Skip to content
Snippets Groups Projects
Select Git revision
  • 2284ffea8f0c7849a80e76ec698d38506b51a4e8
  • easycap-v2-noncont-stats-25-jan2
  • easycap-v2-noncont-stats-25-jan
  • easypcap-test-regressions
  • easycap-v2-coherent-stats-24-jan
  • mt8195-tracking-master-2
  • test-mt8173-only-smi-cleanup
  • mt8173-mdp
  • test-mt8173-mdp-both-sets
  • test-mt8173-torvalds-clean-5.16
  • easycap-coherent-10-jan
  • easycap-noncont-10-jan
  • easycap-no-noncont
  • easycap-4
  • easycap-3
  • easycap-2
  • easycap
  • nov-29-2
  • nov-22
  • nov-15
  • fix-iommu-warning-sre
21 results

exceptions-64s.S

Blame
  • Forked from André Almeida / linux
    Source project has a limited visibility.
    spi.c 94.48 KiB
    /*
     * SPI init/core code
     *
     * Copyright (C) 2005 David Brownell
     * Copyright (C) 2008 Secret Lab Technologies Ltd.
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation; either version 2 of the License, or
     * (at your option) any later version.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     */
    
    #include <linux/kernel.h>
    #include <linux/device.h>
    #include <linux/init.h>
    #include <linux/cache.h>
    #include <linux/dma-mapping.h>
    #include <linux/dmaengine.h>
    #include <linux/mutex.h>
    #include <linux/of_device.h>
    #include <linux/of_irq.h>
    #include <linux/clk/clk-conf.h>
    #include <linux/slab.h>
    #include <linux/mod_devicetable.h>
    #include <linux/spi/spi.h>
    #include <linux/of_gpio.h>
    #include <linux/pm_runtime.h>
    #include <linux/pm_domain.h>
    #include <linux/property.h>
    #include <linux/export.h>
    #include <linux/sched/rt.h>
    #include <uapi/linux/sched/types.h>
    #include <linux/delay.h>
    #include <linux/kthread.h>
    #include <linux/ioport.h>
    #include <linux/acpi.h>
    #include <linux/highmem.h>
    #include <linux/idr.h>
    #include <linux/platform_data/x86/apple.h>
    
    #define CREATE_TRACE_POINTS
    #include <trace/events/spi.h>
    
    static DEFINE_IDR(spi_master_idr);
    
    static void spidev_release(struct device *dev)
    {
    	struct spi_device	*spi = to_spi_device(dev);
    
    	/* spi controllers may cleanup for released devices */
    	if (spi->controller->cleanup)
    		spi->controller->cleanup(spi);
    
    	spi_controller_put(spi->controller);
    	kfree(spi);
    }
    
    static ssize_t
    modalias_show(struct device *dev, struct device_attribute *a, char *buf)
    {
    	const struct spi_device	*spi = to_spi_device(dev);
    	int len;
    
    	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
    	if (len != -ENODEV)
    		return len;
    
    	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
    }
    static DEVICE_ATTR_RO(modalias);
    
    #define SPI_STATISTICS_ATTRS(field, file)				\
    static ssize_t spi_controller_##field##_show(struct device *dev,	\
    					     struct device_attribute *attr, \
    					     char *buf)			\
    {									\
    	struct spi_controller *ctlr = container_of(dev,			\
    					 struct spi_controller, dev);	\
    	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
    }									\
    static struct device_attribute dev_attr_spi_controller_##field = {	\
    	.attr = { .name = file, .mode = 0444 },				\
    	.show = spi_controller_##field##_show,				\
    };									\
    static ssize_t spi_device_##field##_show(struct device *dev,		\
    					 struct device_attribute *attr,	\
    					char *buf)			\
    {									\
    	struct spi_device *spi = to_spi_device(dev);			\
    	return spi_statistics_##field##_show(&spi->statistics, buf);	\
    }									\
    static struct device_attribute dev_attr_spi_device_##field = {		\
    	.attr = { .name = file, .mode = 0444 },				\
    	.show = spi_device_##field##_show,				\
    }
    
    #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
    static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
    					    char *buf)			\
    {									\
    	unsigned long flags;						\
    	ssize_t len;							\
    	spin_lock_irqsave(&stat->lock, flags);				\
    	len = sprintf(buf, format_string, stat->field);			\
    	spin_unlock_irqrestore(&stat->lock, flags);			\
    	return len;							\
    }									\
    SPI_STATISTICS_ATTRS(name, file)
    
    #define SPI_STATISTICS_SHOW(field, format_string)			\
    	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
    				 field, format_string)
    
    SPI_STATISTICS_SHOW(messages, "%lu");
    SPI_STATISTICS_SHOW(transfers, "%lu");
    SPI_STATISTICS_SHOW(errors, "%lu");
    SPI_STATISTICS_SHOW(timedout, "%lu");
    
    SPI_STATISTICS_SHOW(spi_sync, "%lu");
    SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
    SPI_STATISTICS_SHOW(spi_async, "%lu");
    
    SPI_STATISTICS_SHOW(bytes, "%llu");
    SPI_STATISTICS_SHOW(bytes_rx, "%llu");
    SPI_STATISTICS_SHOW(bytes_tx, "%llu");
    
    #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
    	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
    				 "transfer_bytes_histo_" number,	\
    				 transfer_bytes_histo[index],  "%lu")
    SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
    SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
    SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
    SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
    SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
    SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
    SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
    SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
    SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
    SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
    SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
    SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
    SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
    SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
    SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
    SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
    SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
    
    SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
    
    static struct attribute *spi_dev_attrs[] = {
    	&dev_attr_modalias.attr,
    	NULL,
    };
    
    static const struct attribute_group spi_dev_group = {
    	.attrs  = spi_dev_attrs,
    };
    
    static struct attribute *spi_device_statistics_attrs[] = {
    	&dev_attr_spi_device_messages.attr,
    	&dev_attr_spi_device_transfers.attr,
    	&dev_attr_spi_device_errors.attr,
    	&dev_attr_spi_device_timedout.attr,
    	&dev_attr_spi_device_spi_sync.attr,
    	&dev_attr_spi_device_spi_sync_immediate.attr,
    	&dev_attr_spi_device_spi_async.attr,
    	&dev_attr_spi_device_bytes.attr,
    	&dev_attr_spi_device_bytes_rx.attr,
    	&dev_attr_spi_device_bytes_tx.attr,
    	&dev_attr_spi_device_transfer_bytes_histo0.attr,
    	&dev_attr_spi_device_transfer_bytes_histo1.attr,
    	&dev_attr_spi_device_transfer_bytes_histo2.attr,
    	&dev_attr_spi_device_transfer_bytes_histo3.attr,
    	&dev_attr_spi_device_transfer_bytes_histo4.attr,
    	&dev_attr_spi_device_transfer_bytes_histo5.attr,
    	&dev_attr_spi_device_transfer_bytes_histo6.attr,
    	&dev_attr_spi_device_transfer_bytes_histo7.attr,
    	&dev_attr_spi_device_transfer_bytes_histo8.attr,
    	&dev_attr_spi_device_transfer_bytes_histo9.attr,
    	&dev_attr_spi_device_transfer_bytes_histo10.attr,
    	&dev_attr_spi_device_transfer_bytes_histo11.attr,
    	&dev_attr_spi_device_transfer_bytes_histo12.attr,
    	&dev_attr_spi_device_transfer_bytes_histo13.attr,
    	&dev_attr_spi_device_transfer_bytes_histo14.attr,
    	&dev_attr_spi_device_transfer_bytes_histo15.attr,
    	&dev_attr_spi_device_transfer_bytes_histo16.attr,
    	&dev_attr_spi_device_transfers_split_maxsize.attr,
    	NULL,
    };
    
    static const struct attribute_group spi_device_statistics_group = {
    	.name  = "statistics",
    	.attrs  = spi_device_statistics_attrs,
    };
    
    static const struct attribute_group *spi_dev_groups[] = {
    	&spi_dev_group,
    	&spi_device_statistics_group,
    	NULL,
    };
    
    static struct attribute *spi_controller_statistics_attrs[] = {
    	&dev_attr_spi_controller_messages.attr,
    	&dev_attr_spi_controller_transfers.attr,
    	&dev_attr_spi_controller_errors.attr,
    	&dev_attr_spi_controller_timedout.attr,
    	&dev_attr_spi_controller_spi_sync.attr,
    	&dev_attr_spi_controller_spi_sync_immediate.attr,
    	&dev_attr_spi_controller_spi_async.attr,
    	&dev_attr_spi_controller_bytes.attr,
    	&dev_attr_spi_controller_bytes_rx.attr,
    	&dev_attr_spi_controller_bytes_tx.attr,
    	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
    	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
    	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
    	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
    	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
    	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
    	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
    	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
    	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
    	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
    	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
    	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
    	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
    	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
    	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
    	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
    	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
    	&dev_attr_spi_controller_transfers_split_maxsize.attr,
    	NULL,
    };
    
    static const struct attribute_group spi_controller_statistics_group = {
    	.name  = "statistics",
    	.attrs  = spi_controller_statistics_attrs,
    };
    
    static const struct attribute_group *spi_master_groups[] = {
    	&spi_controller_statistics_group,
    	NULL,
    };
    
    void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
    				       struct spi_transfer *xfer,
    				       struct spi_controller *ctlr)
    {
    	unsigned long flags;
    	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
    
    	if (l2len < 0)
    		l2len = 0;
    
    	spin_lock_irqsave(&stats->lock, flags);
    
    	stats->transfers++;
    	stats->transfer_bytes_histo[l2len]++;
    
    	stats->bytes += xfer->len;
    	if ((xfer->tx_buf) &&
    	    (xfer->tx_buf != ctlr->dummy_tx))
    		stats->bytes_tx += xfer->len;
    	if ((xfer->rx_buf) &&
    	    (xfer->rx_buf != ctlr->dummy_rx))
    		stats->bytes_rx += xfer->len;
    
    	spin_unlock_irqrestore(&stats->lock, flags);
    }
    EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
    
    /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
     * and the sysfs version makes coldplug work too.
     */
    
    static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
    						const struct spi_device *sdev)
    {
    	while (id->name[0]) {
    		if (!strcmp(sdev->modalias, id->name))
    			return id;
    		id++;
    	}
    	return NULL;
    }
    
    const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
    {
    	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
    
    	return spi_match_id(sdrv->id_table, sdev);
    }
    EXPORT_SYMBOL_GPL(spi_get_device_id);
    
    static int spi_match_device(struct device *dev, struct device_driver *drv)
    {
    	const struct spi_device	*spi = to_spi_device(dev);
    	const struct spi_driver	*sdrv = to_spi_driver(drv);
    
    	/* Attempt an OF style match */
    	if (of_driver_match_device(dev, drv))
    		return 1;
    
    	/* Then try ACPI */
    	if (acpi_driver_match_device(dev, drv))
    		return 1;
    
    	if (sdrv->id_table)
    		return !!spi_match_id(sdrv->id_table, spi);
    
    	return strcmp(spi->modalias, drv->name) == 0;
    }
    
    static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
    {
    	const struct spi_device		*spi = to_spi_device(dev);
    	int rc;
    
    	rc = acpi_device_uevent_modalias(dev, env);
    	if (rc != -ENODEV)
    		return rc;
    
    	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
    }
    
    struct bus_type spi_bus_type = {
    	.name		= "spi",
    	.dev_groups	= spi_dev_groups,
    	.match		= spi_match_device,
    	.uevent		= spi_uevent,
    };
    EXPORT_SYMBOL_GPL(spi_bus_type);
    
    
    static int spi_drv_probe(struct device *dev)
    {
    	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
    	struct spi_device		*spi = to_spi_device(dev);
    	int ret;
    
    	ret = of_clk_set_defaults(dev->of_node, false);
    	if (ret)
    		return ret;
    
    	if (dev->of_node) {
    		spi->irq = of_irq_get(dev->of_node, 0);
    		if (spi->irq == -EPROBE_DEFER)
    			return -EPROBE_DEFER;
    		if (spi->irq < 0)
    			spi->irq = 0;
    	}
    
    	ret = dev_pm_domain_attach(dev, true);
    	if (ret != -EPROBE_DEFER) {
    		ret = sdrv->probe(spi);
    		if (ret)
    			dev_pm_domain_detach(dev, true);
    	}
    
    	return ret;
    }
    
    static int spi_drv_remove(struct device *dev)
    {
    	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
    	int ret;
    
    	ret = sdrv->remove(to_spi_device(dev));
    	dev_pm_domain_detach(dev, true);
    
    	return ret;
    }
    
    static void spi_drv_shutdown(struct device *dev)
    {
    	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
    
    	sdrv->shutdown(to_spi_device(dev));
    }
    
    /**
     * __spi_register_driver - register a SPI driver
     * @owner: owner module of the driver to register
     * @sdrv: the driver to register
     * Context: can sleep
     *
     * Return: zero on success, else a negative error code.
     */
    int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
    {
    	sdrv->driver.owner = owner;
    	sdrv->driver.bus = &spi_bus_type;
    	if (sdrv->probe)
    		sdrv->driver.probe = spi_drv_probe;
    	if (sdrv->remove)
    		sdrv->driver.remove = spi_drv_remove;
    	if (sdrv->shutdown)
    		sdrv->driver.shutdown = spi_drv_shutdown;
    	return driver_register(&sdrv->driver);
    }
    EXPORT_SYMBOL_GPL(__spi_register_driver);
    
