Skip to content
Snippets Groups Projects
Select Git revision
  • 3035c51e8ac0512686ceb9f2bd1d13bdc6e4fb29
  • add-vdpu381-and-383-to-rkvdec
  • prepare-add-vdpu381-and-383-to-rkvdec
  • add-rkvdec2-driver-vdpu383-hevc
  • add-rkvdec2-driver-vdpu383
  • add-rkvdec2-driver-hevc
  • rkvdec-mov-to-structs
  • av1-fix-postproc-leak
  • add-rkvdec2-driver-iommu-422-10bits
  • patch-queue/jamba/trixie
  • hdmi-fix-1080p-rock4d-6.11
  • upstreaming/rk3576-rock4d-spi-v1
  • upstreaming/rk3576-rock4d-support-v5
  • upstreaming/rk3588-hdmi-audio-6
  • upstreaming/rk3576-rock4d-support-v3
  • upstreaming/rk3576-rock4d-support-v1
  • upstreaming/rk3576-rock4d-support
  • add-rkvdec2-driver-iommu
  • upstream/rk3576-rock-4d
  • rk3588-hdmi-audio-2
  • fix-rk3588-i2s-tdm-clocks
  • v6.3
  • v6.3-rc1
  • v6.2-rc1
  • v6.0-rc1
  • v5.19-rc3
  • v5.19-rc2
  • v5.19-rc1
  • v5.18
  • v5.18-rc7
  • v5.18-rc6
  • v5.18-rc5
  • v5.18-rc4
  • v5.18-rc3
  • v5.18-rc2
  • v5.18-rc1
  • v5.17
  • v5.17-rc8
  • v5.17-rc7
  • v5.17-rc6
  • v5.17-rc5
41 results

audit.c

Blame
  • Forked from hardware-enablement / Rockchip upstream enablement efforts / linux
    Source project has a limited visibility.
    • Eric Paris's avatar
      3035c51e
      audit: drop the meaningless and format breaking word 'user' · 3035c51e
      Eric Paris authored
      
      userspace audit messages look like so:
      
      type=USER msg=audit(1271170549.415:24710): user pid=14722 uid=0 auid=500 ses=1 subj=unconfined_u:unconfined_r:auditctl_t:s0-s0:c0.c1023 msg=''
      
      That third field just says 'user'.  That's useless and doesn't follow the
      key=value pair we are trying to enforce.  We already know it came from the
      user based on the record type.  Kill that word.  Die.
      
      Signed-off-by: default avatarEric Paris <eparis@redhat.com>
      3035c51e
      History
      audit: drop the meaningless and format breaking word 'user'
      Eric Paris authored
      
      userspace audit messages look like so:
      
      type=USER msg=audit(1271170549.415:24710): user pid=14722 uid=0 auid=500 ses=1 subj=unconfined_u:unconfined_r:auditctl_t:s0-s0:c0.c1023 msg=''
      
      That third field just says 'user'.  That's useless and doesn't follow the
      key=value pair we are trying to enforce.  We already know it came from the
      user based on the record type.  Kill that word.  Die.
      
      Signed-off-by: default avatarEric Paris <eparis@redhat.com>
    coproc.c 32.35 KiB
    /*
     * Copyright (C) 2012 - Virtual Open Systems and Columbia University
     * Authors: Rusty Russell <rusty@rustcorp.com.au>
     *          Christoffer Dall <c.dall@virtualopensystems.com>
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License, version 2, as
     * published by the Free Software Foundation.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with this program; if not, write to the Free Software
     * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
     */
    #include <linux/mm.h>
    #include <linux/kvm_host.h>
    #include <linux/uaccess.h>
    #include <asm/kvm_arm.h>
    #include <asm/kvm_host.h>
    #include <asm/kvm_emulate.h>
    #include <asm/kvm_coproc.h>
    #include <asm/cacheflush.h>
    #include <asm/cputype.h>
    #include <trace/events/kvm.h>
    #include <asm/vfp.h>
    #include "../vfp/vfpinstr.h"
    
    #include "trace.h"
    #include "coproc.h"
    
    
    /******************************************************************************
     * Co-processor emulation
     *****************************************************************************/
    
    /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
    static u32 cache_levels;
    
