Skip to content
Snippets Groups Projects
Select Git revision
  • 54d3218b31aee5bc9c859ae60fbde933d922448b
  • add-vdpu381-and-383-to-rkvdec
  • prepare-add-vdpu381-and-383-to-rkvdec
  • add-rkvdec2-driver-vdpu383-hevc
  • add-rkvdec2-driver-vdpu383
  • add-rkvdec2-driver-hevc
  • rkvdec-mov-to-structs
  • av1-fix-postproc-leak
  • add-rkvdec2-driver-iommu-422-10bits
  • patch-queue/jamba/trixie
  • hdmi-fix-1080p-rock4d-6.11
  • upstreaming/rk3576-rock4d-spi-v1
  • upstreaming/rk3576-rock4d-support-v5
  • upstreaming/rk3588-hdmi-audio-6
  • upstreaming/rk3576-rock4d-support-v3
  • upstreaming/rk3576-rock4d-support-v1
  • upstreaming/rk3576-rock4d-support
  • add-rkvdec2-driver-iommu
  • upstream/rk3576-rock-4d
  • rk3588-hdmi-audio-2
  • fix-rk3588-i2s-tdm-clocks
  • v6.3
  • v6.3-rc1
  • v6.2-rc1
  • v6.0-rc1
  • v5.19-rc3
  • v5.19-rc2
  • v5.19-rc1
  • v5.18
  • v5.18-rc7
  • v5.18-rc6
  • v5.18-rc5
  • v5.18-rc4
  • v5.18-rc3
  • v5.18-rc2
  • v5.18-rc1
  • v5.17
  • v5.17-rc8
  • v5.17-rc7
  • v5.17-rc6
  • v5.17-rc5
41 results

auditsc.c

Blame
  • Forked from hardware-enablement / Rockchip upstream enablement efforts / linux
    Source project has a limited visibility.
    auditsc.c 67.14 KiB
    /* auditsc.c -- System-call auditing support
     * Handles all system-call specific auditing features.
     *
     * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
     * Copyright 2005 Hewlett-Packard Development Company, L.P.
     * Copyright (C) 2005, 2006 IBM Corporation
     * All Rights Reserved.
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation; either version 2 of the License, or
     * (at your option) any later version.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with this program; if not, write to the Free Software
     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
     *
     * Written by Rickard E. (Rik) Faith <faith@redhat.com>
     *
     * Many of the ideas implemented here are from Stephen C. Tweedie,
     * especially the idea of avoiding a copy by using getname.
     *
     * The method for actual interception of syscall entry and exit (not in
     * this file -- see entry.S) is based on a GPL'd patch written by
     * okir@suse.de and Copyright 2003 SuSE Linux AG.
     *
     * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
     * 2006.
     *
     * The support of additional filter rules compares (>, <, >=, <=) was
     * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
     *
     * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
     * filesystem information.
     *
     * Subject and object context labeling support added by <danjones@us.ibm.com>
     * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
     */
    
    #include <linux/init.h>
    #include <asm/types.h>
    #include <linux/atomic.h>
    #include <linux/fs.h>
    #include <linux/namei.h>
    #include <linux/mm.h>
    #include <linux/export.h>
    #include <linux/slab.h>
    #include <linux/mount.h>
    #include <linux/socket.h>
    #include <linux/mqueue.h>
    #include <linux/audit.h>
    #include <linux/personality.h>
    #include <linux/time.h>
    #include <linux/netlink.h>
    #include <linux/compiler.h>
    #include <asm/unistd.h>
    #include <linux/security.h>
    #include <linux/list.h>
    #include <linux/tty.h>
    #include <linux/binfmts.h>
    #include <linux/highmem.h>
    #include <linux/syscalls.h>
    #include <linux/capability.h>
    #include <linux/fs_struct.h>
    
    #include "audit.h"
    
    /* flags stating the success for a syscall */
    #define AUDITSC_INVALID 0
    #define AUDITSC_SUCCESS 1
    #define AUDITSC_FAILURE 2
    
    /* AUDIT_NAMES is the number of slots we reserve in the audit_context
     * for saving names from getname().  If we get more names we will allocate
     * a name dynamically and also add those to the list anchored by names_list. */
    #define AUDIT_NAMES	5
    
    /* Indicates that audit should log the full pathname. */
    #define AUDIT_NAME_FULL -1
    
    /* no execve audit message should be longer than this (userspace limits) */
    #define MAX_EXECVE_AUDIT_LEN 7500
    
    /* number of audit rules */
    int audit_n_rules;
    
    /* determines whether we collect data for signals sent */
    int audit_signals;
    
    struct audit_cap_data {
    	kernel_cap_t		permitted;
    	kernel_cap_t		inheritable;
    	union {
    		unsigned int	fE;		/* effective bit of a file capability */
    		kernel_cap_t	effective;	/* effective set of a process */
    	};
    };
    
    /* When fs/namei.c:getname() is called, we store the pointer in name and
     * we don't let putname() free it (instead we free all of the saved
     * pointers at syscall exit time).
     *
     * Further, in fs/namei.c:path_lookup() we store the inode and device. */
    struct audit_names {
    	struct list_head list;		/* audit_context->names_list */
    	const char	*name;
    	unsigned long	ino;
    	dev_t		dev;
    	umode_t		mode;
    	uid_t		uid;
    	gid_t		gid;
    	dev_t		rdev;
    	u32		osid;
    	struct audit_cap_data fcap;
    	unsigned int	fcap_ver;
    	int		name_len;	/* number of name's characters to log */
    	bool		name_put;	/* call __putname() for this name */
    	/*
    	 * This was an allocated audit_names and not from the array of
    	 * names allocated in the task audit context.  Thus this name
    	 * should be freed on syscall exit
    	 */
    	bool		should_free;
    };
    
    struct audit_aux_data {
    	struct audit_aux_data	*next;
    	int			type;
    };
    
