    	md->tio_pool = p->tio_pool;
    	p->tio_pool = NULL;
    	md->bs = p->bs;
    	p->bs = NULL;
    
    out:
    	/* mempool bind completed, now no need any mempools in the table */
    	dm_table_free_md_mempools(t);
    }
    
    /*
     * Bind a table to the device.
     */
    static void event_callback(void *context)
    {
    	unsigned long flags;
    	LIST_HEAD(uevents);
    	struct mapped_device *md = (struct mapped_device *) context;
    
    	spin_lock_irqsave(&md->uevent_lock, flags);
    	list_splice_init(&md->uevent_list, &uevents);
    	spin_unlock_irqrestore(&md->uevent_lock, flags);
    
    	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
    
    	atomic_inc(&md->event_nr);
    	wake_up(&md->eventq);
    }
    
    /*
     * Protected by md->suspend_lock obtained by dm_swap_table().
     */
    static void __set_size(struct mapped_device *md, sector_t size)
    {
    	set_capacity(md->disk, size);
    
    	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
    }
    
    /*
     * Return 1 if the queue has a compulsory merge_bvec_fn function.
     *
     * If this function returns 0, then the device is either a non-dm
     * device without a merge_bvec_fn, or it is a dm device that is
     * able to split any bios it receives that are too big.
     */
    int dm_queue_merge_is_compulsory(struct request_queue *q)
    {
    	struct mapped_device *dev_md;
    
    	if (!q->merge_bvec_fn)
    		return 0;
    
    	if (q->make_request_fn == dm_request) {
    		dev_md = q->queuedata;
    		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
    			return 0;
    	}
    
    	return 1;
    }
    
    static int dm_device_merge_is_compulsory(struct dm_target *ti,
    					 struct dm_dev *dev, sector_t start,
    					 sector_t len, void *data)
    {
    	struct block_device *bdev = dev->bdev;
    	struct request_queue *q = bdev_get_queue(bdev);
    
    	return dm_queue_merge_is_compulsory(q);
    }
    
    /*
     * Return 1 if it is acceptable to ignore merge_bvec_fn based
     * on the properties of the underlying devices.
     */
    static int dm_table_merge_is_optional(struct dm_table *table)
    {
    	unsigned i = 0;
    	struct dm_target *ti;
    
    	while (i < dm_table_get_num_targets(table)) {
    		ti = dm_table_get_target(table, i++);
    
    		if (ti->type->iterate_devices &&
    		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
    			return 0;
    	}
    
    	return 1;
    }
    
    /*
     * Returns old map, which caller must destroy.
     */
    static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
    			       struct queue_limits *limits)
    {
    	struct dm_table *old_map;
    	struct request_queue *q = md->queue;
    	sector_t size;
    	unsigned long flags;
    	int merge_is_optional;
    
    	size = dm_table_get_size(t);
    
    	/*
    	 * Wipe any geometry if the size of the table changed.
    	 */
    	if (size != get_capacity(md->disk))
    		memset(&md->geometry, 0, sizeof(md->geometry));
    
    	__set_size(md, size);
    
    	dm_table_event_callback(t, event_callback, md);
    
    	/*
    	 * The queue hasn't been stopped yet, if the old table type wasn't
    	 * for request-based during suspension.  So stop it to prevent
    	 * I/O mapping before resume.
    	 * This must be done before setting the queue restrictions,
    	 * because request-based dm may be run just after the setting.
    	 */
    	if (dm_table_request_based(t) && !blk_queue_stopped(q))
    		stop_queue(q);
    
    	__bind_mempools(md, t);
    
    	merge_is_optional = dm_table_merge_is_optional(t);
    
    	write_lock_irqsave(&md->map_lock, flags);
    	old_map = md->map;
    	md->map = t;
    	dm_table_set_restrictions(t, q, limits);
    	if (merge_is_optional)
    		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
    	else
    		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
    	write_unlock_irqrestore(&md->map_lock, flags);
    
    	return old_map;
    }
    
    /*
     * Returns unbound table for the caller to free.
     */
    static struct dm_table *__unbind(struct mapped_device *md)
    {
    	struct dm_table *map = md->map;
    	unsigned long flags;
    
    	if (!map)
    		return NULL;
    
    	dm_table_event_callback(map, NULL, NULL);
    	write_lock_irqsave(&md->map_lock, flags);
    	md->map = NULL;
    	write_unlock_irqrestore(&md->map_lock, flags);
    
    	return map;
    }
    
    /*
     * Constructor for a new device.
     */
    int dm_create(int minor, struct mapped_device **result)
    {
    	struct mapped_device *md;
    
    	md = alloc_dev(minor);
    	if (!md)
    		return -ENXIO;
    
    	dm_sysfs_init(md);
    
