Skip to content
Snippets Groups Projects
Select Git revision
  • c46241a370a61f0f264791abb9fc869016e749ce
  • easycap-v2-noncont-stats-25-jan2
  • easycap-v2-noncont-stats-25-jan
  • easypcap-test-regressions
  • easycap-v2-coherent-stats-24-jan
  • mt8195-tracking-master-2
  • test-mt8173-only-smi-cleanup
  • mt8173-mdp
  • test-mt8173-mdp-both-sets
  • test-mt8173-torvalds-clean-5.16
  • easycap-coherent-10-jan
  • easycap-noncont-10-jan
  • easycap-no-noncont
  • easycap-4
  • easycap-3
  • easycap-2
  • easycap
  • nov-29-2
  • nov-22
  • nov-15
  • fix-iommu-warning-sre
21 results

fault.c

Blame
  • Forked from André Almeida / linux
    Source project has a limited visibility.
    fault.c 20.38 KiB
    // SPDX-License-Identifier: GPL-2.0-or-later
    /*
     *  PowerPC version
     *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
     *
     *  Derived from "arch/i386/mm/fault.c"
     *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
     *
     *  Modified by Cort Dougan and Paul Mackerras.
     *
     *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
     */
    
    #include <linux/signal.h>
    #include <linux/sched.h>
    #include <linux/sched/task_stack.h>
    #include <linux/kernel.h>
    #include <linux/errno.h>
    #include <linux/string.h>
    #include <linux/types.h>
    #include <linux/pagemap.h>
    #include <linux/ptrace.h>
    #include <linux/mman.h>
    #include <linux/mm.h>
    #include <linux/interrupt.h>
    #include <linux/highmem.h>
    #include <linux/extable.h>
    #include <linux/kprobes.h>
    #include <linux/kdebug.h>
    #include <linux/perf_event.h>
    #include <linux/ratelimit.h>
    #include <linux/context_tracking.h>
    #include <linux/hugetlb.h>
    #include <linux/uaccess.h>
    
    #include <asm/firmware.h>
    #include <asm/page.h>
    #include <asm/pgtable.h>
    #include <asm/mmu.h>
    #include <asm/mmu_context.h>
    #include <asm/siginfo.h>
    #include <asm/debug.h>
    #include <asm/kup.h>
    
    /*
     * Check whether the instruction inst is a store using
     * an update addressing form which will update r1.
     */
    static bool store_updates_sp(unsigned int inst)
    {
    	/* check for 1 in the rA field */
    	if (((inst >> 16) & 0x1f) != 1)
    		return false;
    	/* check major opcode */
    	switch (inst >> 26) {
    	case OP_STWU:
    	case OP_STBU:
    	case OP_STHU:
    	case OP_STFSU:
    	case OP_STFDU:
    		return true;
    	case OP_STD:	/* std or stdu */
    		return (inst & 3) == 1;
    	case OP_31:
    		/* check minor opcode */
    		switch ((inst >> 1) & 0x3ff) {
    		case OP_31_XOP_STDUX:
    		case OP_31_XOP_STWUX:
    		case OP_31_XOP_STBUX:
    		case OP_31_XOP_STHUX:
    		case OP_31_XOP_STFSUX:
    		case OP_31_XOP_STFDUX:
    			return true;
    		}
    	}
    	return false;
    }
    /*
     * do_page_fault error handling helpers
     */
    
    static int
    __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
    {
    	/*
    	 * If we are in kernel mode, bail out with a SEGV, this will
    	 * be caught by the assembly which will restore the non-volatile
    	 * registers before calling bad_page_fault()
    	 */
    	if (!user_mode(regs))
    		return SIGSEGV;
    
    	_exception(SIGSEGV, regs, si_code, address);
    
    	return 0;
    }
    
    static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
    {
    	return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
    }
    
    static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
    {
    	struct mm_struct *mm = current->mm;
    