    /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
    #define CSSELR_MAX 12
    
    int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
    {
    	kvm_inject_undefined(vcpu);
    	return 1;
    }
    
    int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
    {
    	/*
    	 * We can get here, if the host has been built without VFPv3 support,
    	 * but the guest attempted a floating point operation.
    	 */
    	kvm_inject_undefined(vcpu);
    	return 1;
    }
    
    int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
    {
    	kvm_inject_undefined(vcpu);
    	return 1;
    }
    
    int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
    {
    	kvm_inject_undefined(vcpu);
    	return 1;
    }
    
    static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
    {
    	/*
    	 * Compute guest MPIDR. No need to mess around with different clusters
    	 * but we read the 'U' bit from the underlying hardware directly.
    	 */
    	vcpu->arch.cp15[c0_MPIDR] = (read_cpuid_mpidr() & MPIDR_SMP_BITMASK)
    					| vcpu->vcpu_id;
    }
    
    /* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
    static bool access_actlr(struct kvm_vcpu *vcpu,
    			 const struct coproc_params *p,
    			 const struct coproc_reg *r)
    {
    	if (p->is_write)
    		return ignore_write(vcpu, p);
    
    	*vcpu_reg(vcpu, p->Rt1) = vcpu->arch.cp15[c1_ACTLR];
    	return true;
    }
    
    /* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
    static bool access_cbar(struct kvm_vcpu *vcpu,
    			const struct coproc_params *p,
    			const struct coproc_reg *r)
    {
    	if (p->is_write)
    		return write_to_read_only(vcpu, p);
    	return read_zero(vcpu, p);
    }
    
    /* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
    static bool access_l2ctlr(struct kvm_vcpu *vcpu,
    			  const struct coproc_params *p,
    			  const struct coproc_reg *r)
    {
    	if (p->is_write)
    		return ignore_write(vcpu, p);
    
    	*vcpu_reg(vcpu, p->Rt1) = vcpu->arch.cp15[c9_L2CTLR];
    	return true;
    }
    
    static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
    {
    	u32 l2ctlr, ncores;
    
    	asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
    	l2ctlr &= ~(3 << 24);
    	ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
    	l2ctlr |= (ncores & 3) << 24;
    
    	vcpu->arch.cp15[c9_L2CTLR] = l2ctlr;
    }
    
    static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
    {
    	u32 actlr;
    
    	/* ACTLR contains SMP bit: make sure you create all cpus first! */
    	asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
    	/* Make the SMP bit consistent with the guest configuration */
    	if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
    		actlr |= 1U << 6;
    	else
    		actlr &= ~(1U << 6);
    
    	vcpu->arch.cp15[c1_ACTLR] = actlr;
    }
    
    /*
     * TRM entries: A7:4.3.50, A15:4.3.49
     * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
     */
    static bool access_l2ectlr(struct kvm_vcpu *vcpu,
    			   const struct coproc_params *p,
    			   const struct coproc_reg *r)
    {
    	if (p->is_write)
    		return ignore_write(vcpu, p);
    
    	*vcpu_reg(vcpu, p->Rt1) = 0;
    	return true;
    }
    
    /* See note at ARM ARM B1.14.4 */
    static bool access_dcsw(struct kvm_vcpu *vcpu,
    			const struct coproc_params *p,
    			const struct coproc_reg *r)
    {
    	unsigned long val;
    	int cpu;
    
    	if (!p->is_write)
    		return read_from_write_only(vcpu, p);
    
    	cpu = get_cpu();
    
    	cpumask_setall(&vcpu->arch.require_dcache_flush);
    	cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
    
    	/* If we were already preempted, take the long way around */
    	if (cpu != vcpu->arch.last_pcpu) {
    		flush_cache_all();
    		goto done;
    	}
    
    	val = *vcpu_reg(vcpu, p->Rt1);
    
    	switch (p->CRm) {
    	case 6:			/* Upgrade DCISW to DCCISW, as per HCR.SWIO */
    	case 14:		/* DCCISW */
    		asm volatile("mcr p15, 0, %0, c7, c14, 2" : : "r" (val));
    		break;
    
    	case 10:		/* DCCSW */
    		asm volatile("mcr p15, 0, %0, c7, c10, 2" : : "r" (val));
    		break;
    	}
    
    done:
    	put_cpu();
    
    	return true;
    }
    
    /*
     * We could trap ID_DFR0 and tell the guest we don't support performance
     * monitoring.  Unfortunately the patch to make the kernel check ID_DFR0 was
     * NAKed, so it will read the PMCR anyway.
     *
     * Therefore we tell the guest we have 0 counters.  Unfortunately, we
     * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
     * all PM registers, which doesn't crash the guest kernel at least.
     */
    static bool pm_fake(struct kvm_vcpu *vcpu,
    		    const struct coproc_params *p,
    		    const struct coproc_reg *r)
    {
    	if (p->is_write)
    		return ignore_write(vcpu, p);
    	else
    		return read_zero(vcpu, p);
    }
    