    /*-------------------------------------------------------------------------*/
    
    /* SPI devices should normally not be created by SPI device drivers; that
     * would make them board-specific.  Similarly with SPI controller drivers.
     * Device registration normally goes into like arch/.../mach.../board-YYY.c
     * with other readonly (flashable) information about mainboard devices.
     */
    
    struct boardinfo {
    	struct list_head	list;
    	struct spi_board_info	board_info;
    };
    
    static LIST_HEAD(board_list);
    static LIST_HEAD(spi_controller_list);
    
    /*
     * Used to protect add/del opertion for board_info list and
     * spi_controller list, and their matching process
     * also used to protect object of type struct idr
     */
    static DEFINE_MUTEX(board_lock);
    
    /**
     * spi_alloc_device - Allocate a new SPI device
     * @ctlr: Controller to which device is connected
     * Context: can sleep
     *
     * Allows a driver to allocate and initialize a spi_device without
     * registering it immediately.  This allows a driver to directly
     * fill the spi_device with device parameters before calling
     * spi_add_device() on it.
     *
     * Caller is responsible to call spi_add_device() on the returned
     * spi_device structure to add it to the SPI controller.  If the caller
     * needs to discard the spi_device without adding it, then it should
     * call spi_dev_put() on it.
     *
     * Return: a pointer to the new device, or NULL.
     */
    struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
    {
    	struct spi_device	*spi;
    
    	if (!spi_controller_get(ctlr))
    		return NULL;
    
    	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
    	if (!spi) {
    		spi_controller_put(ctlr);
    		return NULL;
    	}
    
    	spi->master = spi->controller = ctlr;
    	spi->dev.parent = &ctlr->dev;
    	spi->dev.bus = &spi_bus_type;
    	spi->dev.release = spidev_release;
    	spi->cs_gpio = -ENOENT;
    
    	spin_lock_init(&spi->statistics.lock);
    
    	device_initialize(&spi->dev);
    	return spi;
    }
    EXPORT_SYMBOL_GPL(spi_alloc_device);
    
    static void spi_dev_set_name(struct spi_device *spi)
    {
    	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
    
    	if (adev) {
    		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
    		return;
    	}
    
    	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
    		     spi->chip_select);
    }
    
    static int spi_dev_check(struct device *dev, void *data)
    {
    	struct spi_device *spi = to_spi_device(dev);
    	struct spi_device *new_spi = data;
    
    	if (spi->controller == new_spi->controller &&
    	    spi->chip_select == new_spi->chip_select)
    		return -EBUSY;
    	return 0;
    }
    
    /**
     * spi_add_device - Add spi_device allocated with spi_alloc_device
     * @spi: spi_device to register
     *
     * Companion function to spi_alloc_device.  Devices allocated with
     * spi_alloc_device can be added onto the spi bus with this function.
     *
     * Return: 0 on success; negative errno on failure
     */
    int spi_add_device(struct spi_device *spi)
    {
    	static DEFINE_MUTEX(spi_add_lock);
    	struct spi_controller *ctlr = spi->controller;
    	struct device *dev = ctlr->dev.parent;
    	int status;
    
    	/* Chipselects are numbered 0..max; validate. */
    	if (spi->chip_select >= ctlr->num_chipselect) {
    		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
    			ctlr->num_chipselect);
    		return -EINVAL;
    	}
    
    	/* Set the bus ID string */
    	spi_dev_set_name(spi);
    
    	/* We need to make sure there's no other device with this
    	 * chipselect **BEFORE** we call setup(), else we'll trash
    	 * its configuration.  Lock against concurrent add() calls.
    	 */
    	mutex_lock(&spi_add_lock);
    
    	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
    	if (status) {
    		dev_err(dev, "chipselect %d already in use\n",
    				spi->chip_select);
    		goto done;
    	}
    
    	if (ctlr->cs_gpios)
    		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
    
    	/* Drivers may modify this initial i/o setup, but will
    	 * normally rely on the device being setup.  Devices
    	 * using SPI_CS_HIGH can't coexist well otherwise...
    	 */
    	status = spi_setup(spi);
    	if (status < 0) {
    		dev_err(dev, "can't setup %s, status %d\n",
    				dev_name(&spi->dev), status);
    		goto done;
    	}
    
    	/* Device may be bound to an active driver when this returns */
    	status = device_add(&spi->dev);
    	if (status < 0)
    		dev_err(dev, "can't add %s, status %d\n",
    				dev_name(&spi->dev), status);
    	else
    		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
    
    done:
    	mutex_unlock(&spi_add_lock);
    	return status;
    }
    EXPORT_SYMBOL_GPL(spi_add_device);
    
    /**
     * spi_new_device - instantiate one new SPI device
     * @ctlr: Controller to which device is connected
     * @chip: Describes the SPI device
     * Context: can sleep
     *
     * On typical mainboards, this is purely internal; and it's not needed
     * after board init creates the hard-wired devices.  Some development
     * platforms may not be able to use spi_register_board_info though, and
     * this is exported so that for example a USB or parport based adapter
     * driver could add devices (which it would learn about out-of-band).
     *
     * Return: the new device, or NULL.
     */
    struct spi_device *spi_new_device(struct spi_controller *ctlr,
    				  struct spi_board_info *chip)
    {
    	struct spi_device	*proxy;
    	int			status;
    
    	/* NOTE:  caller did any chip->bus_num checks necessary.
    	 *
    	 * Also, unless we change the return value convention to use
    	 * error-or-pointer (not NULL-or-pointer), troubleshootability
    	 * suggests syslogged diagnostics are best here (ugh).
    	 */
    
    	proxy = spi_alloc_device(ctlr);
    	if (!proxy)
    		return NULL;
    
    	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
    
    	proxy->chip_select = chip->chip_select;
    	proxy->max_speed_hz = chip->max_speed_hz;
    	proxy->mode = chip->mode;
    	proxy->irq = chip->irq;
    	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
    	proxy->dev.platform_data = (void *) chip->platform_data;
    	proxy->controller_data = chip->controller_data;
    	proxy->controller_state = NULL;
    
    	if (chip->properties) {
    		status = device_add_properties(&proxy->dev, chip->properties);
    		if (status) {
    			dev_err(&ctlr->dev,
    				"failed to add properties to '%s': %d\n",
    				chip->modalias, status);
    			goto err_dev_put;
    		}
    	}
    
    	status = spi_add_device(proxy);
    	if (status < 0)
    		goto err_remove_props;
    
    	return proxy;
    
    err_remove_props:
    	if (chip->properties)
    		device_remove_properties(&proxy->dev);
    err_dev_put:
    	spi_dev_put(proxy);
    	return NULL;
    }
    EXPORT_SYMBOL_GPL(spi_new_device);
    
    /**
     * spi_unregister_device - unregister a single SPI device
     * @spi: spi_device to unregister
     *
     * Start making the passed SPI device vanish. Normally this would be handled
     * by spi_unregister_controller().
     */
    void spi_unregister_device(struct spi_device *spi)
    {
    	if (!spi)
    		return;
    
    	if (spi->dev.of_node) {
    		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
    		of_node_put(spi->dev.of_node);
    	}
    	if (ACPI_COMPANION(&spi->dev))
    		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
    	device_unregister(&spi->dev);
    }
    EXPORT_SYMBOL_GPL(spi_unregister_device);
    
    static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
    					      struct spi_board_info *bi)
    {
    	struct spi_device *dev;
    
    	if (ctlr->bus_num != bi->bus_num)
    		return;
    
    	dev = spi_new_device(ctlr, bi);
    	if (!dev)
    		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
    			bi->modalias);
    }
    
    /**
     * spi_register_board_info - register SPI devices for a given board
     * @info: array of chip descriptors
     * @n: how many descriptors are provided
     * Context: can sleep
     *
     * Board-specific early init code calls this (probably during arch_initcall)
     * with segments of the SPI device table.  Any device nodes are created later,
     * after the relevant parent SPI controller (bus_num) is defined.  We keep
     * this table of devices forever, so that reloading a controller driver will
     * not make Linux forget about these hard-wired devices.
     *
     * Other code can also call this, e.g. a particular add-on board might provide
     * SPI devices through its expansion connector, so code initializing that board
     * would naturally declare its SPI devices.
     *
     * The board info passed can safely be __initdata ... but be careful of
     * any embedded pointers (platform_data, etc), they're copied as-is.
     * Device properties are deep-copied though.
     *
     * Return: zero on success, else a negative error code.
     */
    int spi_register_board_info(struct spi_board_info const *info, unsigned n)
    {
    	struct boardinfo *bi;
    	int i;
    
    	if (!n)
    		return 0;
    
    	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
    	if (!bi)
    		return -ENOMEM;
    
    	for (i = 0; i < n; i++, bi++, info++) {
    		struct spi_controller *ctlr;
    
    		memcpy(&bi->board_info, info, sizeof(*info));
    		if (info->properties) {
    			bi->board_info.properties =
    					property_entries_dup(info->properties);
    			if (IS_ERR(bi->board_info.properties))
    				return PTR_ERR(bi->board_info.properties);
    		}
    
    		mutex_lock(&board_lock);
    		list_add_tail(&bi->list, &board_list);
    		list_for_each_entry(ctlr, &spi_controller_list, list)
    			spi_match_controller_to_boardinfo(ctlr,
    							  &bi->board_info);
    		mutex_unlock(&board_lock);
    	}
    
    	return 0;
    }
    
    /*-------------------------------------------------------------------------*/
    
    static void spi_set_cs(struct spi_device *spi, bool enable)
    {
    	if (spi->mode & SPI_CS_HIGH)
    		enable = !enable;
    
    	if (gpio_is_valid(spi->cs_gpio)) {
    		gpio_set_value(spi->cs_gpio, !enable);
    		/* Some SPI masters need both GPIO CS & slave_select */
    		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
    		    spi->controller->set_cs)
    			spi->controller->set_cs(spi, !enable);
    	} else if (spi->controller->set_cs) {
    		spi->controller->set_cs(spi, !enable);
    	}
    }
    
    #ifdef CONFIG_HAS_DMA
    static int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
    		       struct sg_table *sgt, void *buf, size_t len,
    		       enum dma_data_direction dir)
    {
    	const bool vmalloced_buf = is_vmalloc_addr(buf);
    	unsigned int max_seg_size = dma_get_max_seg_size(dev);
    #ifdef CONFIG_HIGHMEM
    	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
    				(unsigned long)buf < (PKMAP_BASE +
    					(LAST_PKMAP * PAGE_SIZE)));
    #else
    	const bool kmap_buf = false;
    #endif
    	int desc_len;
    	int sgs;
    	struct page *vm_page;
    	struct scatterlist *sg;
    	void *sg_buf;
    	size_t min;
    	int i, ret;
    
    	if (vmalloced_buf || kmap_buf) {
    		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
    		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
    	} else if (virt_addr_valid(buf)) {
    		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
    		sgs = DIV_ROUND_UP(len, desc_len);
    	} else {
    		return -EINVAL;
    	}
    
    	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
    	if (ret != 0)
    		return ret;
    
    	sg = &sgt->sgl[0];
    	for (i = 0; i < sgs; i++) {
    
    		if (vmalloced_buf || kmap_buf) {
    			min = min_t(size_t,
    				    len, desc_len - offset_in_page(buf));
    			if (vmalloced_buf)
    				vm_page = vmalloc_to_page(buf);
    			else
    				vm_page = kmap_to_page(buf);
    			if (!vm_page) {
    				sg_free_table(sgt);
    				return -ENOMEM;
    			}
    			sg_set_page(sg, vm_page,
    				    min, offset_in_page(buf));
    		} else {
    			min = min_t(size_t, len, desc_len);
    			sg_buf = buf;
    			sg_set_buf(sg, sg_buf, min);
    		}
    
    		buf += min;
    		len -= min;
    		sg = sg_next(sg);
    	}
    
    	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
    	if (!ret)
    		ret = -ENOMEM;
    	if (ret < 0) {
    		sg_free_table(sgt);
    		return ret;
    	}
    
    	sgt->nents = ret;
    
    	return 0;
    }
    
    static void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
    			  struct sg_table *sgt, enum dma_data_direction dir)
    {
    	if (sgt->orig_nents) {
    		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
    		sg_free_table(sgt);
    	}
    }
    
    static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
    {
    	struct device *tx_dev, *rx_dev;
    	struct spi_transfer *xfer;
    	int ret;
    
    	if (!ctlr->can_dma)
    		return 0;
    
    	if (ctlr->dma_tx)
    		tx_dev = ctlr->dma_tx->device->dev;
    	else
    		tx_dev = ctlr->dev.parent;
    
    	if (ctlr->dma_rx)
    		rx_dev = ctlr->dma_rx->device->dev;
    	else
    		rx_dev = ctlr->dev.parent;
    