    	/*
    	 * Something tried to access memory that isn't in our memory map..
    	 * Fix it, but check if it's kernel or user first..
    	 */
    	up_read(&mm->mmap_sem);
    
    	return __bad_area_nosemaphore(regs, address, si_code);
    }
    
    static noinline int bad_area(struct pt_regs *regs, unsigned long address)
    {
    	return __bad_area(regs, address, SEGV_MAPERR);
    }
    
    #ifdef CONFIG_PPC_MEM_KEYS
    static noinline int bad_access_pkey(struct pt_regs *regs, unsigned long address,
    				    struct vm_area_struct *vma)
    {
    	struct mm_struct *mm = current->mm;
    	int pkey;
    
    	/*
    	 * We don't try to fetch the pkey from page table because reading
    	 * page table without locking doesn't guarantee stable pte value.
    	 * Hence the pkey value that we return to userspace can be different
    	 * from the pkey that actually caused access error.
    	 *
    	 * It does *not* guarantee that the VMA we find here
    	 * was the one that we faulted on.
    	 *
    	 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
    	 * 2. T1   : set AMR to deny access to pkey=4, touches, page
    	 * 3. T1   : faults...
    	 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
    	 * 5. T1   : enters fault handler, takes mmap_sem, etc...
    	 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
    	 *	     faulted on a pte with its pkey=4.
    	 */
    	pkey = vma_pkey(vma);
    
    	up_read(&mm->mmap_sem);
    
    	/*
    	 * If we are in kernel mode, bail out with a SEGV, this will
    	 * be caught by the assembly which will restore the non-volatile
    	 * registers before calling bad_page_fault()
    	 */
    	if (!user_mode(regs))
    		return SIGSEGV;
    
    	_exception_pkey(regs, address, pkey);
    
    	return 0;
    }
    #endif
    
    static noinline int bad_access(struct pt_regs *regs, unsigned long address)
    {
    	return __bad_area(regs, address, SEGV_ACCERR);
    }
    
    static int do_sigbus(struct pt_regs *regs, unsigned long address,
    		     vm_fault_t fault)
    {
    	if (!user_mode(regs))
    		return SIGBUS;
    
    	current->thread.trap_nr = BUS_ADRERR;
    #ifdef CONFIG_MEMORY_FAILURE
    	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
    		unsigned int lsb = 0; /* shutup gcc */
    
    		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
    			current->comm, current->pid, address);
    
    		if (fault & VM_FAULT_HWPOISON_LARGE)
    			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
    		if (fault & VM_FAULT_HWPOISON)
    			lsb = PAGE_SHIFT;
    
    		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
    		return 0;
    	}
    
    #endif
    	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
    	return 0;
    }
    
    static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
    				vm_fault_t fault)
    {
    	/*
    	 * Kernel page fault interrupted by SIGKILL. We have no reason to
    	 * continue processing.
    	 */
    	if (fatal_signal_pending(current) && !user_mode(regs))
    		return SIGKILL;
    
    	/* Out of memory */
    	if (fault & VM_FAULT_OOM) {
    		/*
    		 * We ran out of memory, or some other thing happened to us that
    		 * made us unable to handle the page fault gracefully.
    		 */
    		if (!user_mode(regs))
    			return SIGSEGV;
    		pagefault_out_of_memory();
    	} else {
    		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
    			     VM_FAULT_HWPOISON_LARGE))
    			return do_sigbus(regs, addr, fault);
    		else if (fault & VM_FAULT_SIGSEGV)
    			return bad_area_nosemaphore(regs, addr);
    		else
    			BUG();
    	}
    	return 0;
    }
    
    /* Is this a bad kernel fault ? */
    static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
    			     unsigned long address, bool is_write)
    {
    	int is_exec = TRAP(regs) == 0x400;
    
    	/* NX faults set DSISR_PROTFAULT on the 8xx, DSISR_NOEXEC_OR_G on others */
    	if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT |
    				      DSISR_PROTFAULT))) {
    		pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
    				    address >= TASK_SIZE ? "exec-protected" : "user",
    				    address,
    				    from_kuid(&init_user_ns, current_uid()));
    