    #define access_pmcr pm_fake
    #define access_pmcntenset pm_fake
    #define access_pmcntenclr pm_fake
    #define access_pmovsr pm_fake
    #define access_pmselr pm_fake
    #define access_pmceid0 pm_fake
    #define access_pmceid1 pm_fake
    #define access_pmccntr pm_fake
    #define access_pmxevtyper pm_fake
    #define access_pmxevcntr pm_fake
    #define access_pmuserenr pm_fake
    #define access_pmintenset pm_fake
    #define access_pmintenclr pm_fake
    
    /* Architected CP15 registers.
     * CRn denotes the primary register number, but is copied to the CRm in the
     * user space API for 64-bit register access in line with the terminology used
     * in the ARM ARM.
     * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
     *            registers preceding 32-bit ones.
     */
    static const struct coproc_reg cp15_regs[] = {
    	/* MPIDR: we use VMPIDR for guest access. */
    	{ CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
    			NULL, reset_mpidr, c0_MPIDR },
    
    	/* CSSELR: swapped by interrupt.S. */
    	{ CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
    			NULL, reset_unknown, c0_CSSELR },
    
    	/* ACTLR: trapped by HCR.TAC bit. */
    	{ CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
    			access_actlr, reset_actlr, c1_ACTLR },
    
    	/* CPACR: swapped by interrupt.S. */
    	{ CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
    			NULL, reset_val, c1_CPACR, 0x00000000 },
    
    	/* TTBR0/TTBR1: swapped by interrupt.S. */
    	{ CRm64( 2), Op1( 0), is64, NULL, reset_unknown64, c2_TTBR0 },
    	{ CRm64( 2), Op1( 1), is64, NULL, reset_unknown64, c2_TTBR1 },
    
    	/* TTBCR: swapped by interrupt.S. */
    	{ CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
    			NULL, reset_val, c2_TTBCR, 0x00000000 },
    
    	/* DACR: swapped by interrupt.S. */
    	{ CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
    			NULL, reset_unknown, c3_DACR },
    
    	/* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
    	{ CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
    			NULL, reset_unknown, c5_DFSR },
    	{ CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
    			NULL, reset_unknown, c5_IFSR },
    	{ CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
    			NULL, reset_unknown, c5_ADFSR },
    	{ CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
    			NULL, reset_unknown, c5_AIFSR },
    
    	/* DFAR/IFAR: swapped by interrupt.S. */
    	{ CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
    			NULL, reset_unknown, c6_DFAR },
    	{ CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
    			NULL, reset_unknown, c6_IFAR },
    
    	/* PAR swapped by interrupt.S */
    	{ CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
    
    	/*
    	 * DC{C,I,CI}SW operations:
    	 */
    	{ CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
    	{ CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
    	{ CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
    	/*
    	 * L2CTLR access (guest wants to know #CPUs).
    	 */
    	{ CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
    			access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
    	{ CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
    
    	/*
    	 * Dummy performance monitor implementation.
    	 */
    	{ CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
    	{ CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
    	{ CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
    	{ CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
    	{ CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
    	{ CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
    	{ CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
    	{ CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
    	{ CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
    	{ CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
    	{ CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
    	{ CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
    	{ CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
    
    	/* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
    	{ CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
    			NULL, reset_unknown, c10_PRRR},
    	{ CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
    			NULL, reset_unknown, c10_NMRR},
    
    	/* VBAR: swapped by interrupt.S. */
    	{ CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
    			NULL, reset_val, c12_VBAR, 0x00000000 },
    
    	/* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
    	{ CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
    			NULL, reset_val, c13_CID, 0x00000000 },
    	{ CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
    			NULL, reset_unknown, c13_TID_URW },
    	{ CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
    			NULL, reset_unknown, c13_TID_URO },
    	{ CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
    			NULL, reset_unknown, c13_TID_PRIV },
    
    	/* CNTKCTL: swapped by interrupt.S. */
    	{ CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
    			NULL, reset_val, c14_CNTKCTL, 0x00000000 },
    
    	/* The Configuration Base Address Register. */
    	{ CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
    };
    