    	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
    		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
    			continue;
    
    		if (xfer->tx_buf != NULL) {
    			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
    					  (void *)xfer->tx_buf, xfer->len,
    					  DMA_TO_DEVICE);
    			if (ret != 0)
    				return ret;
    		}
    
    		if (xfer->rx_buf != NULL) {
    			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
    					  xfer->rx_buf, xfer->len,
    					  DMA_FROM_DEVICE);
    			if (ret != 0) {
    				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
    					      DMA_TO_DEVICE);
    				return ret;
    			}
    		}
    	}
    
    	ctlr->cur_msg_mapped = true;
    
    	return 0;
    }
    
    static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
    {
    	struct spi_transfer *xfer;
    	struct device *tx_dev, *rx_dev;
    
    	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
    		return 0;
    
    	if (ctlr->dma_tx)
    		tx_dev = ctlr->dma_tx->device->dev;
    	else
    		tx_dev = ctlr->dev.parent;
    
    	if (ctlr->dma_rx)
    		rx_dev = ctlr->dma_rx->device->dev;
    	else
    		rx_dev = ctlr->dev.parent;
    
    	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
    		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
    			continue;
    
    		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
    		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
    	}
    
    	return 0;
    }
    #else /* !CONFIG_HAS_DMA */
    static inline int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
    			      struct sg_table *sgt, void *buf, size_t len,
    			      enum dma_data_direction dir)
    {
    	return -EINVAL;
    }
    
    static inline void spi_unmap_buf(struct spi_controller *ctlr,
    				 struct device *dev, struct sg_table *sgt,
    				 enum dma_data_direction dir)
    {
    }
    
    static inline int __spi_map_msg(struct spi_controller *ctlr,
    				struct spi_message *msg)
    {
    	return 0;
    }
    
    static inline int __spi_unmap_msg(struct spi_controller *ctlr,
    				  struct spi_message *msg)
    {
    	return 0;
    }
    #endif /* !CONFIG_HAS_DMA */
    
    static inline int spi_unmap_msg(struct spi_controller *ctlr,
    				struct spi_message *msg)
    {
    	struct spi_transfer *xfer;
    
    	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
    		/*
    		 * Restore the original value of tx_buf or rx_buf if they are
    		 * NULL.
    		 */
    		if (xfer->tx_buf == ctlr->dummy_tx)
    			xfer->tx_buf = NULL;
    		if (xfer->rx_buf == ctlr->dummy_rx)
    			xfer->rx_buf = NULL;
    	}
    
    	return __spi_unmap_msg(ctlr, msg);
    }
    
    static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
    {
    	struct spi_transfer *xfer;
    	void *tmp;
    	unsigned int max_tx, max_rx;
    
    	if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
    		max_tx = 0;
    		max_rx = 0;
    
    		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
    			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
    			    !xfer->tx_buf)
    				max_tx = max(xfer->len, max_tx);
    			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
    			    !xfer->rx_buf)
    				max_rx = max(xfer->len, max_rx);
    		}
    
    		if (max_tx) {
    			tmp = krealloc(ctlr->dummy_tx, max_tx,
    				       GFP_KERNEL | GFP_DMA);
    			if (!tmp)
    				return -ENOMEM;
    			ctlr->dummy_tx = tmp;
    			memset(tmp, 0, max_tx);
    		}
    
    		if (max_rx) {
    			tmp = krealloc(ctlr->dummy_rx, max_rx,
    				       GFP_KERNEL | GFP_DMA);
    			if (!tmp)
    				return -ENOMEM;
    			ctlr->dummy_rx = tmp;
    		}
    
    		if (max_tx || max_rx) {
    			list_for_each_entry(xfer, &msg->transfers,
    					    transfer_list) {
    				if (!xfer->tx_buf)
    					xfer->tx_buf = ctlr->dummy_tx;
    				if (!xfer->rx_buf)
    					xfer->rx_buf = ctlr->dummy_rx;
    			}
    		}
    	}
    
    	return __spi_map_msg(ctlr, msg);
    }
    
    /*
     * spi_transfer_one_message - Default implementation of transfer_one_message()
     *
     * This is a standard implementation of transfer_one_message() for
     * drivers which implement a transfer_one() operation.  It provides
     * standard handling of delays and chip select management.
     */
    static int spi_transfer_one_message(struct spi_controller *ctlr,
    				    struct spi_message *msg)
    {
    	struct spi_transfer *xfer;
    	bool keep_cs = false;
    	int ret = 0;
    	unsigned long long ms = 1;
    	struct spi_statistics *statm = &ctlr->statistics;
    	struct spi_statistics *stats = &msg->spi->statistics;
    
    	spi_set_cs(msg->spi, true);
    
    	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
    	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
    
    	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
    		trace_spi_transfer_start(msg, xfer);
    
    		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
    		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
    
    		if (xfer->tx_buf || xfer->rx_buf) {
    			reinit_completion(&ctlr->xfer_completion);
    
    			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
    			if (ret < 0) {
    				SPI_STATISTICS_INCREMENT_FIELD(statm,
    							       errors);
    				SPI_STATISTICS_INCREMENT_FIELD(stats,
    							       errors);
    				dev_err(&msg->spi->dev,
    					"SPI transfer failed: %d\n", ret);
    				goto out;
    			}
    
    			if (ret > 0) {
    				ret = 0;
    				ms = 8LL * 1000LL * xfer->len;
    				do_div(ms, xfer->speed_hz);
    				ms += ms + 200; /* some tolerance */
    
    				if (ms > UINT_MAX)
    					ms = UINT_MAX;
    
    				ms = wait_for_completion_timeout(&ctlr->xfer_completion,
    								 msecs_to_jiffies(ms));
    			}
    
    			if (ms == 0) {
    				SPI_STATISTICS_INCREMENT_FIELD(statm,
    							       timedout);
    				SPI_STATISTICS_INCREMENT_FIELD(stats,
    							       timedout);
    				dev_err(&msg->spi->dev,
    					"SPI transfer timed out\n");
    				msg->status = -ETIMEDOUT;
    			}
    		} else {
    			if (xfer->len)
    				dev_err(&msg->spi->dev,
    					"Bufferless transfer has length %u\n",
    					xfer->len);
    		}
    
    		trace_spi_transfer_stop(msg, xfer);
    
    		if (msg->status != -EINPROGRESS)
    			goto out;
    
    		if (xfer->delay_usecs) {
    			u16 us = xfer->delay_usecs;
    
    			if (us <= 10)
    				udelay(us);
    			else
    				usleep_range(us, us + DIV_ROUND_UP(us, 10));
    		}
    
    		if (xfer->cs_change) {
    			if (list_is_last(&xfer->transfer_list,
    					 &msg->transfers)) {
    				keep_cs = true;
    			} else {
    				spi_set_cs(msg->spi, false);
    				udelay(10);
    				spi_set_cs(msg->spi, true);
    			}
    		}
    
    		msg->actual_length += xfer->len;
    	}
    
    out:
    	if (ret != 0 || !keep_cs)
    		spi_set_cs(msg->spi, false);
    
    	if (msg->status == -EINPROGRESS)
    		msg->status = ret;
    
    	if (msg->status && ctlr->handle_err)
    		ctlr->handle_err(ctlr, msg);
    
    	spi_res_release(ctlr, msg);
    
    	spi_finalize_current_message(ctlr);
    
    	return ret;
    }
    
    /**
     * spi_finalize_current_transfer - report completion of a transfer
     * @ctlr: the controller reporting completion
     *
     * Called by SPI drivers using the core transfer_one_message()
     * implementation to notify it that the current interrupt driven
     * transfer has finished and the next one may be scheduled.
     */
    void spi_finalize_current_transfer(struct spi_controller *ctlr)
    {
    	complete(&ctlr->xfer_completion);
    }
    EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
    
    /**
     * __spi_pump_messages - function which processes spi message queue
     * @ctlr: controller to process queue for
     * @in_kthread: true if we are in the context of the message pump thread
     *
     * This function checks if there is any spi message in the queue that
     * needs processing and if so call out to the driver to initialize hardware
     * and transfer each message.
     *
     * Note that it is called both from the kthread itself and also from
     * inside spi_sync(); the queue extraction handling at the top of the
     * function should deal with this safely.
     */
    static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
    {
    	unsigned long flags;
    	bool was_busy = false;
    	int ret;
    
    	/* Lock queue */
    	spin_lock_irqsave(&ctlr->queue_lock, flags);
    
    	/* Make sure we are not already running a message */
    	if (ctlr->cur_msg) {
    		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
    		return;
    	}
    
    	/* If another context is idling the device then defer */
    	if (ctlr->idling) {
    		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
    		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
    		return;
    	}
    
    	/* Check if the queue is idle */
    	if (list_empty(&ctlr->queue) || !ctlr->running) {
    		if (!ctlr->busy) {
    			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
    			return;
    		}
    
    		/* Only do teardown in the thread */
    		if (!in_kthread) {
    			kthread_queue_work(&ctlr->kworker,
    					   &ctlr->pump_messages);
    			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
    			return;
    		}
    
    		ctlr->busy = false;
    		ctlr->idling = true;
    		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
    
    		kfree(ctlr->dummy_rx);
    		ctlr->dummy_rx = NULL;
    		kfree(ctlr->dummy_tx);
    		ctlr->dummy_tx = NULL;
    		if (ctlr->unprepare_transfer_hardware &&
    		    ctlr->unprepare_transfer_hardware(ctlr))
    			dev_err(&ctlr->dev,
    				"failed to unprepare transfer hardware\n");
    		if (ctlr->auto_runtime_pm) {
    			pm_runtime_mark_last_busy(ctlr->dev.parent);
    			pm_runtime_put_autosuspend(ctlr->dev.parent);
    		}
    		trace_spi_controller_idle(ctlr);
    
    		spin_lock_irqsave(&ctlr->queue_lock, flags);
    		ctlr->idling = false;
    		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
    		return;
    	}
    
    	/* Extract head of queue */
    	ctlr->cur_msg =
    		list_first_entry(&ctlr->queue, struct spi_message, queue);
    
    	list_del_init(&ctlr->cur_msg->queue);
    	if (ctlr->busy)
    		was_busy = true;
    	else
    		ctlr->busy = true;
    	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
    
    	mutex_lock(&ctlr->io_mutex);
    
    	if (!was_busy && ctlr->auto_runtime_pm) {
    		ret = pm_runtime_get_sync(ctlr->dev.parent);
    		if (ret < 0) {
    			dev_err(&ctlr->dev, "Failed to power device: %d\n",
    				ret);
    			mutex_unlock(&ctlr->io_mutex);
    			return;
    		}
    	}
    
    	if (!was_busy)
    		trace_spi_controller_busy(ctlr);
    
    	if (!was_busy && ctlr->prepare_transfer_hardware) {
    		ret = ctlr->prepare_transfer_hardware(ctlr);
    		if (ret) {
    			dev_err(&ctlr->dev,
    				"failed to prepare transfer hardware\n");
    
    			if (ctlr->auto_runtime_pm)
    				pm_runtime_put(ctlr->dev.parent);
    			mutex_unlock(&ctlr->io_mutex);
    			return;
    		}
    	}
    
    	trace_spi_message_start(ctlr->cur_msg);
    
    	if (ctlr->prepare_message) {
    		ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
    		if (ret) {
    			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
    				ret);
    			ctlr->cur_msg->status = ret;
    			spi_finalize_current_message(ctlr);
    			goto out;
    		}
    		ctlr->cur_msg_prepared = true;
    	}
    
    	ret = spi_map_msg(ctlr, ctlr->cur_msg);
    	if (ret) {
    		ctlr->cur_msg->status = ret;
    		spi_finalize_current_message(ctlr);
    		goto out;
    	}
    
    	ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
    	if (ret) {
    		dev_err(&ctlr->dev,
    			"failed to transfer one message from queue\n");
    		goto out;
    	}
    
    out:
    	mutex_unlock(&ctlr->io_mutex);
    
    	/* Prod the scheduler in case transfer_one() was busy waiting */
    	if (!ret)
    		cond_resched();
    }
    
    /**
     * spi_pump_messages - kthread work function which processes spi message queue
     * @work: pointer to kthread work struct contained in the controller struct
     */
    static void spi_pump_messages(struct kthread_work *work)
    {
    	struct spi_controller *ctlr =
    		container_of(work, struct spi_controller, pump_messages);
    
    	__spi_pump_messages(ctlr, true);
    }
    
    static int spi_init_queue(struct spi_controller *ctlr)
    {
    	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
    
    	ctlr->running = false;
    	ctlr->busy = false;
    
    	kthread_init_worker(&ctlr->kworker);
    	ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
    					 "%s", dev_name(&ctlr->dev));
    	if (IS_ERR(ctlr->kworker_task)) {
    		dev_err(&ctlr->dev, "failed to create message pump task\n");
    		return PTR_ERR(ctlr->kworker_task);
    	}
    	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
    