    		// Kernel exec fault is always bad
    		return true;
    	}
    
    	if (!is_exec && address < TASK_SIZE && (error_code & DSISR_PROTFAULT) &&
    	    !search_exception_tables(regs->nip)) {
    		pr_crit_ratelimited("Kernel attempted to access user page (%lx) - exploit attempt? (uid: %d)\n",
    				    address,
    				    from_kuid(&init_user_ns, current_uid()));
    	}
    
    	// Kernel fault on kernel address is bad
    	if (address >= TASK_SIZE)
    		return true;
    
    	// Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
    	if (!search_exception_tables(regs->nip))
    		return true;
    
    	// Read/write fault in a valid region (the exception table search passed
    	// above), but blocked by KUAP is bad, it can never succeed.
    	if (bad_kuap_fault(regs, address, is_write))
    		return true;
    
    	// What's left? Kernel fault on user in well defined regions (extable
    	// matched), and allowed by KUAP in the faulting context.
    	return false;
    }
    
    static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address,
    				struct vm_area_struct *vma, unsigned int flags,
    				bool *must_retry)
    {
    	/*
    	 * N.B. The POWER/Open ABI allows programs to access up to
    	 * 288 bytes below the stack pointer.
    	 * The kernel signal delivery code writes up to about 1.5kB
    	 * below the stack pointer (r1) before decrementing it.
    	 * The exec code can write slightly over 640kB to the stack
    	 * before setting the user r1.  Thus we allow the stack to
    	 * expand to 1MB without further checks.
    	 */
    	if (address + 0x100000 < vma->vm_end) {
    		unsigned int __user *nip = (unsigned int __user *)regs->nip;
    		/* get user regs even if this fault is in kernel mode */
    		struct pt_regs *uregs = current->thread.regs;
    		if (uregs == NULL)
    			return true;
    
    		/*
    		 * A user-mode access to an address a long way below
    		 * the stack pointer is only valid if the instruction
    		 * is one which would update the stack pointer to the
    		 * address accessed if the instruction completed,
    		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
    		 * (or the byte, halfword, float or double forms).
    		 *
    		 * If we don't check this then any write to the area
    		 * between the last mapped region and the stack will
    		 * expand the stack rather than segfaulting.
    		 */
    		if (address + 2048 >= uregs->gpr[1])
    			return false;
    
    		if ((flags & FAULT_FLAG_WRITE) && (flags & FAULT_FLAG_USER) &&
    		    access_ok(nip, sizeof(*nip))) {
    			unsigned int inst;
    
    			if (!probe_user_read(&inst, nip, sizeof(inst)))
    				return !store_updates_sp(inst);
    			*must_retry = true;
    		}
    		return true;
    	}
    	return false;
    }
    
    #ifdef CONFIG_PPC_MEM_KEYS
    static bool access_pkey_error(bool is_write, bool is_exec, bool is_pkey,
    			      struct vm_area_struct *vma)
    {
    	/*
    	 * Make sure to check the VMA so that we do not perform
    	 * faults just to hit a pkey fault as soon as we fill in a
    	 * page. Only called for current mm, hence foreign == 0
    	 */
    	if (!arch_vma_access_permitted(vma, is_write, is_exec, 0))
    		return true;
    
    	return false;
    }
    #endif
    
    static bool access_error(bool is_write, bool is_exec, struct vm_area_struct *vma)
    {
    	/*
    	 * Allow execution from readable areas if the MMU does not
    	 * provide separate controls over reading and executing.
    	 *
    	 * Note: That code used to not be enabled for 4xx/BookE.
    	 * It is now as I/D cache coherency for these is done at
    	 * set_pte_at() time and I see no reason why the test
    	 * below wouldn't be valid on those processors. This -may-
    	 * break programs compiled with a really old ABI though.
    	 */
    	if (is_exec) {
    		return !(vma->vm_flags & VM_EXEC) &&
    			(cpu_has_feature(CPU_FTR_NOEXECUTE) ||
    			 !(vma->vm_flags & (VM_READ | VM_WRITE)));
    	}
    