    	*result = md;
    	return 0;
    }
    
    /*
     * Functions to manage md->type.
     * All are required to hold md->type_lock.
     */
    void dm_lock_md_type(struct mapped_device *md)
    {
    	mutex_lock(&md->type_lock);
    }
    
    void dm_unlock_md_type(struct mapped_device *md)
    {
    	mutex_unlock(&md->type_lock);
    }
    
    void dm_set_md_type(struct mapped_device *md, unsigned type)
    {
    	md->type = type;
    }
    
    unsigned dm_get_md_type(struct mapped_device *md)
    {
    	return md->type;
    }
    
    /*
     * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
     */
    static int dm_init_request_based_queue(struct mapped_device *md)
    {
    	struct request_queue *q = NULL;
    
    	if (md->queue->elevator)
    		return 1;
    
    	/* Fully initialize the queue */
    	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
    	if (!q)
    		return 0;
    
    	md->queue = q;
    	dm_init_md_queue(md);
    	blk_queue_softirq_done(md->queue, dm_softirq_done);
    	blk_queue_prep_rq(md->queue, dm_prep_fn);
    	blk_queue_lld_busy(md->queue, dm_lld_busy);
    
    	elv_register_queue(md->queue);
    
    	return 1;
    }
    
    /*
     * Setup the DM device's queue based on md's type
     */
    int dm_setup_md_queue(struct mapped_device *md)
    {
    	if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
    	    !dm_init_request_based_queue(md)) {
    		DMWARN("Cannot initialize queue for request-based mapped device");
    		return -EINVAL;
    	}
    
    	return 0;
    }
    
    static struct mapped_device *dm_find_md(dev_t dev)
    {
    	struct mapped_device *md;
    	unsigned minor = MINOR(dev);
    
    	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
    		return NULL;
    
    	spin_lock(&_minor_lock);
    
    	md = idr_find(&_minor_idr, minor);
    	if (md && (md == MINOR_ALLOCED ||
    		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
    		   dm_deleting_md(md) ||
    		   test_bit(DMF_FREEING, &md->flags))) {
    		md = NULL;
    		goto out;
    	}
    
    out:
    	spin_unlock(&_minor_lock);
    
    	return md;
    }
    
    struct mapped_device *dm_get_md(dev_t dev)
    {
    	struct mapped_device *md = dm_find_md(dev);
    
    	if (md)
    		dm_get(md);
    
    	return md;
    }
    
    void *dm_get_mdptr(struct mapped_device *md)
    {
    	return md->interface_ptr;
    }
    
    void dm_set_mdptr(struct mapped_device *md, void *ptr)
    {
    	md->interface_ptr = ptr;
    }
    
    void dm_get(struct mapped_device *md)
    {
    	atomic_inc(&md->holders);
    	BUG_ON(test_bit(DMF_FREEING, &md->flags));
    }
    
    const char *dm_device_name(struct mapped_device *md)
    {
    	return md->name;
    }
    EXPORT_SYMBOL_GPL(dm_device_name);
    
    static void __dm_destroy(struct mapped_device *md, bool wait)
    {
    	struct dm_table *map;
    
    	might_sleep();
    
    	spin_lock(&_minor_lock);
    	map = dm_get_live_table(md);
    	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
    	set_bit(DMF_FREEING, &md->flags);
    	spin_unlock(&_minor_lock);
    
    	if (!dm_suspended_md(md)) {
    		dm_table_presuspend_targets(map);
    		dm_table_postsuspend_targets(map);
    	}
    