    	/*
    	 * Controller config will indicate if this controller should run the
    	 * message pump with high (realtime) priority to reduce the transfer
    	 * latency on the bus by minimising the delay between a transfer
    	 * request and the scheduling of the message pump thread. Without this
    	 * setting the message pump thread will remain at default priority.
    	 */
    	if (ctlr->rt) {
    		dev_info(&ctlr->dev,
    			"will run message pump with realtime priority\n");
    		sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
    	}
    
    	return 0;
    }
    
    /**
     * spi_get_next_queued_message() - called by driver to check for queued
     * messages
     * @ctlr: the controller to check for queued messages
     *
     * If there are more messages in the queue, the next message is returned from
     * this call.
     *
     * Return: the next message in the queue, else NULL if the queue is empty.
     */
    struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
    {
    	struct spi_message *next;
    	unsigned long flags;
    
    	/* get a pointer to the next message, if any */
    	spin_lock_irqsave(&ctlr->queue_lock, flags);
    	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
    					queue);
    	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
    
    	return next;
    }
    EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
    
    /**
     * spi_finalize_current_message() - the current message is complete
     * @ctlr: the controller to return the message to
     *
     * Called by the driver to notify the core that the message in the front of the
     * queue is complete and can be removed from the queue.
     */
    void spi_finalize_current_message(struct spi_controller *ctlr)
    {
    	struct spi_message *mesg;
    	unsigned long flags;
    	int ret;
    
    	spin_lock_irqsave(&ctlr->queue_lock, flags);
    	mesg = ctlr->cur_msg;
    	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
    
    	spi_unmap_msg(ctlr, mesg);
    
    	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
    		ret = ctlr->unprepare_message(ctlr, mesg);
    		if (ret) {
    			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
    				ret);
    		}
    	}
    
    	spin_lock_irqsave(&ctlr->queue_lock, flags);
    	ctlr->cur_msg = NULL;
    	ctlr->cur_msg_prepared = false;
    	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
    	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
    
    	trace_spi_message_done(mesg);
    
    	mesg->state = NULL;
    	if (mesg->complete)
    		mesg->complete(mesg->context);
    }
    EXPORT_SYMBOL_GPL(spi_finalize_current_message);
    
    static int spi_start_queue(struct spi_controller *ctlr)
    {
    	unsigned long flags;
    
    	spin_lock_irqsave(&ctlr->queue_lock, flags);
    
    	if (ctlr->running || ctlr->busy) {
    		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
    		return -EBUSY;
    	}
    
    	ctlr->running = true;
    	ctlr->cur_msg = NULL;
    	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
    
    	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
    
    	return 0;
    }
    
    static int spi_stop_queue(struct spi_controller *ctlr)
    {
    	unsigned long flags;
    	unsigned limit = 500;
    	int ret = 0;
    
    	spin_lock_irqsave(&ctlr->queue_lock, flags);
    
    	/*
    	 * This is a bit lame, but is optimized for the common execution path.
    	 * A wait_queue on the ctlr->busy could be used, but then the common
    	 * execution path (pump_messages) would be required to call wake_up or
    	 * friends on every SPI message. Do this instead.
    	 */
    	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
    		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
    		usleep_range(10000, 11000);
    		spin_lock_irqsave(&ctlr->queue_lock, flags);
    	}
    
    	if (!list_empty(&ctlr->queue) || ctlr->busy)
    		ret = -EBUSY;
    	else
    		ctlr->running = false;
    
    	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
    
    	if (ret) {
    		dev_warn(&ctlr->dev, "could not stop message queue\n");
    		return ret;
    	}
    	return ret;
    }
    
    static int spi_destroy_queue(struct spi_controller *ctlr)
    {
    	int ret;
    
    	ret = spi_stop_queue(ctlr);
    
    	/*
    	 * kthread_flush_worker will block until all work is done.
    	 * If the reason that stop_queue timed out is that the work will never
    	 * finish, then it does no good to call flush/stop thread, so
    	 * return anyway.
    	 */
    	if (ret) {
    		dev_err(&ctlr->dev, "problem destroying queue\n");
    		return ret;
    	}
    
    	kthread_flush_worker(&ctlr->kworker);
    	kthread_stop(ctlr->kworker_task);
    
    	return 0;
    }
    
    static int __spi_queued_transfer(struct spi_device *spi,
    				 struct spi_message *msg,
    				 bool need_pump)
    {
    	struct spi_controller *ctlr = spi->controller;
    	unsigned long flags;
    
    	spin_lock_irqsave(&ctlr->queue_lock, flags);
    
    	if (!ctlr->running) {
    		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
    		return -ESHUTDOWN;
    	}
    	msg->actual_length = 0;
    	msg->status = -EINPROGRESS;
    
    	list_add_tail(&msg->queue, &ctlr->queue);
    	if (!ctlr->busy && need_pump)
    		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
    
    	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
    	return 0;
    }
    
    /**
     * spi_queued_transfer - transfer function for queued transfers
     * @spi: spi device which is requesting transfer
     * @msg: spi message which is to handled is queued to driver queue
     *
     * Return: zero on success, else a negative error code.
     */
    static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
    {
    	return __spi_queued_transfer(spi, msg, true);
    }
    
    static int spi_controller_initialize_queue(struct spi_controller *ctlr)
    {
    	int ret;
    
    	ctlr->transfer = spi_queued_transfer;
    	if (!ctlr->transfer_one_message)
    		ctlr->transfer_one_message = spi_transfer_one_message;
    
    	/* Initialize and start queue */
    	ret = spi_init_queue(ctlr);
    	if (ret) {
    		dev_err(&ctlr->dev, "problem initializing queue\n");
    		goto err_init_queue;
    	}
    	ctlr->queued = true;
    	ret = spi_start_queue(ctlr);
    	if (ret) {
    		dev_err(&ctlr->dev, "problem starting queue\n");
    		goto err_start_queue;
    	}
    
    	return 0;
    
    err_start_queue:
    	spi_destroy_queue(ctlr);
    err_init_queue:
    	return ret;
    }
    
    /*-------------------------------------------------------------------------*/
    
    #if defined(CONFIG_OF)
    static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
    			   struct device_node *nc)
    {
    	u32 value;
    	int rc;
    
    	/* Mode (clock phase/polarity/etc.) */
    	if (of_property_read_bool(nc, "spi-cpha"))
    		spi->mode |= SPI_CPHA;
    	if (of_property_read_bool(nc, "spi-cpol"))
    		spi->mode |= SPI_CPOL;
    	if (of_property_read_bool(nc, "spi-cs-high"))
    		spi->mode |= SPI_CS_HIGH;
    	if (of_property_read_bool(nc, "spi-3wire"))
    		spi->mode |= SPI_3WIRE;
    	if (of_property_read_bool(nc, "spi-lsb-first"))
    		spi->mode |= SPI_LSB_FIRST;
    
    	/* Device DUAL/QUAD mode */
    	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
    		switch (value) {
    		case 1:
    			break;
    		case 2:
    			spi->mode |= SPI_TX_DUAL;
    			break;
    		case 4:
    			spi->mode |= SPI_TX_QUAD;
    			break;
    		default:
    			dev_warn(&ctlr->dev,
    				"spi-tx-bus-width %d not supported\n",
    				value);
    			break;
    		}
    	}
    
    	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
    		switch (value) {
    		case 1:
    			break;
    		case 2:
    			spi->mode |= SPI_RX_DUAL;
    			break;
    		case 4:
    			spi->mode |= SPI_RX_QUAD;
    			break;
    		default:
    			dev_warn(&ctlr->dev,
    				"spi-rx-bus-width %d not supported\n",
    				value);
    			break;
    		}
    	}
    
    	if (spi_controller_is_slave(ctlr)) {
    		if (strcmp(nc->name, "slave")) {
    			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
    				nc);
    			return -EINVAL;
    		}
    		return 0;
    	}
    
    	/* Device address */
    	rc = of_property_read_u32(nc, "reg", &value);
    	if (rc) {
    		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
    			nc, rc);
    		return rc;
    	}
    	spi->chip_select = value;
    
    	/* Device speed */
    	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
    	if (rc) {
    		dev_err(&ctlr->dev,
    			"%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
    		return rc;
    	}
    	spi->max_speed_hz = value;
    
    	return 0;
    }
    
    static struct spi_device *
    of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
    {
    	struct spi_device *spi;
    	int rc;
    
    	/* Alloc an spi_device */
    	spi = spi_alloc_device(ctlr);
    	if (!spi) {
    		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
    		rc = -ENOMEM;
    		goto err_out;
    	}
    
    	/* Select device driver */
    	rc = of_modalias_node(nc, spi->modalias,
    				sizeof(spi->modalias));
    	if (rc < 0) {
    		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
    		goto err_out;
    	}
    
    	rc = of_spi_parse_dt(ctlr, spi, nc);
    	if (rc)
    		goto err_out;
    
    	/* Store a pointer to the node in the device structure */
    	of_node_get(nc);
    	spi->dev.of_node = nc;
    
    	/* Register the new device */
    	rc = spi_add_device(spi);
    	if (rc) {
    		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
    		goto err_of_node_put;
    	}
    
    	return spi;
    
    err_of_node_put:
    	of_node_put(nc);
    err_out:
    	spi_dev_put(spi);
    	return ERR_PTR(rc);
    }
    
    /**
     * of_register_spi_devices() - Register child devices onto the SPI bus
     * @ctlr:	Pointer to spi_controller device
     *
     * Registers an spi_device for each child node of controller node which
     * represents a valid SPI slave.
     */
    static void of_register_spi_devices(struct spi_controller *ctlr)
    {
    	struct spi_device *spi;
    	struct device_node *nc;
    
    	if (!ctlr->dev.of_node)
    		return;
    
    	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
    		if (of_node_test_and_set_flag(nc, OF_POPULATED))
    			continue;
    		spi = of_register_spi_device(ctlr, nc);
    		if (IS_ERR(spi)) {
    			dev_warn(&ctlr->dev,
    				 "Failed to create SPI device for %pOF\n", nc);
    			of_node_clear_flag(nc, OF_POPULATED);
    		}
    	}
    }
    #else
    static void of_register_spi_devices(struct spi_controller *ctlr) { }
    #endif
    
    #ifdef CONFIG_ACPI
    static void acpi_spi_parse_apple_properties(struct spi_device *spi)
    {
    	struct acpi_device *dev = ACPI_COMPANION(&spi->dev);
    	const union acpi_object *obj;
    
    	if (!x86_apple_machine)
    		return;
    
    	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
    	    && obj->buffer.length >= 4)
    		spi->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
    
    	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
    	    && obj->buffer.length == 8)
    		spi->bits_per_word = *(u64 *)obj->buffer.pointer;
    
    	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
    	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
    		spi->mode |= SPI_LSB_FIRST;
    
    	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
    	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
    		spi->mode |= SPI_CPOL;
    
    	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
    	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
    		spi->mode |= SPI_CPHA;
    }
    
    static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
    {
    	struct spi_device *spi = data;
    	struct spi_controller *ctlr = spi->controller;
    
    	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
    		struct acpi_resource_spi_serialbus *sb;
    
    		sb = &ares->data.spi_serial_bus;
    		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
    			/*
    			 * ACPI DeviceSelection numbering is handled by the
    			 * host controller driver in Windows and can vary
    			 * from driver to driver. In Linux we always expect
    			 * 0 .. max - 1 so we need to ask the driver to
    			 * translate between the two schemes.
    			 */
    			if (ctlr->fw_translate_cs) {
    				int cs = ctlr->fw_translate_cs(ctlr,
    						sb->device_selection);
    				if (cs < 0)
    					return cs;
    				spi->chip_select = cs;
    			} else {
    				spi->chip_select = sb->device_selection;
    			}
    
    			spi->max_speed_hz = sb->connection_speed;
    
    			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
    				spi->mode |= SPI_CPHA;
    			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
    				spi->mode |= SPI_CPOL;
    			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
    				spi->mode |= SPI_CS_HIGH;
    		}
    	} else if (spi->irq < 0) {
    		struct resource r;
    
    		if (acpi_dev_resource_interrupt(ares, 0, &r))
    			spi->irq = r.start;
    	}
    
    	/* Always tell the ACPI core to skip this resource */
    	return 1;
    }
    
    static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
    					    struct acpi_device *adev)
    {
    	struct list_head resource_list;
    	struct spi_device *spi;
    	int ret;
    
    	if (acpi_bus_get_status(adev) || !adev->status.present ||
    	    acpi_device_enumerated(adev))
    		return AE_OK;
    
    	spi = spi_alloc_device(ctlr);
    	if (!spi) {
    		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
    			dev_name(&adev->dev));
    		return AE_NO_MEMORY;
    	}
    
    	ACPI_COMPANION_SET(&spi->dev, adev);
    	spi->irq = -1;
    
    	INIT_LIST_HEAD(&resource_list);
    	ret = acpi_dev_get_resources(adev, &resource_list,
    				     acpi_spi_add_resource, spi);
    	acpi_dev_free_resource_list(&resource_list);
    
    	acpi_spi_parse_apple_properties(spi);
    
    	if (ret < 0 || !spi->max_speed_hz) {
    		spi_dev_put(spi);
    		return AE_OK;
    	}
    