    /* Target specific emulation tables */
    static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
    
    void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
    {
    	unsigned int i;
    
    	for (i = 1; i < table->num; i++)
    		BUG_ON(cmp_reg(&table->table[i-1],
    			       &table->table[i]) >= 0);
    
    	target_tables[table->target] = table;
    }
    
    /* Get specific register table for this target. */
    static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
    {
    	struct kvm_coproc_target_table *table;
    
    	table = target_tables[target];
    	*num = table->num;
    	return table->table;
    }
    
    static const struct coproc_reg *find_reg(const struct coproc_params *params,
    					 const struct coproc_reg table[],
    					 unsigned int num)
    {
    	unsigned int i;
    
    	for (i = 0; i < num; i++) {
    		const struct coproc_reg *r = &table[i];
    
    		if (params->is_64bit != r->is_64)
    			continue;
    		if (params->CRn != r->CRn)
    			continue;
    		if (params->CRm != r->CRm)
    			continue;
    		if (params->Op1 != r->Op1)
    			continue;
    		if (params->Op2 != r->Op2)
    			continue;
    
    		return r;
    	}
    	return NULL;
    }
    
    static int emulate_cp15(struct kvm_vcpu *vcpu,
    			const struct coproc_params *params)
    {
    	size_t num;
    	const struct coproc_reg *table, *r;
    
    	trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
    				   params->CRm, params->Op2, params->is_write);
    
    	table = get_target_table(vcpu->arch.target, &num);
    
    	/* Search target-specific then generic table. */
    	r = find_reg(params, table, num);
    	if (!r)
    		r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
    
    	if (likely(r)) {
    		/* If we don't have an accessor, we should never get here! */
    		BUG_ON(!r->access);
    
    		if (likely(r->access(vcpu, params, r))) {
    			/* Skip instruction, since it was emulated */
    			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
    			return 1;
    		}
    		/* If access function fails, it should complain. */
    	} else {
    		kvm_err("Unsupported guest CP15 access at: %08lx\n",
    			*vcpu_pc(vcpu));
    		print_cp_instr(params);
    	}
    	kvm_inject_undefined(vcpu);
    	return 1;
    }
    
    /**
     * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
     * @vcpu: The VCPU pointer
     * @run:  The kvm_run struct
     */
    int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
    {
    	struct coproc_params params;
    
    	params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
    	params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
    	params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
    	params.is_64bit = true;
    
    	params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
    	params.Op2 = 0;
    	params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
    	params.CRn = 0;
    
    	return emulate_cp15(vcpu, &params);
    }
    
    static void reset_coproc_regs(struct kvm_vcpu *vcpu,
    			      const struct coproc_reg *table, size_t num)
    {
    	unsigned long i;
    
    	for (i = 0; i < num; i++)
    		if (table[i].reset)
    			table[i].reset(vcpu, &table[i]);
    }
    
    /**
     * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
     * @vcpu: The VCPU pointer
     * @run:  The kvm_run struct
     */
    int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
    {
    	struct coproc_params params;
    
    	params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
    	params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
    	params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
    	params.is_64bit = false;
    
    	params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
    	params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
    	params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
    	params.Rt2 = 0;
    
    	return emulate_cp15(vcpu, &params);
    }
    
    /******************************************************************************
     * Userspace API
     *****************************************************************************/
    
    static bool index_to_params(u64 id, struct coproc_params *params)
    {
    	switch (id & KVM_REG_SIZE_MASK) {
    	case KVM_REG_SIZE_U32:
    		/* Any unused index bits means it's not valid. */
    		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
    			   | KVM_REG_ARM_COPROC_MASK
    			   | KVM_REG_ARM_32_CRN_MASK
    			   | KVM_REG_ARM_CRM_MASK
    			   | KVM_REG_ARM_OPC1_MASK
    			   | KVM_REG_ARM_32_OPC2_MASK))
    			return false;
    
    		params->is_64bit = false;
    		params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
    			       >> KVM_REG_ARM_32_CRN_SHIFT);
    		params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
    			       >> KVM_REG_ARM_CRM_SHIFT);
    		params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
    			       >> KVM_REG_ARM_OPC1_SHIFT);
    		params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
    			       >> KVM_REG_ARM_32_OPC2_SHIFT);
    		return true;
    	case KVM_REG_SIZE_U64:
    		/* Any unused index bits means it's not valid. */
    		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
    			      | KVM_REG_ARM_COPROC_MASK
    			      | KVM_REG_ARM_CRM_MASK
    			      | KVM_REG_ARM_OPC1_MASK))
    			return false;
    		params->is_64bit = true;
    		/* CRm to CRn: see cp15_to_index for details */
    		params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
    			       >> KVM_REG_ARM_CRM_SHIFT);
    		params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
    			       >> KVM_REG_ARM_OPC1_SHIFT);
    		params->Op2 = 0;
    		params->CRm = 0;
    		return true;
    	default:
    		return false;
    	}
    }
    