    	/*
    	 * Rare, but there may be I/O requests still going to complete,
    	 * for example.  Wait for all references to disappear.
    	 * No one should increment the reference count of the mapped_device,
    	 * after the mapped_device state becomes DMF_FREEING.
    	 */
    	if (wait)
    		while (atomic_read(&md->holders))
    			msleep(1);
    	else if (atomic_read(&md->holders))
    		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
    		       dm_device_name(md), atomic_read(&md->holders));
    
    	dm_sysfs_exit(md);
    	dm_table_put(map);
    	dm_table_destroy(__unbind(md));
    	free_dev(md);
    }
    
    void dm_destroy(struct mapped_device *md)
    {
    	__dm_destroy(md, true);
    }
    
    void dm_destroy_immediate(struct mapped_device *md)
    {
    	__dm_destroy(md, false);
    }
    
    void dm_put(struct mapped_device *md)
    {
    	atomic_dec(&md->holders);
    }
    EXPORT_SYMBOL_GPL(dm_put);
    
    static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
    {
    	int r = 0;
    	DECLARE_WAITQUEUE(wait, current);
    
    	add_wait_queue(&md->wait, &wait);
    
    	while (1) {
    		set_current_state(interruptible);
    
    		smp_mb();
    		if (!md_in_flight(md))
    			break;
    
    		if (interruptible == TASK_INTERRUPTIBLE &&
    		    signal_pending(current)) {
    			r = -EINTR;
    			break;
    		}
    
    		io_schedule();
    	}
    	set_current_state(TASK_RUNNING);
    
    	remove_wait_queue(&md->wait, &wait);
    
    	return r;
    }
    
    /*
     * Process the deferred bios
     */
    static void dm_wq_work(struct work_struct *work)
    {
    	struct mapped_device *md = container_of(work, struct mapped_device,
    						work);
    	struct bio *c;
    
    	down_read(&md->io_lock);
    
    	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
    		spin_lock_irq(&md->deferred_lock);
    		c = bio_list_pop(&md->deferred);
    		spin_unlock_irq(&md->deferred_lock);
    
    		if (!c)
    			break;
    
    		up_read(&md->io_lock);
    
    		if (dm_request_based(md))
    			generic_make_request(c);
    		else
    			__split_and_process_bio(md, c);
    
    		down_read(&md->io_lock);
    	}
    
    	up_read(&md->io_lock);
    }
    
    static void dm_queue_flush(struct mapped_device *md)
    {
    	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
    	smp_mb__after_clear_bit();
    	queue_work(md->wq, &md->work);
    }
    
    /*
     * Swap in a new table, returning the old one for the caller to destroy.
     */
    struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
    {
    	struct dm_table *map = ERR_PTR(-EINVAL);
    	struct queue_limits limits;
    	int r;
    
    	mutex_lock(&md->suspend_lock);
    
    	/* device must be suspended */
    	if (!dm_suspended_md(md))
    		goto out;
    
    	r = dm_calculate_queue_limits(table, &limits);
    	if (r) {
    		map = ERR_PTR(r);
    		goto out;
    	}
    
    	map = __bind(md, table, &limits);
    
    out:
    	mutex_unlock(&md->suspend_lock);
    	return map;
    }
    
    /*
     * Functions to lock and unlock any filesystem running on the
     * device.
     */
    static int lock_fs(struct mapped_device *md)
    {
    	int r;
    
    	WARN_ON(md->frozen_sb);
    
    	md->frozen_sb = freeze_bdev(md->bdev);
    	if (IS_ERR(md->frozen_sb)) {
    		r = PTR_ERR(md->frozen_sb);
    		md->frozen_sb = NULL;
    		return r;
    	}
    
    	set_bit(DMF_FROZEN, &md->flags);
    
    	return 0;
    }
    
    static void unlock_fs(struct mapped_device *md)
    {
    	if (!test_bit(DMF_FROZEN, &md->flags))
    		return;
    
    	thaw_bdev(md->bdev, md->frozen_sb);
    	md->frozen_sb = NULL;
    	clear_bit(DMF_FROZEN, &md->flags);
    }
    
    /*
     * We need to be able to change a mapping table under a mounted
     * filesystem.  For example we might want to move some data in
     * the background.  Before the table can be swapped with
     * dm_bind_table, dm_suspend must be called to flush any in
     * flight bios and ensure that any further io gets deferred.
     */
    /*
     * Suspend mechanism in request-based dm.
     *
     * 1. Flush all I/Os by lock_fs() if needed.
     * 2. Stop dispatching any I/O by stopping the request_queue.
     * 3. Wait for all in-flight I/Os to be completed or requeued.
     *
     * To abort suspend, start the request_queue.
     */
    int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
    {
    	struct dm_table *map = NULL;
    	int r = 0;
    	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
    	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
    
    	mutex_lock(&md->suspend_lock);
    
    	if (dm_suspended_md(md)) {
    		r = -EINVAL;
    		goto out_unlock;
    	}
    
    	map = dm_get_live_table(md);
    