    	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
    			  sizeof(spi->modalias));
    
    	if (spi->irq < 0)
    		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
    
    	acpi_device_set_enumerated(adev);
    
    	adev->power.flags.ignore_parent = true;
    	if (spi_add_device(spi)) {
    		adev->power.flags.ignore_parent = false;
    		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
    			dev_name(&adev->dev));
    		spi_dev_put(spi);
    	}
    
    	return AE_OK;
    }
    
    static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
    				       void *data, void **return_value)
    {
    	struct spi_controller *ctlr = data;
    	struct acpi_device *adev;
    
    	if (acpi_bus_get_device(handle, &adev))
    		return AE_OK;
    
    	return acpi_register_spi_device(ctlr, adev);
    }
    
    static void acpi_register_spi_devices(struct spi_controller *ctlr)
    {
    	acpi_status status;
    	acpi_handle handle;
    
    	handle = ACPI_HANDLE(ctlr->dev.parent);
    	if (!handle)
    		return;
    
    	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
    				     acpi_spi_add_device, NULL, ctlr, NULL);
    	if (ACPI_FAILURE(status))
    		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
    }
    #else
    static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
    #endif /* CONFIG_ACPI */
    
    static void spi_controller_release(struct device *dev)
    {
    	struct spi_controller *ctlr;
    
    	ctlr = container_of(dev, struct spi_controller, dev);
    	kfree(ctlr);
    }
    
    static struct class spi_master_class = {
    	.name		= "spi_master",
    	.owner		= THIS_MODULE,
    	.dev_release	= spi_controller_release,
    	.dev_groups	= spi_master_groups,
    };
    
    #ifdef CONFIG_SPI_SLAVE
    /**
     * spi_slave_abort - abort the ongoing transfer request on an SPI slave
     *		     controller
     * @spi: device used for the current transfer
     */
    int spi_slave_abort(struct spi_device *spi)
    {
    	struct spi_controller *ctlr = spi->controller;
    
    	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
    		return ctlr->slave_abort(ctlr);
    
    	return -ENOTSUPP;
    }
    EXPORT_SYMBOL_GPL(spi_slave_abort);
    
    static int match_true(struct device *dev, void *data)
    {
    	return 1;
    }
    
    static ssize_t spi_slave_show(struct device *dev,
    			      struct device_attribute *attr, char *buf)
    {
    	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
    						   dev);
    	struct device *child;
    
    	child = device_find_child(&ctlr->dev, NULL, match_true);
    	return sprintf(buf, "%s\n",
    		       child ? to_spi_device(child)->modalias : NULL);
    }
    
    static ssize_t spi_slave_store(struct device *dev,
    			       struct device_attribute *attr, const char *buf,
    			       size_t count)
    {
    	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
    						   dev);
    	struct spi_device *spi;
    	struct device *child;
    	char name[32];
    	int rc;
    
    	rc = sscanf(buf, "%31s", name);
    	if (rc != 1 || !name[0])
    		return -EINVAL;
    
    	child = device_find_child(&ctlr->dev, NULL, match_true);
    	if (child) {
    		/* Remove registered slave */
    		device_unregister(child);
    		put_device(child);
    	}
    
    	if (strcmp(name, "(null)")) {
    		/* Register new slave */
    		spi = spi_alloc_device(ctlr);
    		if (!spi)
    			return -ENOMEM;
    
    		strlcpy(spi->modalias, name, sizeof(spi->modalias));
    
    		rc = spi_add_device(spi);
    		if (rc) {
    			spi_dev_put(spi);
    			return rc;
    		}
    	}
    
    	return count;
    }
    
    static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
    
    static struct attribute *spi_slave_attrs[] = {
    	&dev_attr_slave.attr,
    	NULL,
    };
    
    static const struct attribute_group spi_slave_group = {
    	.attrs = spi_slave_attrs,
    };
    
    static const struct attribute_group *spi_slave_groups[] = {
    	&spi_controller_statistics_group,
    	&spi_slave_group,
    	NULL,
    };
    
    static struct class spi_slave_class = {
    	.name		= "spi_slave",
    	.owner		= THIS_MODULE,
    	.dev_release	= spi_controller_release,
    	.dev_groups	= spi_slave_groups,
    };
    #else
    extern struct class spi_slave_class;	/* dummy */
    #endif
    
    /**
     * __spi_alloc_controller - allocate an SPI master or slave controller
     * @dev: the controller, possibly using the platform_bus
     * @size: how much zeroed driver-private data to allocate; the pointer to this
     *	memory is in the driver_data field of the returned device,
     *	accessible with spi_controller_get_devdata().
     * @slave: flag indicating whether to allocate an SPI master (false) or SPI
     *	slave (true) controller
     * Context: can sleep
     *
     * This call is used only by SPI controller drivers, which are the
     * only ones directly touching chip registers.  It's how they allocate
     * an spi_controller structure, prior to calling spi_register_controller().
     *
     * This must be called from context that can sleep.
     *
     * The caller is responsible for assigning the bus number and initializing the
     * controller's methods before calling spi_register_controller(); and (after
     * errors adding the device) calling spi_controller_put() to prevent a memory
     * leak.
     *
     * Return: the SPI controller structure on success, else NULL.
     */
    struct spi_controller *__spi_alloc_controller(struct device *dev,
    					      unsigned int size, bool slave)
    {
    	struct spi_controller	*ctlr;
    
    	if (!dev)
    		return NULL;
    
    	ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
    	if (!ctlr)
    		return NULL;
    
    	device_initialize(&ctlr->dev);
    	ctlr->bus_num = -1;
    	ctlr->num_chipselect = 1;
    	ctlr->slave = slave;
    	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
    		ctlr->dev.class = &spi_slave_class;
    	else
    		ctlr->dev.class = &spi_master_class;
    	ctlr->dev.parent = dev;
    	pm_suspend_ignore_children(&ctlr->dev, true);
    	spi_controller_set_devdata(ctlr, &ctlr[1]);
    
    	return ctlr;
    }
    EXPORT_SYMBOL_GPL(__spi_alloc_controller);
    
    #ifdef CONFIG_OF
    static int of_spi_register_master(struct spi_controller *ctlr)
    {
    	int nb, i, *cs;
    	struct device_node *np = ctlr->dev.of_node;
    
    	if (!np)
    		return 0;
    
    	nb = of_gpio_named_count(np, "cs-gpios");
    	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
    
    	/* Return error only for an incorrectly formed cs-gpios property */
    	if (nb == 0 || nb == -ENOENT)
    		return 0;
    	else if (nb < 0)
    		return nb;
    
    	cs = devm_kzalloc(&ctlr->dev, sizeof(int) * ctlr->num_chipselect,
    			  GFP_KERNEL);
    	ctlr->cs_gpios = cs;
    
    	if (!ctlr->cs_gpios)
    		return -ENOMEM;
    
    	for (i = 0; i < ctlr->num_chipselect; i++)
    		cs[i] = -ENOENT;
    
    	for (i = 0; i < nb; i++)
    		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
    
    	return 0;
    }
    #else
    static int of_spi_register_master(struct spi_controller *ctlr)
    {
    	return 0;
    }
    #endif
    
    /**
     * spi_register_controller - register SPI master or slave controller
     * @ctlr: initialized master, originally from spi_alloc_master() or
     *	spi_alloc_slave()
     * Context: can sleep
     *
     * SPI controllers connect to their drivers using some non-SPI bus,
     * such as the platform bus.  The final stage of probe() in that code
     * includes calling spi_register_controller() to hook up to this SPI bus glue.
     *
     * SPI controllers use board specific (often SOC specific) bus numbers,
     * and board-specific addressing for SPI devices combines those numbers
     * with chip select numbers.  Since SPI does not directly support dynamic
     * device identification, boards need configuration tables telling which
     * chip is at which address.
     *
     * This must be called from context that can sleep.  It returns zero on
     * success, else a negative error code (dropping the controller's refcount).
     * After a successful return, the caller is responsible for calling
     * spi_unregister_controller().
     *
     * Return: zero on success, else a negative error code.
     */
    int spi_register_controller(struct spi_controller *ctlr)
    {
    	struct device		*dev = ctlr->dev.parent;
    	struct boardinfo	*bi;
    	int			status = -ENODEV;
    	int			id, first_dynamic;
    
    	if (!dev)
    		return -ENODEV;
    
    	if (!spi_controller_is_slave(ctlr)) {
    		status = of_spi_register_master(ctlr);
    		if (status)
    			return status;
    	}
    
    	/* even if it's just one always-selected device, there must
    	 * be at least one chipselect
    	 */
    	if (ctlr->num_chipselect == 0)
    		return -EINVAL;
    	/* allocate dynamic bus number using Linux idr */
    	if ((ctlr->bus_num < 0) && ctlr->dev.of_node) {
    		id = of_alias_get_id(ctlr->dev.of_node, "spi");
    		if (id >= 0) {
    			ctlr->bus_num = id;
    			mutex_lock(&board_lock);
    			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
    				       ctlr->bus_num + 1, GFP_KERNEL);
    			mutex_unlock(&board_lock);
    			if (WARN(id < 0, "couldn't get idr"))
    				return id == -ENOSPC ? -EBUSY : id;
    		}
    	}
    	if (ctlr->bus_num < 0) {
    		first_dynamic = of_alias_get_highest_id("spi");
    		if (first_dynamic < 0)
    			first_dynamic = 0;
    		else
    			first_dynamic++;
    
    		mutex_lock(&board_lock);
    		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
    			       0, GFP_KERNEL);
    		mutex_unlock(&board_lock);
    		if (WARN(id < 0, "couldn't get idr"))
    			return id;
    		ctlr->bus_num = id;
    	}
    	INIT_LIST_HEAD(&ctlr->queue);
    	spin_lock_init(&ctlr->queue_lock);
    	spin_lock_init(&ctlr->bus_lock_spinlock);
    	mutex_init(&ctlr->bus_lock_mutex);
    	mutex_init(&ctlr->io_mutex);
    	ctlr->bus_lock_flag = 0;
    	init_completion(&ctlr->xfer_completion);
    	if (!ctlr->max_dma_len)
    		ctlr->max_dma_len = INT_MAX;
    
    	/* register the device, then userspace will see it.
    	 * registration fails if the bus ID is in use.
    	 */
    	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
    	status = device_add(&ctlr->dev);
    	if (status < 0) {
    		/* free bus id */
    		mutex_lock(&board_lock);
    		idr_remove(&spi_master_idr, ctlr->bus_num);
    		mutex_unlock(&board_lock);
    		goto done;
    	}
    	dev_dbg(dev, "registered %s %s\n",
    			spi_controller_is_slave(ctlr) ? "slave" : "master",
    			dev_name(&ctlr->dev));
    
    	/* If we're using a queued driver, start the queue */
    	if (ctlr->transfer)
    		dev_info(dev, "controller is unqueued, this is deprecated\n");
    	else {
    		status = spi_controller_initialize_queue(ctlr);
    		if (status) {
    			device_del(&ctlr->dev);
    			/* free bus id */
    			mutex_lock(&board_lock);
    			idr_remove(&spi_master_idr, ctlr->bus_num);
    			mutex_unlock(&board_lock);
    			goto done;
    		}
    	}
    	/* add statistics */
    	spin_lock_init(&ctlr->statistics.lock);
    
    	mutex_lock(&board_lock);
    	list_add_tail(&ctlr->list, &spi_controller_list);
    	list_for_each_entry(bi, &board_list, list)
    		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
    	mutex_unlock(&board_lock);
    
    	/* Register devices from the device tree and ACPI */
    	of_register_spi_devices(ctlr);
    	acpi_register_spi_devices(ctlr);
    done:
    	return status;
    }
    EXPORT_SYMBOL_GPL(spi_register_controller);
    
    static void devm_spi_unregister(struct device *dev, void *res)
    {
    	spi_unregister_controller(*(struct spi_controller **)res);
    }
    
    /**
     * devm_spi_register_controller - register managed SPI master or slave
     *	controller
     * @dev:    device managing SPI controller
     * @ctlr: initialized controller, originally from spi_alloc_master() or
     *	spi_alloc_slave()
     * Context: can sleep
     *
     * Register a SPI device as with spi_register_controller() which will
     * automatically be unregistered and freed.
     *
     * Return: zero on success, else a negative error code.
     */
    int devm_spi_register_controller(struct device *dev,
    				 struct spi_controller *ctlr)
    {
    	struct spi_controller **ptr;
    	int ret;
    
    	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
    	if (!ptr)
    		return -ENOMEM;
    
    	ret = spi_register_controller(ctlr);
    	if (!ret) {
    		*ptr = ctlr;
    		devres_add(dev, ptr);
    	} else {
    		devres_free(ptr);
    	}
    
    	return ret;
    }
    EXPORT_SYMBOL_GPL(devm_spi_register_controller);
    
    static int __unregister(struct device *dev, void *null)
    {
    	spi_unregister_device(to_spi_device(dev));
    	return 0;
    }
    