    /* Decode an index value, and find the cp15 coproc_reg entry. */
    static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
    						    u64 id)
    {
    	size_t num;
    	const struct coproc_reg *table, *r;
    	struct coproc_params params;
    
    	/* We only do cp15 for now. */
    	if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
    		return NULL;
    
    	if (!index_to_params(id, &params))
    		return NULL;
    
    	table = get_target_table(vcpu->arch.target, &num);
    	r = find_reg(&params, table, num);
    	if (!r)
    		r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
    
    	/* Not saved in the cp15 array? */
    	if (r && !r->reg)
    		r = NULL;
    
    	return r;
    }
    
    /*
     * These are the invariant cp15 registers: we let the guest see the host
     * versions of these, so they're part of the guest state.
     *
     * A future CPU may provide a mechanism to present different values to
     * the guest, or a future kvm may trap them.
     */
    /* Unfortunately, there's no register-argument for mrc, so generate. */
    #define FUNCTION_FOR32(crn, crm, op1, op2, name)			\
    	static void get_##name(struct kvm_vcpu *v,			\
    			       const struct coproc_reg *r)		\
    	{								\
    		u32 val;						\
    									\
    		asm volatile("mrc p15, " __stringify(op1)		\
    			     ", %0, c" __stringify(crn)			\
    			     ", c" __stringify(crm)			\
    			     ", " __stringify(op2) "\n" : "=r" (val));	\
    		((struct coproc_reg *)r)->val = val;			\
    	}
    
    FUNCTION_FOR32(0, 0, 0, 0, MIDR)
    FUNCTION_FOR32(0, 0, 0, 1, CTR)
    FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
    FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
    FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
    FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
    FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
    FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
    FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
    FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
    FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
    FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
    FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
    FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
    FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
    FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
    FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
    FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
    FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
    FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
    FUNCTION_FOR32(0, 0, 1, 7, AIDR)
    
    /* ->val is filled in by kvm_invariant_coproc_table_init() */
    static struct coproc_reg invariant_cp15[] = {
    	{ CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
    	{ CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
    	{ CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
    	{ CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
    	{ CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
    
    	{ CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
    	{ CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
    	{ CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
    	{ CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
    	{ CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
    	{ CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
    	{ CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
    	{ CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
    
    	{ CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
    	{ CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
    	{ CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
    	{ CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
    	{ CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
    	{ CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
    
    	{ CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
    	{ CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
    };
    
    static int reg_from_user(void *val, const void __user *uaddr, u64 id)
    {
    	/* This Just Works because we are little endian. */
    	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
    		return -EFAULT;
    	return 0;
    }
    
    static int reg_to_user(void __user *uaddr, const void *val, u64 id)
    {
    	/* This Just Works because we are little endian. */
    	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
    		return -EFAULT;
    	return 0;
    }
    
    static int get_invariant_cp15(u64 id, void __user *uaddr)
    {
    	struct coproc_params params;
    	const struct coproc_reg *r;
    
    	if (!index_to_params(id, &params))
    		return -ENOENT;
    
    	r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
    	if (!r)
    		return -ENOENT;
    
    	return reg_to_user(uaddr, &r->val, id);
    }
    
    static int set_invariant_cp15(u64 id, void __user *uaddr)
    {
    	struct coproc_params params;
    	const struct coproc_reg *r;
    	int err;
    	u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
    
    	if (!index_to_params(id, &params))
    		return -ENOENT;
    	r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
    	if (!r)
    		return -ENOENT;
    
    	err = reg_from_user(&val, uaddr, id);
    	if (err)
    		return err;
    
    	/* This is what we mean by invariant: you can't change it. */
    	if (r->val != val)
    		return -EINVAL;
    
    	return 0;
    }
    
    static bool is_valid_cache(u32 val)
    {
    	u32 level, ctype;
    
    	if (val >= CSSELR_MAX)
    		return -ENOENT;
    
    	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
            level = (val >> 1);
            ctype = (cache_levels >> (level * 3)) & 7;
    
    	switch (ctype) {
    	case 0: /* No cache */
    		return false;
    	case 1: /* Instruction cache only */
    		return (val & 1);
    	case 2: /* Data cache only */
    	case 4: /* Unified cache */
    		return !(val & 1);
    	case 3: /* Separate instruction and data caches */
    		return true;
    	default: /* Reserved: we can't know instruction or data. */
    		return false;
    	}
    }
    