    	/*
    	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
    	 * This flag is cleared before dm_suspend returns.
    	 */
    	if (noflush)
    		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
    
    	/* This does not get reverted if there's an error later. */
    	dm_table_presuspend_targets(map);
    
    	/*
    	 * Flush I/O to the device.
    	 * Any I/O submitted after lock_fs() may not be flushed.
    	 * noflush takes precedence over do_lockfs.
    	 * (lock_fs() flushes I/Os and waits for them to complete.)
    	 */
    	if (!noflush && do_lockfs) {
    		r = lock_fs(md);
    		if (r)
    			goto out;
    	}
    
    	/*
    	 * Here we must make sure that no processes are submitting requests
    	 * to target drivers i.e. no one may be executing
    	 * __split_and_process_bio. This is called from dm_request and
    	 * dm_wq_work.
    	 *
    	 * To get all processes out of __split_and_process_bio in dm_request,
    	 * we take the write lock. To prevent any process from reentering
    	 * __split_and_process_bio from dm_request and quiesce the thread
    	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
    	 * flush_workqueue(md->wq).
    	 */
    	down_write(&md->io_lock);
    	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
    	up_write(&md->io_lock);
    
    	/*
    	 * Stop md->queue before flushing md->wq in case request-based
    	 * dm defers requests to md->wq from md->queue.
    	 */
    	if (dm_request_based(md))
    		stop_queue(md->queue);
    
    	flush_workqueue(md->wq);
    
    	/*
    	 * At this point no more requests are entering target request routines.
    	 * We call dm_wait_for_completion to wait for all existing requests
    	 * to finish.
    	 */
    	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
    
    	down_write(&md->io_lock);
    	if (noflush)
    		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
    	up_write(&md->io_lock);
    
    	/* were we interrupted ? */
    	if (r < 0) {
    		dm_queue_flush(md);
    
    		if (dm_request_based(md))
    			start_queue(md->queue);
    
    		unlock_fs(md);
    		goto out; /* pushback list is already flushed, so skip flush */
    	}
    
    	/*
    	 * If dm_wait_for_completion returned 0, the device is completely
    	 * quiescent now. There is no request-processing activity. All new
    	 * requests are being added to md->deferred list.
    	 */
    
    	set_bit(DMF_SUSPENDED, &md->flags);
    
    	dm_table_postsuspend_targets(map);
    
    out:
    	dm_table_put(map);
    
    out_unlock:
    	mutex_unlock(&md->suspend_lock);
    	return r;
    }
    
    int dm_resume(struct mapped_device *md)
    {
    	int r = -EINVAL;
    	struct dm_table *map = NULL;
    
    	mutex_lock(&md->suspend_lock);
    	if (!dm_suspended_md(md))
    		goto out;
    
    	map = dm_get_live_table(md);
    	if (!map || !dm_table_get_size(map))
    		goto out;
    
    	r = dm_table_resume_targets(map);
    	if (r)
    		goto out;
    
    	dm_queue_flush(md);
    
    	/*
    	 * Flushing deferred I/Os must be done after targets are resumed
    	 * so that mapping of targets can work correctly.
    	 * Request-based dm is queueing the deferred I/Os in its request_queue.
    	 */
    	if (dm_request_based(md))
    		start_queue(md->queue);
    
    	unlock_fs(md);
    
    	clear_bit(DMF_SUSPENDED, &md->flags);
    
    	r = 0;
    out:
    	dm_table_put(map);
    	mutex_unlock(&md->suspend_lock);
    
    	return r;
    }
    
    /*-----------------------------------------------------------------
     * Event notification.
     *---------------------------------------------------------------*/
    int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
    		       unsigned cookie)
    {
    	char udev_cookie[DM_COOKIE_LENGTH];
    	char *envp[] = { udev_cookie, NULL };
    
    	if (!cookie)
    		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
    	else {
    		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
    			 DM_COOKIE_ENV_VAR_NAME, cookie);
    		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
    					  action, envp);
    	}
    }
    