    	if (is_write) {
    		if (unlikely(!(vma->vm_flags & VM_WRITE)))
    			return true;
    		return false;
    	}
    
    	if (unlikely(!vma_is_accessible(vma)))
    		return true;
    	/*
    	 * We should ideally do the vma pkey access check here. But in the
    	 * fault path, handle_mm_fault() also does the same check. To avoid
    	 * these multiple checks, we skip it here and handle access error due
    	 * to pkeys later.
    	 */
    	return false;
    }
    
    #ifdef CONFIG_PPC_SMLPAR
    static inline void cmo_account_page_fault(void)
    {
    	if (firmware_has_feature(FW_FEATURE_CMO)) {
    		u32 page_ins;
    
    		preempt_disable();
    		page_ins = be32_to_cpu(get_lppaca()->page_ins);
    		page_ins += 1 << PAGE_FACTOR;
    		get_lppaca()->page_ins = cpu_to_be32(page_ins);
    		preempt_enable();
    	}
    }
    #else
    static inline void cmo_account_page_fault(void) { }
    #endif /* CONFIG_PPC_SMLPAR */
    
    #ifdef CONFIG_PPC_BOOK3S
    static void sanity_check_fault(bool is_write, bool is_user,
    			       unsigned long error_code, unsigned long address)
    {
    	/*
    	 * Userspace trying to access kernel address, we get PROTFAULT for that.
    	 */
    	if (is_user && address >= TASK_SIZE) {
    		if ((long)address == -1)
    			return;
    
    		pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
    				   current->comm, current->pid, address,
    				   from_kuid(&init_user_ns, current_uid()));
    		return;
    	}
    
    	/*
    	 * For hash translation mode, we should never get a
    	 * PROTFAULT. Any update to pte to reduce access will result in us
    	 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
    	 * fault instead of DSISR_PROTFAULT.
    	 *
    	 * A pte update to relax the access will not result in a hash page table
    	 * entry invalidate and hence can result in DSISR_PROTFAULT.
    	 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
    	 * the special !is_write in the below conditional.
    	 *
    	 * For platforms that doesn't supports coherent icache and do support
    	 * per page noexec bit, we do setup things such that we do the
    	 * sync between D/I cache via fault. But that is handled via low level
    	 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
    	 * here in such case.
    	 *
    	 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
    	 * check should handle those and hence we should fall to the bad_area
    	 * handling correctly.
    	 *
    	 * For embedded with per page exec support that doesn't support coherent
    	 * icache we do get PROTFAULT and we handle that D/I cache sync in
    	 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
    	 * is conditional for server MMU.
    	 *
    	 * For radix, we can get prot fault for autonuma case, because radix
    	 * page table will have them marked noaccess for user.
    	 */
    	if (radix_enabled() || is_write)
    		return;
    
    	WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
    }
    #else
    static void sanity_check_fault(bool is_write, bool is_user,
    			       unsigned long error_code, unsigned long address) { }
    #endif /* CONFIG_PPC_BOOK3S */
    
    /*
     * Define the correct "is_write" bit in error_code based
     * on the processor family
     */
    #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
    #define page_fault_is_write(__err)	((__err) & ESR_DST)
    #define page_fault_is_bad(__err)	(0)
    #else
    #define page_fault_is_write(__err)	((__err) & DSISR_ISSTORE)
    #if defined(CONFIG_PPC_8xx)
    #define page_fault_is_bad(__err)	((__err) & DSISR_NOEXEC_OR_G)
    #elif defined(CONFIG_PPC64)
    #define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_64S)
    #else
    #define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_32S)
    #endif
    #endif
    