    /* Which cache CCSIDR represents depends on CSSELR value. */
    static u32 get_ccsidr(u32 csselr)
    {
    	u32 ccsidr;
    
    	/* Make sure noone else changes CSSELR during this! */
    	local_irq_disable();
    	/* Put value into CSSELR */
    	asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
    	isb();
    	/* Read result out of CCSIDR */
    	asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
    	local_irq_enable();
    
    	return ccsidr;
    }
    
    static int demux_c15_get(u64 id, void __user *uaddr)
    {
    	u32 val;
    	u32 __user *uval = uaddr;
    
    	/* Fail if we have unknown bits set. */
    	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
    		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
    		return -ENOENT;
    
    	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
    	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
    		if (KVM_REG_SIZE(id) != 4)
    			return -ENOENT;
    		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
    			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
    		if (!is_valid_cache(val))
    			return -ENOENT;
    
    		return put_user(get_ccsidr(val), uval);
    	default:
    		return -ENOENT;
    	}
    }
    
    static int demux_c15_set(u64 id, void __user *uaddr)
    {
    	u32 val, newval;
    	u32 __user *uval = uaddr;
    
    	/* Fail if we have unknown bits set. */
    	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
    		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
    		return -ENOENT;
    
    	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
    	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
    		if (KVM_REG_SIZE(id) != 4)
    			return -ENOENT;
    		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
    			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
    		if (!is_valid_cache(val))
    			return -ENOENT;
    
    		if (get_user(newval, uval))
    			return -EFAULT;
    
    		/* This is also invariant: you can't change it. */
    		if (newval != get_ccsidr(val))
    			return -EINVAL;
    		return 0;
    	default:
    		return -ENOENT;
    	}
    }
    
    #ifdef CONFIG_VFPv3
    static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
    				   KVM_REG_ARM_VFP_FPSCR,
    				   KVM_REG_ARM_VFP_FPINST,
    				   KVM_REG_ARM_VFP_FPINST2,
    				   KVM_REG_ARM_VFP_MVFR0,
    				   KVM_REG_ARM_VFP_MVFR1,
    				   KVM_REG_ARM_VFP_FPSID };
    
    static unsigned int num_fp_regs(void)
    {
    	if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
    		return 32;
    	else
    		return 16;
    }
    
    static unsigned int num_vfp_regs(void)
    {
    	/* Normal FP regs + control regs. */
    	return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
    }
    
    static int copy_vfp_regids(u64 __user *uindices)
    {
    	unsigned int i;
    	const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
    	const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
    
    	for (i = 0; i < num_fp_regs(); i++) {
    		if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
    			     uindices))
    			return -EFAULT;
    		uindices++;
    	}
    
    	for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
    		if (put_user(u32reg | vfp_sysregs[i], uindices))
    			return -EFAULT;
    		uindices++;
    	}
    
    	return num_vfp_regs();
    }
    
    static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
    {
    	u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
    	u32 val;
    
    	/* Fail if we have unknown bits set. */
    	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
    		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
    		return -ENOENT;
    
    	if (vfpid < num_fp_regs()) {
    		if (KVM_REG_SIZE(id) != 8)
    			return -ENOENT;
    		return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpregs[vfpid],
    				   id);
    	}
    
    	/* FP control registers are all 32 bit. */
    	if (KVM_REG_SIZE(id) != 4)
    		return -ENOENT;
    
    	switch (vfpid) {
    	case KVM_REG_ARM_VFP_FPEXC:
    		return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpexc, id);
    	case KVM_REG_ARM_VFP_FPSCR:
    		return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpscr, id);
    	case KVM_REG_ARM_VFP_FPINST:
    		return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst, id);
    	case KVM_REG_ARM_VFP_FPINST2:
    		return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst2, id);
    	case KVM_REG_ARM_VFP_MVFR0:
    		val = fmrx(MVFR0);
    		return reg_to_user(uaddr, &val, id);
    	case KVM_REG_ARM_VFP_MVFR1:
    		val = fmrx(MVFR1);
    		return reg_to_user(uaddr, &val, id);
    	case KVM_REG_ARM_VFP_FPSID:
    		val = fmrx(FPSID);
    		return reg_to_user(uaddr, &val, id);
    	default:
    		return -ENOENT;
    	}
    }
    
    static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
    {
    	u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
    	u32 val;
    