    /**
     * spi_unregister_controller - unregister SPI master or slave controller
     * @ctlr: the controller being unregistered
     * Context: can sleep
     *
     * This call is used only by SPI controller drivers, which are the
     * only ones directly touching chip registers.
     *
     * This must be called from context that can sleep.
     *
     * Note that this function also drops a reference to the controller.
     */
    void spi_unregister_controller(struct spi_controller *ctlr)
    {
    	struct spi_controller *found;
    	int id = ctlr->bus_num;
    	int dummy;
    
    	/* First make sure that this controller was ever added */
    	mutex_lock(&board_lock);
    	found = idr_find(&spi_master_idr, id);
    	mutex_unlock(&board_lock);
    	if (found != ctlr) {
    		dev_dbg(&ctlr->dev,
    			"attempting to delete unregistered controller [%s]\n",
    			dev_name(&ctlr->dev));
    		return;
    	}
    	if (ctlr->queued) {
    		if (spi_destroy_queue(ctlr))
    			dev_err(&ctlr->dev, "queue remove failed\n");
    	}
    	mutex_lock(&board_lock);
    	list_del(&ctlr->list);
    	mutex_unlock(&board_lock);
    
    	dummy = device_for_each_child(&ctlr->dev, NULL, __unregister);
    	device_unregister(&ctlr->dev);
    	/* free bus id */
    	mutex_lock(&board_lock);
    	idr_remove(&spi_master_idr, id);
    	mutex_unlock(&board_lock);
    }
    EXPORT_SYMBOL_GPL(spi_unregister_controller);
    
    int spi_controller_suspend(struct spi_controller *ctlr)
    {
    	int ret;
    
    	/* Basically no-ops for non-queued controllers */
    	if (!ctlr->queued)
    		return 0;
    
    	ret = spi_stop_queue(ctlr);
    	if (ret)
    		dev_err(&ctlr->dev, "queue stop failed\n");
    
    	return ret;
    }
    EXPORT_SYMBOL_GPL(spi_controller_suspend);
    
    int spi_controller_resume(struct spi_controller *ctlr)
    {
    	int ret;
    
    	if (!ctlr->queued)
    		return 0;
    
    	ret = spi_start_queue(ctlr);
    	if (ret)
    		dev_err(&ctlr->dev, "queue restart failed\n");
    
    	return ret;
    }
    EXPORT_SYMBOL_GPL(spi_controller_resume);
    
    static int __spi_controller_match(struct device *dev, const void *data)
    {
    	struct spi_controller *ctlr;
    	const u16 *bus_num = data;
    
    	ctlr = container_of(dev, struct spi_controller, dev);
    	return ctlr->bus_num == *bus_num;
    }
    
    /**
     * spi_busnum_to_master - look up master associated with bus_num
     * @bus_num: the master's bus number
     * Context: can sleep
     *
     * This call may be used with devices that are registered after
     * arch init time.  It returns a refcounted pointer to the relevant
     * spi_controller (which the caller must release), or NULL if there is
     * no such master registered.
     *
     * Return: the SPI master structure on success, else NULL.
     */
    struct spi_controller *spi_busnum_to_master(u16 bus_num)
    {
    	struct device		*dev;
    	struct spi_controller	*ctlr = NULL;
    
    	dev = class_find_device(&spi_master_class, NULL, &bus_num,
    				__spi_controller_match);
    	if (dev)
    		ctlr = container_of(dev, struct spi_controller, dev);
    	/* reference got in class_find_device */
    	return ctlr;
    }
    EXPORT_SYMBOL_GPL(spi_busnum_to_master);
    
    /*-------------------------------------------------------------------------*/
    
    /* Core methods for SPI resource management */
    
    /**
     * spi_res_alloc - allocate a spi resource that is life-cycle managed
     *                 during the processing of a spi_message while using
     *                 spi_transfer_one
     * @spi:     the spi device for which we allocate memory
     * @release: the release code to execute for this resource
     * @size:    size to alloc and return
     * @gfp:     GFP allocation flags
     *
     * Return: the pointer to the allocated data
     *
     * This may get enhanced in the future to allocate from a memory pool
     * of the @spi_device or @spi_controller to avoid repeated allocations.
     */
    void *spi_res_alloc(struct spi_device *spi,
    		    spi_res_release_t release,
    		    size_t size, gfp_t gfp)
    {
    	struct spi_res *sres;
    
    	sres = kzalloc(sizeof(*sres) + size, gfp);
    	if (!sres)
    		return NULL;
    
    	INIT_LIST_HEAD(&sres->entry);
    	sres->release = release;
    
    	return sres->data;
    }
    EXPORT_SYMBOL_GPL(spi_res_alloc);
    
    /**
     * spi_res_free - free an spi resource
     * @res: pointer to the custom data of a resource
     *
     */
    void spi_res_free(void *res)
    {
    	struct spi_res *sres = container_of(res, struct spi_res, data);
    
    	if (!res)
    		return;
    
    	WARN_ON(!list_empty(&sres->entry));
    	kfree(sres);
    }
    EXPORT_SYMBOL_GPL(spi_res_free);
    
    /**
     * spi_res_add - add a spi_res to the spi_message
     * @message: the spi message
     * @res:     the spi_resource
     */
    void spi_res_add(struct spi_message *message, void *res)
    {
    	struct spi_res *sres = container_of(res, struct spi_res, data);
    
    	WARN_ON(!list_empty(&sres->entry));
    	list_add_tail(&sres->entry, &message->resources);
    }
    EXPORT_SYMBOL_GPL(spi_res_add);
    
    /**
     * spi_res_release - release all spi resources for this message
     * @ctlr:  the @spi_controller
     * @message: the @spi_message
     */
    void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
    {
    	struct spi_res *res;
    
    	while (!list_empty(&message->resources)) {
    		res = list_last_entry(&message->resources,
    				      struct spi_res, entry);
    
    		if (res->release)
    			res->release(ctlr, message, res->data);
    
    		list_del(&res->entry);
    
    		kfree(res);
    	}
    }
    EXPORT_SYMBOL_GPL(spi_res_release);
    
    /*-------------------------------------------------------------------------*/
    
    /* Core methods for spi_message alterations */
    
    static void __spi_replace_transfers_release(struct spi_controller *ctlr,
    					    struct spi_message *msg,
    					    void *res)
    {
    	struct spi_replaced_transfers *rxfer = res;
    	size_t i;
    
    	/* call extra callback if requested */
    	if (rxfer->release)
    		rxfer->release(ctlr, msg, res);
    
    	/* insert replaced transfers back into the message */
    	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
    
    	/* remove the formerly inserted entries */
    	for (i = 0; i < rxfer->inserted; i++)
    		list_del(&rxfer->inserted_transfers[i].transfer_list);
    }
    
    /**
     * spi_replace_transfers - replace transfers with several transfers
     *                         and register change with spi_message.resources
     * @msg:           the spi_message we work upon
     * @xfer_first:    the first spi_transfer we want to replace
     * @remove:        number of transfers to remove
     * @insert:        the number of transfers we want to insert instead
     * @release:       extra release code necessary in some circumstances
     * @extradatasize: extra data to allocate (with alignment guarantees
     *                 of struct @spi_transfer)
     * @gfp:           gfp flags
     *
     * Returns: pointer to @spi_replaced_transfers,
     *          PTR_ERR(...) in case of errors.
     */
    struct spi_replaced_transfers *spi_replace_transfers(
    	struct spi_message *msg,
    	struct spi_transfer *xfer_first,
    	size_t remove,
    	size_t insert,
    	spi_replaced_release_t release,
    	size_t extradatasize,
    	gfp_t gfp)
    {
    	struct spi_replaced_transfers *rxfer;
    	struct spi_transfer *xfer;
    	size_t i;
    
    	/* allocate the structure using spi_res */
    	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
    			      insert * sizeof(struct spi_transfer)
    			      + sizeof(struct spi_replaced_transfers)
    			      + extradatasize,
    			      gfp);
    	if (!rxfer)
    		return ERR_PTR(-ENOMEM);
    
    	/* the release code to invoke before running the generic release */
    	rxfer->release = release;
    
    	/* assign extradata */
    	if (extradatasize)
    		rxfer->extradata =
    			&rxfer->inserted_transfers[insert];
    
    	/* init the replaced_transfers list */
    	INIT_LIST_HEAD(&rxfer->replaced_transfers);
    
    	/* assign the list_entry after which we should reinsert
    	 * the @replaced_transfers - it may be spi_message.messages!
    	 */
    	rxfer->replaced_after = xfer_first->transfer_list.prev;
    
    	/* remove the requested number of transfers */
    	for (i = 0; i < remove; i++) {
    		/* if the entry after replaced_after it is msg->transfers
    		 * then we have been requested to remove more transfers
    		 * than are in the list
    		 */
    		if (rxfer->replaced_after->next == &msg->transfers) {
    			dev_err(&msg->spi->dev,
    				"requested to remove more spi_transfers than are available\n");
    			/* insert replaced transfers back into the message */
    			list_splice(&rxfer->replaced_transfers,
    				    rxfer->replaced_after);
    
    			/* free the spi_replace_transfer structure */
    			spi_res_free(rxfer);
    
    			/* and return with an error */
    			return ERR_PTR(-EINVAL);
    		}
    
    		/* remove the entry after replaced_after from list of
    		 * transfers and add it to list of replaced_transfers
    		 */
    		list_move_tail(rxfer->replaced_after->next,
    			       &rxfer->replaced_transfers);
    	}
    
    	/* create copy of the given xfer with identical settings
    	 * based on the first transfer to get removed
    	 */
    	for (i = 0; i < insert; i++) {
    		/* we need to run in reverse order */
    		xfer = &rxfer->inserted_transfers[insert - 1 - i];
    
    		/* copy all spi_transfer data */
    		memcpy(xfer, xfer_first, sizeof(*xfer));
    
    		/* add to list */
    		list_add(&xfer->transfer_list, rxfer->replaced_after);
    
    		/* clear cs_change and delay_usecs for all but the last */
    		if (i) {
    			xfer->cs_change = false;
    			xfer->delay_usecs = 0;
    		}
    	}
    
    	/* set up inserted */
    	rxfer->inserted = insert;
    
    	/* and register it with spi_res/spi_message */
    	spi_res_add(msg, rxfer);
    
    	return rxfer;
    }
    EXPORT_SYMBOL_GPL(spi_replace_transfers);
    
    static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
    					struct spi_message *msg,
    					struct spi_transfer **xferp,
    					size_t maxsize,
    					gfp_t gfp)
    {
    	struct spi_transfer *xfer = *xferp, *xfers;
    	struct spi_replaced_transfers *srt;
    	size_t offset;
    	size_t count, i;
    
    	/* warn once about this fact that we are splitting a transfer */
    	dev_warn_once(&msg->spi->dev,
    		      "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
    		      xfer->len, maxsize);
    
    	/* calculate how many we have to replace */
    	count = DIV_ROUND_UP(xfer->len, maxsize);
    
    	/* create replacement */
    	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
    	if (IS_ERR(srt))
    		return PTR_ERR(srt);
    	xfers = srt->inserted_transfers;
    
    	/* now handle each of those newly inserted spi_transfers
    	 * note that the replacements spi_transfers all are preset
    	 * to the same values as *xferp, so tx_buf, rx_buf and len
    	 * are all identical (as well as most others)
    	 * so we just have to fix up len and the pointers.
    	 *
    	 * this also includes support for the depreciated
    	 * spi_message.is_dma_mapped interface
    	 */
    
    	/* the first transfer just needs the length modified, so we
    	 * run it outside the loop
    	 */
    	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
    
    	/* all the others need rx_buf/tx_buf also set */
    	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
    		/* update rx_buf, tx_buf and dma */
    		if (xfers[i].rx_buf)
    			xfers[i].rx_buf += offset;
    		if (xfers[i].rx_dma)
    			xfers[i].rx_dma += offset;
    		if (xfers[i].tx_buf)
    			xfers[i].tx_buf += offset;
    		if (xfers[i].tx_dma)
    			xfers[i].tx_dma += offset;
    
    		/* update length */
    		xfers[i].len = min(maxsize, xfers[i].len - offset);
    	}
    
    	/* we set up xferp to the last entry we have inserted,
    	 * so that we skip those already split transfers
    	 */
    	*xferp = &xfers[count - 1];
    
    	/* increment statistics counters */
    	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
    				       transfers_split_maxsize);
    	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
    				       transfers_split_maxsize);
    
    	return 0;
    }
    
    /**
     * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
     *                              when an individual transfer exceeds a
     *                              certain size
     * @ctlr:    the @spi_controller for this transfer
     * @msg:   the @spi_message to transform
     * @maxsize:  the maximum when to apply this
     * @gfp: GFP allocation flags
     *
     * Return: status of transformation
     */
    int spi_split_transfers_maxsize(struct spi_controller *ctlr,
    				struct spi_message *msg,
    				size_t maxsize,
    				gfp_t gfp)
    {
    	struct spi_transfer *xfer;
    	int ret;
    