    /*
     * For 600- and 800-family processors, the error_code parameter is DSISR
     * for a data fault, SRR1 for an instruction fault. For 400-family processors
     * the error_code parameter is ESR for a data fault, 0 for an instruction
     * fault.
     * For 64-bit processors, the error_code parameter is
     *  - DSISR for a non-SLB data access fault,
     *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
     *  - 0 any SLB fault.
     *
     * The return value is 0 if the fault was handled, or the signal
     * number if this is a kernel fault that can't be handled here.
     */
    static int __do_page_fault(struct pt_regs *regs, unsigned long address,
    			   unsigned long error_code)
    {
    	struct vm_area_struct * vma;
    	struct mm_struct *mm = current->mm;
    	unsigned int flags = FAULT_FLAG_DEFAULT;
     	int is_exec = TRAP(regs) == 0x400;
    	int is_user = user_mode(regs);
    	int is_write = page_fault_is_write(error_code);
    	vm_fault_t fault, major = 0;
    	bool must_retry = false;
    	bool kprobe_fault = kprobe_page_fault(regs, 11);
    
    	if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
    		return 0;
    
    	if (unlikely(page_fault_is_bad(error_code))) {
    		if (is_user) {
    			_exception(SIGBUS, regs, BUS_OBJERR, address);
    			return 0;
    		}
    		return SIGBUS;
    	}
    
    	/* Additional sanity check(s) */
    	sanity_check_fault(is_write, is_user, error_code, address);
    
    	/*
    	 * The kernel should never take an execute fault nor should it
    	 * take a page fault to a kernel address or a page fault to a user
    	 * address outside of dedicated places
    	 */
    	if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write)))
    		return SIGSEGV;
    
    	/*
    	 * If we're in an interrupt, have no user context or are running
    	 * in a region with pagefaults disabled then we must not take the fault
    	 */
    	if (unlikely(faulthandler_disabled() || !mm)) {
    		if (is_user)
    			printk_ratelimited(KERN_ERR "Page fault in user mode"
    					   " with faulthandler_disabled()=%d"
    					   " mm=%p\n",
    					   faulthandler_disabled(), mm);
    		return bad_area_nosemaphore(regs, address);
    	}
    
    	/* We restore the interrupt state now */
    	if (!arch_irq_disabled_regs(regs))
    		local_irq_enable();
    
    	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
    
    	/*
    	 * We want to do this outside mmap_sem, because reading code around nip
    	 * can result in fault, which will cause a deadlock when called with
    	 * mmap_sem held
    	 */
    	if (is_user)
    		flags |= FAULT_FLAG_USER;
    	if (is_write)
    		flags |= FAULT_FLAG_WRITE;
    	if (is_exec)
    		flags |= FAULT_FLAG_INSTRUCTION;
    
    	/* When running in the kernel we expect faults to occur only to
    	 * addresses in user space.  All other faults represent errors in the
    	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
    	 * erroneous fault occurring in a code path which already holds mmap_sem
    	 * we will deadlock attempting to validate the fault against the
    	 * address space.  Luckily the kernel only validly references user
    	 * space from well defined areas of code, which are listed in the
    	 * exceptions table.
    	 *
    	 * As the vast majority of faults will be valid we will only perform
    	 * the source reference check when there is a possibility of a deadlock.
    	 * Attempt to lock the address space, if we cannot we then validate the
    	 * source.  If this is invalid we can skip the address space check,
    	 * thus avoiding the deadlock.
    	 */
    	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
    		if (!is_user && !search_exception_tables(regs->nip))
    			return bad_area_nosemaphore(regs, address);
    
    retry:
    		down_read(&mm->mmap_sem);
    	} else {
    		/*
    		 * The above down_read_trylock() might have succeeded in
    		 * which case we'll have missed the might_sleep() from
    		 * down_read():
    		 */
    		might_sleep();
    	}
    
    	vma = find_vma(mm, address);
    	if (unlikely(!vma))
    		return bad_area(regs, address);
    	if (likely(vma->vm_start <= address))
    		goto good_area;
    	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
    		return bad_area(regs, address);
    