    	/* Fail if we have unknown bits set. */
    	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
    		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
    		return -ENOENT;
    
    	if (vfpid < num_fp_regs()) {
    		if (KVM_REG_SIZE(id) != 8)
    			return -ENOENT;
    		return reg_from_user(&vcpu->arch.vfp_guest.fpregs[vfpid],
    				     uaddr, id);
    	}
    
    	/* FP control registers are all 32 bit. */
    	if (KVM_REG_SIZE(id) != 4)
    		return -ENOENT;
    
    	switch (vfpid) {
    	case KVM_REG_ARM_VFP_FPEXC:
    		return reg_from_user(&vcpu->arch.vfp_guest.fpexc, uaddr, id);
    	case KVM_REG_ARM_VFP_FPSCR:
    		return reg_from_user(&vcpu->arch.vfp_guest.fpscr, uaddr, id);
    	case KVM_REG_ARM_VFP_FPINST:
    		return reg_from_user(&vcpu->arch.vfp_guest.fpinst, uaddr, id);
    	case KVM_REG_ARM_VFP_FPINST2:
    		return reg_from_user(&vcpu->arch.vfp_guest.fpinst2, uaddr, id);
    	/* These are invariant. */
    	case KVM_REG_ARM_VFP_MVFR0:
    		if (reg_from_user(&val, uaddr, id))
    			return -EFAULT;
    		if (val != fmrx(MVFR0))
    			return -EINVAL;
    		return 0;
    	case KVM_REG_ARM_VFP_MVFR1:
    		if (reg_from_user(&val, uaddr, id))
    			return -EFAULT;
    		if (val != fmrx(MVFR1))
    			return -EINVAL;
    		return 0;
    	case KVM_REG_ARM_VFP_FPSID:
    		if (reg_from_user(&val, uaddr, id))
    			return -EFAULT;
    		if (val != fmrx(FPSID))
    			return -EINVAL;
    		return 0;
    	default:
    		return -ENOENT;
    	}
    }
    #else /* !CONFIG_VFPv3 */
    static unsigned int num_vfp_regs(void)
    {
    	return 0;
    }
    
    static int copy_vfp_regids(u64 __user *uindices)
    {
    	return 0;
    }
    
    static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
    {
    	return -ENOENT;
    }
    
    static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
    {
    	return -ENOENT;
    }
    #endif /* !CONFIG_VFPv3 */
    
    int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
    {
    	const struct coproc_reg *r;
    	void __user *uaddr = (void __user *)(long)reg->addr;
    
    	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
    		return demux_c15_get(reg->id, uaddr);
    
    	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
    		return vfp_get_reg(vcpu, reg->id, uaddr);
    
    	r = index_to_coproc_reg(vcpu, reg->id);
    	if (!r)
    		return get_invariant_cp15(reg->id, uaddr);
    
    	/* Note: copies two regs if size is 64 bit. */
    	return reg_to_user(uaddr, &vcpu->arch.cp15[r->reg], reg->id);
    }
    
    int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
    {
    	const struct coproc_reg *r;
    	void __user *uaddr = (void __user *)(long)reg->addr;
    
    	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
    		return demux_c15_set(reg->id, uaddr);
    
    	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
    		return vfp_set_reg(vcpu, reg->id, uaddr);
    
    	r = index_to_coproc_reg(vcpu, reg->id);
    	if (!r)
    		return set_invariant_cp15(reg->id, uaddr);
    
    	/* Note: copies two regs if size is 64 bit */
    	return reg_from_user(&vcpu->arch.cp15[r->reg], uaddr, reg->id);
    }
    
    static unsigned int num_demux_regs(void)
    {
    	unsigned int i, count = 0;
    
    	for (i = 0; i < CSSELR_MAX; i++)
    		if (is_valid_cache(i))
    			count++;
    
    	return count;
    }
    
    static int write_demux_regids(u64 __user *uindices)
    {
    	u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
    	unsigned int i;
    
    	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
    	for (i = 0; i < CSSELR_MAX; i++) {
    		if (!is_valid_cache(i))
    			continue;
    		if (put_user(val | i, uindices))
    			return -EFAULT;
    		uindices++;
    	}
    	return 0;
    }
    
    static u64 cp15_to_index(const struct coproc_reg *reg)
    {
    	u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
    	if (reg->is_64) {
    		val |= KVM_REG_SIZE_U64;
    		val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
    		/*
    		 * CRn always denotes the primary coproc. reg. nr. for the
    		 * in-kernel representation, but the user space API uses the
    		 * CRm for the encoding, because it is modelled after the
    		 * MRRC/MCRR instructions: see the ARM ARM rev. c page
    		 * B3-1445
    		 */
    		val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
    	} else {
    		val |= KVM_REG_SIZE_U32;
    		val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
    		val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
    		val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
    		val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
    	}
    	return val;
    }
    
    static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
    {
    	if (!*uind)
    		return true;
    
    	if (put_user(cp15_to_index(reg), *uind))
    		return false;
    