    	/* iterate over the transfer_list,
    	 * but note that xfer is advanced to the last transfer inserted
    	 * to avoid checking sizes again unnecessarily (also xfer does
    	 * potentiall belong to a different list by the time the
    	 * replacement has happened
    	 */
    	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
    		if (xfer->len > maxsize) {
    			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
    							   maxsize, gfp);
    			if (ret)
    				return ret;
    		}
    	}
    
    	return 0;
    }
    EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
    
    /*-------------------------------------------------------------------------*/
    
    /* Core methods for SPI controller protocol drivers.  Some of the
     * other core methods are currently defined as inline functions.
     */
    
    static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
    					u8 bits_per_word)
    {
    	if (ctlr->bits_per_word_mask) {
    		/* Only 32 bits fit in the mask */
    		if (bits_per_word > 32)
    			return -EINVAL;
    		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
    			return -EINVAL;
    	}
    
    	return 0;
    }
    
    /**
     * spi_setup - setup SPI mode and clock rate
     * @spi: the device whose settings are being modified
     * Context: can sleep, and no requests are queued to the device
     *
     * SPI protocol drivers may need to update the transfer mode if the
     * device doesn't work with its default.  They may likewise need
     * to update clock rates or word sizes from initial values.  This function
     * changes those settings, and must be called from a context that can sleep.
     * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
     * effect the next time the device is selected and data is transferred to
     * or from it.  When this function returns, the spi device is deselected.
     *
     * Note that this call will fail if the protocol driver specifies an option
     * that the underlying controller or its driver does not support.  For
     * example, not all hardware supports wire transfers using nine bit words,
     * LSB-first wire encoding, or active-high chipselects.
     *
     * Return: zero on success, else a negative error code.
     */
    int spi_setup(struct spi_device *spi)
    {
    	unsigned	bad_bits, ugly_bits;
    	int		status;
    
    	/* check mode to prevent that DUAL and QUAD set at the same time
    	 */
    	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
    		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
    		dev_err(&spi->dev,
    		"setup: can not select dual and quad at the same time\n");
    		return -EINVAL;
    	}
    	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
    	 */
    	if ((spi->mode & SPI_3WIRE) && (spi->mode &
    		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
    		return -EINVAL;
    	/* help drivers fail *cleanly* when they need options
    	 * that aren't supported with their current controller
    	 */
    	bad_bits = spi->mode & ~spi->controller->mode_bits;
    	ugly_bits = bad_bits &
    		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
    	if (ugly_bits) {
    		dev_warn(&spi->dev,
    			 "setup: ignoring unsupported mode bits %x\n",
    			 ugly_bits);
    		spi->mode &= ~ugly_bits;
    		bad_bits &= ~ugly_bits;
    	}
    	if (bad_bits) {
    		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
    			bad_bits);
    		return -EINVAL;
    	}
    
    	if (!spi->bits_per_word)
    		spi->bits_per_word = 8;
    
    	status = __spi_validate_bits_per_word(spi->controller,
    					      spi->bits_per_word);
    	if (status)
    		return status;
    
    	if (!spi->max_speed_hz)
    		spi->max_speed_hz = spi->controller->max_speed_hz;
    
    	if (spi->controller->setup)
    		status = spi->controller->setup(spi);
    
    	spi_set_cs(spi, false);
    
    	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
    			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
    			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
    			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
    			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
    			(spi->mode & SPI_LOOP) ? "loopback, " : "",
    			spi->bits_per_word, spi->max_speed_hz,
    			status);
    
    	return status;
    }
    EXPORT_SYMBOL_GPL(spi_setup);
    
    static int __spi_validate(struct spi_device *spi, struct spi_message *message)
    {
    	struct spi_controller *ctlr = spi->controller;
    	struct spi_transfer *xfer;
    	int w_size;
    
    	if (list_empty(&message->transfers))
    		return -EINVAL;
    
    	/* Half-duplex links include original MicroWire, and ones with
    	 * only one data pin like SPI_3WIRE (switches direction) or where
    	 * either MOSI or MISO is missing.  They can also be caused by
    	 * software limitations.
    	 */
    	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
    	    (spi->mode & SPI_3WIRE)) {
    		unsigned flags = ctlr->flags;
    
    		list_for_each_entry(xfer, &message->transfers, transfer_list) {
    			if (xfer->rx_buf && xfer->tx_buf)
    				return -EINVAL;
    			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
    				return -EINVAL;
    			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
    				return -EINVAL;
    		}
    	}
    
    	/**
    	 * Set transfer bits_per_word and max speed as spi device default if
    	 * it is not set for this transfer.
    	 * Set transfer tx_nbits and rx_nbits as single transfer default
    	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
    	 */
    	message->frame_length = 0;
    	list_for_each_entry(xfer, &message->transfers, transfer_list) {
    		message->frame_length += xfer->len;
    		if (!xfer->bits_per_word)
    			xfer->bits_per_word = spi->bits_per_word;
    
    		if (!xfer->speed_hz)
    			xfer->speed_hz = spi->max_speed_hz;
    		if (!xfer->speed_hz)
    			xfer->speed_hz = ctlr->max_speed_hz;
    
    		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
    			xfer->speed_hz = ctlr->max_speed_hz;
    
    		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
    			return -EINVAL;
    
    		/*
    		 * SPI transfer length should be multiple of SPI word size
    		 * where SPI word size should be power-of-two multiple
    		 */
    		if (xfer->bits_per_word <= 8)
    			w_size = 1;
    		else if (xfer->bits_per_word <= 16)
    			w_size = 2;
    		else
    			w_size = 4;
    
    		/* No partial transfers accepted */
    		if (xfer->len % w_size)
    			return -EINVAL;
    
    		if (xfer->speed_hz && ctlr->min_speed_hz &&
    		    xfer->speed_hz < ctlr->min_speed_hz)
    			return -EINVAL;
    
    		if (xfer->tx_buf && !xfer->tx_nbits)
    			xfer->tx_nbits = SPI_NBITS_SINGLE;
    		if (xfer->rx_buf && !xfer->rx_nbits)
    			xfer->rx_nbits = SPI_NBITS_SINGLE;
    		/* check transfer tx/rx_nbits:
    		 * 1. check the value matches one of single, dual and quad
    		 * 2. check tx/rx_nbits match the mode in spi_device
    		 */
    		if (xfer->tx_buf) {
    			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
    				xfer->tx_nbits != SPI_NBITS_DUAL &&
    				xfer->tx_nbits != SPI_NBITS_QUAD)
    				return -EINVAL;
    			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
    				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
    				return -EINVAL;
    			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
    				!(spi->mode & SPI_TX_QUAD))
    				return -EINVAL;
    		}
    		/* check transfer rx_nbits */
    		if (xfer->rx_buf) {
    			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
    				xfer->rx_nbits != SPI_NBITS_DUAL &&
    				xfer->rx_nbits != SPI_NBITS_QUAD)
    				return -EINVAL;
    			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
    				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
    				return -EINVAL;
    			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
    				!(spi->mode & SPI_RX_QUAD))
    				return -EINVAL;
    		}
    	}
    
    	message->status = -EINPROGRESS;
    
    	return 0;
    }
    
    static int __spi_async(struct spi_device *spi, struct spi_message *message)
    {
    	struct spi_controller *ctlr = spi->controller;
    
    	message->spi = spi;
    
    	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
    	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
    
    	trace_spi_message_submit(message);
    
    	return ctlr->transfer(spi, message);
    }
    
    /**
     * spi_async - asynchronous SPI transfer
     * @spi: device with which data will be exchanged
     * @message: describes the data transfers, including completion callback
     * Context: any (irqs may be blocked, etc)
     *
     * This call may be used in_irq and other contexts which can't sleep,
     * as well as from task contexts which can sleep.
     *
     * The completion callback is invoked in a context which can't sleep.
     * Before that invocation, the value of message->status is undefined.
     * When the callback is issued, message->status holds either zero (to
     * indicate complete success) or a negative error code.  After that
     * callback returns, the driver which issued the transfer request may
     * deallocate the associated memory; it's no longer in use by any SPI
     * core or controller driver code.
     *
     * Note that although all messages to a spi_device are handled in
     * FIFO order, messages may go to different devices in other orders.
     * Some device might be higher priority, or have various "hard" access
     * time requirements, for example.
     *
     * On detection of any fault during the transfer, processing of
     * the entire message is aborted, and the device is deselected.
     * Until returning from the associated message completion callback,
     * no other spi_message queued to that device will be processed.
     * (This rule applies equally to all the synchronous transfer calls,
     * which are wrappers around this core asynchronous primitive.)
     *
     * Return: zero on success, else a negative error code.
     */
    int spi_async(struct spi_device *spi, struct spi_message *message)
    {
    	struct spi_controller *ctlr = spi->controller;
    	int ret;
    	unsigned long flags;
    
    	ret = __spi_validate(spi, message);
    	if (ret != 0)
    		return ret;
    
    	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
    
    	if (ctlr->bus_lock_flag)
    		ret = -EBUSY;
    	else
    		ret = __spi_async(spi, message);
    
    	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
    
    	return ret;
    }
    EXPORT_SYMBOL_GPL(spi_async);
    
    /**
     * spi_async_locked - version of spi_async with exclusive bus usage
     * @spi: device with which data will be exchanged
     * @message: describes the data transfers, including completion callback
     * Context: any (irqs may be blocked, etc)
     *
     * This call may be used in_irq and other contexts which can't sleep,
     * as well as from task contexts which can sleep.
     *
     * The completion callback is invoked in a context which can't sleep.
     * Before that invocation, the value of message->status is undefined.
     * When the callback is issued, message->status holds either zero (to
     * indicate complete success) or a negative error code.  After that
     * callback returns, the driver which issued the transfer request may
     * deallocate the associated memory; it's no longer in use by any SPI
     * core or controller driver code.
     *
     * Note that although all messages to a spi_device are handled in
     * FIFO order, messages may go to different devices in other orders.
     * Some device might be higher priority, or have various "hard" access
     * time requirements, for example.
     *
     * On detection of any fault during the transfer, processing of
     * the entire message is aborted, and the device is deselected.
     * Until returning from the associated message completion callback,
     * no other spi_message queued to that device will be processed.
     * (This rule applies equally to all the synchronous transfer calls,
     * which are wrappers around this core asynchronous primitive.)
     *
     * Return: zero on success, else a negative error code.
     */
    int spi_async_locked(struct spi_device *spi, struct spi_message *message)
    {
    	struct spi_controller *ctlr = spi->controller;
    	int ret;
    	unsigned long flags;
    
    	ret = __spi_validate(spi, message);
    	if (ret != 0)
    		return ret;
    
    	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
    
    	ret = __spi_async(spi, message);
    
    	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
    
    	return ret;
    
    }
    EXPORT_SYMBOL_GPL(spi_async_locked);
    
    
    int spi_flash_read(struct spi_device *spi,
    		   struct spi_flash_read_message *msg)
    
    {
    	struct spi_controller *master = spi->controller;
    	struct device *rx_dev = NULL;
    	int ret;
    
    	if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
    	     msg->addr_nbits == SPI_NBITS_DUAL) &&
    	    !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
    		return -EINVAL;
    	if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
    	     msg->addr_nbits == SPI_NBITS_QUAD) &&
    	    !(spi->mode & SPI_TX_QUAD))
    		return -EINVAL;
    	if (msg->data_nbits == SPI_NBITS_DUAL &&
    	    !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
    		return -EINVAL;
    	if (msg->data_nbits == SPI_NBITS_QUAD &&
    	    !(spi->mode &  SPI_RX_QUAD))
    		return -EINVAL;
    
    	if (master->auto_runtime_pm) {
    		ret = pm_runtime_get_sync(master->dev.parent);
    		if (ret < 0) {
    			dev_err(&master->dev, "Failed to power device: %d\n",
    				ret);
    			return ret;
    		}
    	}
    
    	mutex_lock(&master->bus_lock_mutex);
    	mutex_lock(&master->io_mutex);
    	if (master->dma_rx && master->spi_flash_can_dma(spi, msg)) {
    		rx_dev = master->dma_rx->device->dev;
    		ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
    				  msg->buf, msg->len,
    				  DMA_FROM_DEVICE);
    		if (!ret)
    			msg->cur_msg_mapped = true;
    	}
    	ret = master->spi_flash_read(spi, msg);
    	if (msg->cur_msg_mapped)
    		spi_unmap_buf(master, rx_dev, &msg->rx_sg,
    			      DMA_FROM_DEVICE);
    	mutex_unlock(&master->io_mutex);
    	mutex_unlock(&master->bus_lock_mutex);
    
    	if (master->auto_runtime_pm)
    		pm_runtime_put(master->dev.parent);
    
    	return ret;
    }
    EXPORT_SYMBOL_GPL(spi_flash_read);
    