    uint32_t dm_next_uevent_seq(struct mapped_device *md)
    {
    	return atomic_add_return(1, &md->uevent_seq);
    }
    
    uint32_t dm_get_event_nr(struct mapped_device *md)
    {
    	return atomic_read(&md->event_nr);
    }
    
    int dm_wait_event(struct mapped_device *md, int event_nr)
    {
    	return wait_event_interruptible(md->eventq,
    			(event_nr != atomic_read(&md->event_nr)));
    }
    
    void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
    {
    	unsigned long flags;
    
    	spin_lock_irqsave(&md->uevent_lock, flags);
    	list_add(elist, &md->uevent_list);
    	spin_unlock_irqrestore(&md->uevent_lock, flags);
    }
    
    /*
     * The gendisk is only valid as long as you have a reference
     * count on 'md'.
     */
    struct gendisk *dm_disk(struct mapped_device *md)
    {
    	return md->disk;
    }
    
    struct kobject *dm_kobject(struct mapped_device *md)
    {
    	return &md->kobj;
    }
    
    /*
     * struct mapped_device should not be exported outside of dm.c
     * so use this check to verify that kobj is part of md structure
     */
    struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
    {
    	struct mapped_device *md;
    
    	md = container_of(kobj, struct mapped_device, kobj);
    	if (&md->kobj != kobj)
    		return NULL;
    
    	if (test_bit(DMF_FREEING, &md->flags) ||
    	    dm_deleting_md(md))
    		return NULL;
    
    	dm_get(md);
    	return md;
    }
    
    int dm_suspended_md(struct mapped_device *md)
    {
    	return test_bit(DMF_SUSPENDED, &md->flags);
    }
    
    int dm_suspended(struct dm_target *ti)
    {
    	return dm_suspended_md(dm_table_get_md(ti->table));
    }
    EXPORT_SYMBOL_GPL(dm_suspended);
    
    int dm_noflush_suspending(struct dm_target *ti)
    {
    	return __noflush_suspending(dm_table_get_md(ti->table));
    }
    EXPORT_SYMBOL_GPL(dm_noflush_suspending);
    
    struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
    {
    	struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
    	unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
    
    	if (!pools)
    		return NULL;
    
    	pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
    			 mempool_create_slab_pool(MIN_IOS, _io_cache) :
    			 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
    	if (!pools->io_pool)
    		goto free_pools_and_out;
    
    	pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
    			  mempool_create_slab_pool(MIN_IOS, _tio_cache) :
    			  mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
    	if (!pools->tio_pool)
    		goto free_io_pool_and_out;
    
    	pools->bs = bioset_create(pool_size, 0);
    	if (!pools->bs)
    		goto free_tio_pool_and_out;
    
    	if (integrity && bioset_integrity_create(pools->bs, pool_size))
    		goto free_bioset_and_out;
    
    	return pools;
    
    free_bioset_and_out:
    	bioset_free(pools->bs);
    
    free_tio_pool_and_out:
    	mempool_destroy(pools->tio_pool);
    
    free_io_pool_and_out:
    	mempool_destroy(pools->io_pool);
    
    free_pools_and_out:
    	kfree(pools);
    
    	return NULL;
    }
    
    void dm_free_md_mempools(struct dm_md_mempools *pools)
    {
    	if (!pools)
    		return;
    
    	if (pools->io_pool)
    		mempool_destroy(pools->io_pool);
    
    	if (pools->tio_pool)
    		mempool_destroy(pools->tio_pool);
    
    	if (pools->bs)
    		bioset_free(pools->bs);
    
    	kfree(pools);
    }
    
    static const struct block_device_operations dm_blk_dops = {
    	.open = dm_blk_open,
    	.release = dm_blk_close,
    	.ioctl = dm_blk_ioctl,
    	.getgeo = dm_blk_getgeo,
    	.owner = THIS_MODULE
    };
    
    EXPORT_SYMBOL(dm_get_mapinfo);
    
    /*
     * module hooks
     */
    module_init(dm_init);
    module_exit(dm_exit);
    
    module_param(major, uint, 0);
    MODULE_PARM_DESC(major, "The major number of the device mapper");
    MODULE_DESCRIPTION(DM_NAME " driver");
    MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
    MODULE_LICENSE("GPL");