    	(*uind)++;
    	return true;
    }
    
    /* Assumed ordered tables, see kvm_coproc_table_init. */
    static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
    {
    	const struct coproc_reg *i1, *i2, *end1, *end2;
    	unsigned int total = 0;
    	size_t num;
    
    	/* We check for duplicates here, to allow arch-specific overrides. */
    	i1 = get_target_table(vcpu->arch.target, &num);
    	end1 = i1 + num;
    	i2 = cp15_regs;
    	end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
    
    	BUG_ON(i1 == end1 || i2 == end2);
    
    	/* Walk carefully, as both tables may refer to the same register. */
    	while (i1 || i2) {
    		int cmp = cmp_reg(i1, i2);
    		/* target-specific overrides generic entry. */
    		if (cmp <= 0) {
    			/* Ignore registers we trap but don't save. */
    			if (i1->reg) {
    				if (!copy_reg_to_user(i1, &uind))
    					return -EFAULT;
    				total++;
    			}
    		} else {
    			/* Ignore registers we trap but don't save. */
    			if (i2->reg) {
    				if (!copy_reg_to_user(i2, &uind))
    					return -EFAULT;
    				total++;
    			}
    		}
    
    		if (cmp <= 0 && ++i1 == end1)
    			i1 = NULL;
    		if (cmp >= 0 && ++i2 == end2)
    			i2 = NULL;
    	}
    	return total;
    }
    
    unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
    {
    	return ARRAY_SIZE(invariant_cp15)
    		+ num_demux_regs()
    		+ num_vfp_regs()
    		+ walk_cp15(vcpu, (u64 __user *)NULL);
    }
    
    int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
    {
    	unsigned int i;
    	int err;
    
    	/* Then give them all the invariant registers' indices. */
    	for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
    		if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
    			return -EFAULT;
    		uindices++;
    	}
    
    	err = walk_cp15(vcpu, uindices);
    	if (err < 0)
    		return err;
    	uindices += err;
    
    	err = copy_vfp_regids(uindices);
    	if (err < 0)
    		return err;
    	uindices += err;
    
    	return write_demux_regids(uindices);
    }
    
    void kvm_coproc_table_init(void)
    {
    	unsigned int i;
    
    	/* Make sure tables are unique and in order. */
    	for (i = 1; i < ARRAY_SIZE(cp15_regs); i++)
    		BUG_ON(cmp_reg(&cp15_regs[i-1], &cp15_regs[i]) >= 0);
    
    	/* We abuse the reset function to overwrite the table itself. */
    	for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
    		invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
    
    	/*
    	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
    	 *
    	 *   If software reads the Cache Type fields from Ctype1
    	 *   upwards, once it has seen a value of 0b000, no caches
    	 *   exist at further-out levels of the hierarchy. So, for
    	 *   example, if Ctype3 is the first Cache Type field with a
    	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
    	 *   ignored.
    	 */
    	asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
    	for (i = 0; i < 7; i++)
    		if (((cache_levels >> (i*3)) & 7) == 0)
    			break;
    	/* Clear all higher bits. */
    	cache_levels &= (1 << (i*3))-1;
    }
    
    /**
     * kvm_reset_coprocs - sets cp15 registers to reset value
     * @vcpu: The VCPU pointer
     *
     * This function finds the right table above and sets the registers on the
     * virtual CPU struct to their architecturally defined reset values.
     */
    void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
    {
    	size_t num;
    	const struct coproc_reg *table;
    
    	/* Catch someone adding a register without putting in reset entry. */
    	memset(vcpu->arch.cp15, 0x42, sizeof(vcpu->arch.cp15));
    
    	/* Generic chip reset first (so target could override). */
    	reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
    
    	table = get_target_table(vcpu->arch.target, &num);
    	reset_coproc_regs(vcpu, table, num);
    
    	for (num = 1; num < NR_CP15_REGS; num++)
    		if (vcpu->arch.cp15[num] == 0x42424242)
    			panic("Didn't reset vcpu->arch.cp15[%zi]", num);
    }