    /*-------------------------------------------------------------------------*/
    
    /* Utility methods for SPI protocol drivers, layered on
     * top of the core.  Some other utility methods are defined as
     * inline functions.
     */
    
    static void spi_complete(void *arg)
    {
    	complete(arg);
    }
    
    static int __spi_sync(struct spi_device *spi, struct spi_message *message)
    {
    	DECLARE_COMPLETION_ONSTACK(done);
    	int status;
    	struct spi_controller *ctlr = spi->controller;
    	unsigned long flags;
    
    	status = __spi_validate(spi, message);
    	if (status != 0)
    		return status;
    
    	message->complete = spi_complete;
    	message->context = &done;
    	message->spi = spi;
    
    	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
    	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
    
    	/* If we're not using the legacy transfer method then we will
    	 * try to transfer in the calling context so special case.
    	 * This code would be less tricky if we could remove the
    	 * support for driver implemented message queues.
    	 */
    	if (ctlr->transfer == spi_queued_transfer) {
    		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
    
    		trace_spi_message_submit(message);
    
    		status = __spi_queued_transfer(spi, message, false);
    
    		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
    	} else {
    		status = spi_async_locked(spi, message);
    	}
    
    	if (status == 0) {
    		/* Push out the messages in the calling context if we
    		 * can.
    		 */
    		if (ctlr->transfer == spi_queued_transfer) {
    			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
    						       spi_sync_immediate);
    			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
    						       spi_sync_immediate);
    			__spi_pump_messages(ctlr, false);
    		}
    
    		wait_for_completion(&done);
    		status = message->status;
    	}
    	message->context = NULL;
    	return status;
    }
    
    /**
     * spi_sync - blocking/synchronous SPI data transfers
     * @spi: device with which data will be exchanged
     * @message: describes the data transfers
     * Context: can sleep
     *
     * This call may only be used from a context that may sleep.  The sleep
     * is non-interruptible, and has no timeout.  Low-overhead controller
     * drivers may DMA directly into and out of the message buffers.
     *
     * Note that the SPI device's chip select is active during the message,
     * and then is normally disabled between messages.  Drivers for some
     * frequently-used devices may want to minimize costs of selecting a chip,
     * by leaving it selected in anticipation that the next message will go
     * to the same chip.  (That may increase power usage.)
     *
     * Also, the caller is guaranteeing that the memory associated with the
     * message will not be freed before this call returns.
     *
     * Return: zero on success, else a negative error code.
     */
    int spi_sync(struct spi_device *spi, struct spi_message *message)
    {
    	int ret;
    
    	mutex_lock(&spi->controller->bus_lock_mutex);
    	ret = __spi_sync(spi, message);
    	mutex_unlock(&spi->controller->bus_lock_mutex);
    
    	return ret;
    }
    EXPORT_SYMBOL_GPL(spi_sync);
    
    /**
     * spi_sync_locked - version of spi_sync with exclusive bus usage
     * @spi: device with which data will be exchanged
     * @message: describes the data transfers
     * Context: can sleep
     *
     * This call may only be used from a context that may sleep.  The sleep
     * is non-interruptible, and has no timeout.  Low-overhead controller
     * drivers may DMA directly into and out of the message buffers.
     *
     * This call should be used by drivers that require exclusive access to the
     * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
     * be released by a spi_bus_unlock call when the exclusive access is over.
     *
     * Return: zero on success, else a negative error code.
     */
    int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
    {
    	return __spi_sync(spi, message);
    }
    EXPORT_SYMBOL_GPL(spi_sync_locked);
    
    /**
     * spi_bus_lock - obtain a lock for exclusive SPI bus usage
     * @ctlr: SPI bus master that should be locked for exclusive bus access
     * Context: can sleep
     *
     * This call may only be used from a context that may sleep.  The sleep
     * is non-interruptible, and has no timeout.
     *
     * This call should be used by drivers that require exclusive access to the
     * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
     * exclusive access is over. Data transfer must be done by spi_sync_locked
     * and spi_async_locked calls when the SPI bus lock is held.
     *
     * Return: always zero.
     */
    int spi_bus_lock(struct spi_controller *ctlr)
    {
    	unsigned long flags;
    
    	mutex_lock(&ctlr->bus_lock_mutex);
    
    	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
    	ctlr->bus_lock_flag = 1;
    	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
    
    	/* mutex remains locked until spi_bus_unlock is called */
    
    	return 0;
    }
    EXPORT_SYMBOL_GPL(spi_bus_lock);
    
    /**
     * spi_bus_unlock - release the lock for exclusive SPI bus usage
     * @ctlr: SPI bus master that was locked for exclusive bus access
     * Context: can sleep
     *
     * This call may only be used from a context that may sleep.  The sleep
     * is non-interruptible, and has no timeout.
     *
     * This call releases an SPI bus lock previously obtained by an spi_bus_lock
     * call.
     *
     * Return: always zero.
     */
    int spi_bus_unlock(struct spi_controller *ctlr)
    {
    	ctlr->bus_lock_flag = 0;
    
    	mutex_unlock(&ctlr->bus_lock_mutex);
    
    	return 0;
    }
    EXPORT_SYMBOL_GPL(spi_bus_unlock);
    
    /* portable code must never pass more than 32 bytes */
    #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
    
    static u8	*buf;
    
    /**
     * spi_write_then_read - SPI synchronous write followed by read
     * @spi: device with which data will be exchanged
     * @txbuf: data to be written (need not be dma-safe)
     * @n_tx: size of txbuf, in bytes
     * @rxbuf: buffer into which data will be read (need not be dma-safe)
     * @n_rx: size of rxbuf, in bytes
     * Context: can sleep
     *
     * This performs a half duplex MicroWire style transaction with the
     * device, sending txbuf and then reading rxbuf.  The return value
     * is zero for success, else a negative errno status code.
     * This call may only be used from a context that may sleep.
     *
     * Parameters to this routine are always copied using a small buffer;
     * portable code should never use this for more than 32 bytes.
     * Performance-sensitive or bulk transfer code should instead use
     * spi_{async,sync}() calls with dma-safe buffers.
     *
     * Return: zero on success, else a negative error code.
     */
    int spi_write_then_read(struct spi_device *spi,
    		const void *txbuf, unsigned n_tx,
    		void *rxbuf, unsigned n_rx)
    {
    	static DEFINE_MUTEX(lock);
    
    	int			status;
    	struct spi_message	message;
    	struct spi_transfer	x[2];
    	u8			*local_buf;
    
    	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
    	 * copying here, (as a pure convenience thing), but we can
    	 * keep heap costs out of the hot path unless someone else is
    	 * using the pre-allocated buffer or the transfer is too large.
    	 */
    	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
    		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
    				    GFP_KERNEL | GFP_DMA);
    		if (!local_buf)
    			return -ENOMEM;
    	} else {
    		local_buf = buf;
    	}
    
    	spi_message_init(&message);
    	memset(x, 0, sizeof(x));
    	if (n_tx) {
    		x[0].len = n_tx;
    		spi_message_add_tail(&x[0], &message);
    	}
    	if (n_rx) {
    		x[1].len = n_rx;
    		spi_message_add_tail(&x[1], &message);
    	}
    
    	memcpy(local_buf, txbuf, n_tx);
    	x[0].tx_buf = local_buf;
    	x[1].rx_buf = local_buf + n_tx;
    
    	/* do the i/o */
    	status = spi_sync(spi, &message);
    	if (status == 0)
    		memcpy(rxbuf, x[1].rx_buf, n_rx);
    
    	if (x[0].tx_buf == buf)
    		mutex_unlock(&lock);
    	else
    		kfree(local_buf);
    
    	return status;
    }
    EXPORT_SYMBOL_GPL(spi_write_then_read);
    
    /*-------------------------------------------------------------------------*/
    
    #if IS_ENABLED(CONFIG_OF_DYNAMIC)
    static int __spi_of_device_match(struct device *dev, void *data)
    {
    	return dev->of_node == data;
    }
    
    /* must call put_device() when done with returned spi_device device */
    static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
    {
    	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
    						__spi_of_device_match);
    	return dev ? to_spi_device(dev) : NULL;
    }
    
    static int __spi_of_controller_match(struct device *dev, const void *data)
    {
    	return dev->of_node == data;
    }
    
    /* the spi controllers are not using spi_bus, so we find it with another way */
    static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
    {
    	struct device *dev;
    
    	dev = class_find_device(&spi_master_class, NULL, node,
    				__spi_of_controller_match);
    	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
    		dev = class_find_device(&spi_slave_class, NULL, node,
    					__spi_of_controller_match);
    	if (!dev)
    		return NULL;
    
    	/* reference got in class_find_device */
    	return container_of(dev, struct spi_controller, dev);
    }
    
    static int of_spi_notify(struct notifier_block *nb, unsigned long action,
    			 void *arg)
    {
    	struct of_reconfig_data *rd = arg;
    	struct spi_controller *ctlr;
    	struct spi_device *spi;
    
    	switch (of_reconfig_get_state_change(action, arg)) {
    	case OF_RECONFIG_CHANGE_ADD:
    		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
    		if (ctlr == NULL)
    			return NOTIFY_OK;	/* not for us */
    
    		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
    			put_device(&ctlr->dev);
    			return NOTIFY_OK;
    		}
    
    		spi = of_register_spi_device(ctlr, rd->dn);
    		put_device(&ctlr->dev);
    
    		if (IS_ERR(spi)) {
    			pr_err("%s: failed to create for '%pOF'\n",
    					__func__, rd->dn);
    			of_node_clear_flag(rd->dn, OF_POPULATED);
    			return notifier_from_errno(PTR_ERR(spi));
    		}
    		break;
    
    	case OF_RECONFIG_CHANGE_REMOVE:
    		/* already depopulated? */
    		if (!of_node_check_flag(rd->dn, OF_POPULATED))
    			return NOTIFY_OK;
    
    		/* find our device by node */
    		spi = of_find_spi_device_by_node(rd->dn);
    		if (spi == NULL)
    			return NOTIFY_OK;	/* no? not meant for us */
    
    		/* unregister takes one ref away */
    		spi_unregister_device(spi);
    
    		/* and put the reference of the find */
    		put_device(&spi->dev);
    		break;
    	}
    
    	return NOTIFY_OK;
    }
    
    static struct notifier_block spi_of_notifier = {
    	.notifier_call = of_spi_notify,
    };
    #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
    extern struct notifier_block spi_of_notifier;
    #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
    
    #if IS_ENABLED(CONFIG_ACPI)
    static int spi_acpi_controller_match(struct device *dev, const void *data)
    {
    	return ACPI_COMPANION(dev->parent) == data;
    }
    
    static int spi_acpi_device_match(struct device *dev, void *data)
    {
    	return ACPI_COMPANION(dev) == data;
    }
    
    static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
    {
    	struct device *dev;
    
    	dev = class_find_device(&spi_master_class, NULL, adev,
    				spi_acpi_controller_match);
    	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
    		dev = class_find_device(&spi_slave_class, NULL, adev,
    					spi_acpi_controller_match);
    	if (!dev)
    		return NULL;
    
    	return container_of(dev, struct spi_controller, dev);
    }
    
    static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
    {
    	struct device *dev;
    
    	dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
    
    	return dev ? to_spi_device(dev) : NULL;
    }
    
    static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
    			   void *arg)
    {
    	struct acpi_device *adev = arg;
    	struct spi_controller *ctlr;
    	struct spi_device *spi;
    
    	switch (value) {
    	case ACPI_RECONFIG_DEVICE_ADD:
    		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
    		if (!ctlr)
    			break;
    
    		acpi_register_spi_device(ctlr, adev);
    		put_device(&ctlr->dev);
    		break;
    	case ACPI_RECONFIG_DEVICE_REMOVE:
    		if (!acpi_device_enumerated(adev))
    			break;
    
    		spi = acpi_spi_find_device_by_adev(adev);
    		if (!spi)
    			break;
    
    		spi_unregister_device(spi);
    		put_device(&spi->dev);
    		break;
    	}
    
    	return NOTIFY_OK;
    }
    
    static struct notifier_block spi_acpi_notifier = {
    	.notifier_call = acpi_spi_notify,
    };
    #else
    extern struct notifier_block spi_acpi_notifier;
    #endif
    
    static int __init spi_init(void)
    {
    	int	status;
    
    	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
    	if (!buf) {
    		status = -ENOMEM;
    		goto err0;
    	}
    
    	status = bus_register(&spi_bus_type);
    	if (status < 0)
    		goto err1;
    
    	status = class_register(&spi_master_class);
    	if (status < 0)
    		goto err2;
    
    	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
    		status = class_register(&spi_slave_class);
    		if (status < 0)
    			goto err3;
    	}
    
    	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
    		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
    	if (IS_ENABLED(CONFIG_ACPI))
    		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
    
    	return 0;
    
    err3:
    	class_unregister(&spi_master_class);
    err2:
    	bus_unregister(&spi_bus_type);
    err1:
    	kfree(buf);
    	buf = NULL;
    err0:
    	return status;
    }
    
    /* board_info is normally registered in arch_initcall(),
     * but even essential drivers wait till later
     *
     * REVISIT only boardinfo really needs static linking. the rest (device and
     * driver registration) _could_ be dynamically linked (modular) ... costs
     * include needing to have boardinfo data structures be much more public.
     */
    postcore_initcall(spi_init);