    	/* The stack is being expanded, check if it's valid */
    	if (unlikely(bad_stack_expansion(regs, address, vma, flags,
    					 &must_retry))) {
    		if (!must_retry)
    			return bad_area(regs, address);
    
    		up_read(&mm->mmap_sem);
    		if (fault_in_pages_readable((const char __user *)regs->nip,
    					    sizeof(unsigned int)))
    			return bad_area_nosemaphore(regs, address);
    		goto retry;
    	}
    
    	/* Try to expand it */
    	if (unlikely(expand_stack(vma, address)))
    		return bad_area(regs, address);
    
    good_area:
    
    #ifdef CONFIG_PPC_MEM_KEYS
    	if (unlikely(access_pkey_error(is_write, is_exec,
    				       (error_code & DSISR_KEYFAULT), vma)))
    		return bad_access_pkey(regs, address, vma);
    #endif /* CONFIG_PPC_MEM_KEYS */
    
    	if (unlikely(access_error(is_write, is_exec, vma)))
    		return bad_access(regs, address);
    
    	/*
    	 * If for any reason at all we couldn't handle the fault,
    	 * make sure we exit gracefully rather than endlessly redo
    	 * the fault.
    	 */
    	fault = handle_mm_fault(vma, address, flags);
    
    	major |= fault & VM_FAULT_MAJOR;
    
    	if (fault_signal_pending(fault, regs))
    		return user_mode(regs) ? 0 : SIGBUS;
    
    	/*
    	 * Handle the retry right now, the mmap_sem has been released in that
    	 * case.
    	 */
    	if (unlikely(fault & VM_FAULT_RETRY)) {
    		if (flags & FAULT_FLAG_ALLOW_RETRY) {
    			flags |= FAULT_FLAG_TRIED;
    			goto retry;
    		}
    	}
    
    	up_read(&current->mm->mmap_sem);
    
    	if (unlikely(fault & VM_FAULT_ERROR))
    		return mm_fault_error(regs, address, fault);
    
    	/*
    	 * Major/minor page fault accounting.
    	 */
    	if (major) {
    		current->maj_flt++;
    		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
    		cmo_account_page_fault();
    	} else {
    		current->min_flt++;
    		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
    	}
    	return 0;
    }
    NOKPROBE_SYMBOL(__do_page_fault);
    
    int do_page_fault(struct pt_regs *regs, unsigned long address,
    		  unsigned long error_code)
    {
    	enum ctx_state prev_state = exception_enter();
    	int rc = __do_page_fault(regs, address, error_code);
    	exception_exit(prev_state);
    	return rc;
    }
    NOKPROBE_SYMBOL(do_page_fault);
    
    /*
     * bad_page_fault is called when we have a bad access from the kernel.
     * It is called from the DSI and ISI handlers in head.S and from some
     * of the procedures in traps.c.
     */
    void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
    {
    	const struct exception_table_entry *entry;
    	int is_write = page_fault_is_write(regs->dsisr);
    
    	/* Are we prepared to handle this fault?  */
    	if ((entry = search_exception_tables(regs->nip)) != NULL) {
    		regs->nip = extable_fixup(entry);
    		return;
    	}
    
    	/* kernel has accessed a bad area */
    
    	switch (TRAP(regs)) {
    	case 0x300:
    	case 0x380:
    	case 0xe00:
    		pr_alert("BUG: %s on %s at 0x%08lx\n",
    			 regs->dar < PAGE_SIZE ? "Kernel NULL pointer dereference" :
    			 "Unable to handle kernel data access",
    			 is_write ? "write" : "read", regs->dar);
    		break;
    	case 0x400:
    	case 0x480:
    		pr_alert("BUG: Unable to handle kernel instruction fetch%s",
    			 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
    		break;
    	case 0x600:
    		pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
    			 regs->dar);
    		break;
    	default:
    		pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
    			 regs->dar);
    		break;
    	}
    	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
    		regs->nip);
    
    	if (task_stack_end_corrupted(current))
    		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
    
    	die("Kernel access of bad area", regs, sig);
    }