    #define AUDIT_AUX_IPCPERM	0
    
    /* Number of target pids per aux struct. */
    #define AUDIT_AUX_PIDS	16
    
    struct audit_aux_data_execve {
    	struct audit_aux_data	d;
    	int argc;
    	int envc;
    	struct mm_struct *mm;
    };
    
    struct audit_aux_data_pids {
    	struct audit_aux_data	d;
    	pid_t			target_pid[AUDIT_AUX_PIDS];
    	uid_t			target_auid[AUDIT_AUX_PIDS];
    	uid_t			target_uid[AUDIT_AUX_PIDS];
    	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
    	u32			target_sid[AUDIT_AUX_PIDS];
    	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
    	int			pid_count;
    };
    
    struct audit_aux_data_bprm_fcaps {
    	struct audit_aux_data	d;
    	struct audit_cap_data	fcap;
    	unsigned int		fcap_ver;
    	struct audit_cap_data	old_pcap;
    	struct audit_cap_data	new_pcap;
    };
    
    struct audit_aux_data_capset {
    	struct audit_aux_data	d;
    	pid_t			pid;
    	struct audit_cap_data	cap;
    };
    
    struct audit_tree_refs {
    	struct audit_tree_refs *next;
    	struct audit_chunk *c[31];
    };
    
    /* The per-task audit context. */
    struct audit_context {
    	int		    dummy;	/* must be the first element */
    	int		    in_syscall;	/* 1 if task is in a syscall */
    	enum audit_state    state, current_state;
    	unsigned int	    serial;     /* serial number for record */
    	int		    major;      /* syscall number */
    	struct timespec	    ctime;      /* time of syscall entry */
    	unsigned long	    argv[4];    /* syscall arguments */
    	long		    return_code;/* syscall return code */
    	u64		    prio;
    	int		    return_valid; /* return code is valid */
    	/*
    	 * The names_list is the list of all audit_names collected during this
    	 * syscall.  The first AUDIT_NAMES entries in the names_list will
    	 * actually be from the preallocated_names array for performance
    	 * reasons.  Except during allocation they should never be referenced
    	 * through the preallocated_names array and should only be found/used
    	 * by running the names_list.
    	 */
    	struct audit_names  preallocated_names[AUDIT_NAMES];
    	int		    name_count; /* total records in names_list */
    	struct list_head    names_list;	/* anchor for struct audit_names->list */
    	char *		    filterkey;	/* key for rule that triggered record */
    	struct path	    pwd;
    	struct audit_context *previous; /* For nested syscalls */
    	struct audit_aux_data *aux;
    	struct audit_aux_data *aux_pids;
    	struct sockaddr_storage *sockaddr;
    	size_t sockaddr_len;
    				/* Save things to print about task_struct */
    	pid_t		    pid, ppid;
    	uid_t		    uid, euid, suid, fsuid;
    	gid_t		    gid, egid, sgid, fsgid;
    	unsigned long	    personality;
    	int		    arch;
    
    	pid_t		    target_pid;
    	uid_t		    target_auid;
    	uid_t		    target_uid;
    	unsigned int	    target_sessionid;
    	u32		    target_sid;
    	char		    target_comm[TASK_COMM_LEN];
    
    	struct audit_tree_refs *trees, *first_trees;
    	struct list_head killed_trees;
    	int tree_count;
    
    	int type;
    	union {
    		struct {
    			int nargs;
    			long args[6];
    		} socketcall;
    		struct {
    			uid_t			uid;
    			gid_t			gid;
    			umode_t			mode;
    			u32			osid;
    			int			has_perm;
    			uid_t			perm_uid;
    			gid_t			perm_gid;
    			umode_t			perm_mode;
    			unsigned long		qbytes;
    		} ipc;
    		struct {
    			mqd_t			mqdes;
    			struct mq_attr 		mqstat;
    		} mq_getsetattr;
    		struct {
    			mqd_t			mqdes;
    			int			sigev_signo;
    		} mq_notify;
    		struct {
    			mqd_t			mqdes;
    			size_t			msg_len;
    			unsigned int		msg_prio;
    			struct timespec		abs_timeout;
    		} mq_sendrecv;
    		struct {
    			int			oflag;
    			umode_t			mode;
    			struct mq_attr		attr;
    		} mq_open;
    		struct {
    			pid_t			pid;
    			struct audit_cap_data	cap;
    		} capset;
    		struct {
    			int			fd;
    			int			flags;
    		} mmap;
    	};
    	int fds[2];
    
    #if AUDIT_DEBUG
    	int		    put_count;
    	int		    ino_count;
    #endif
    };
    
    static inline int open_arg(int flags, int mask)
    {
    	int n = ACC_MODE(flags);
    	if (flags & (O_TRUNC | O_CREAT))
    		n |= AUDIT_PERM_WRITE;
    	return n & mask;
    }
    
    static int audit_match_perm(struct audit_context *ctx, int mask)
    {
    	unsigned n;
    	if (unlikely(!ctx))
    		return 0;
    	n = ctx->major;
    
    	switch (audit_classify_syscall(ctx->arch, n)) {
    	case 0:	/* native */
    		if ((mask & AUDIT_PERM_WRITE) &&
    		     audit_match_class(AUDIT_CLASS_WRITE, n))
    			return 1;
    		if ((mask & AUDIT_PERM_READ) &&
    		     audit_match_class(AUDIT_CLASS_READ, n))
    			return 1;
    		if ((mask & AUDIT_PERM_ATTR) &&
    		     audit_match_class(AUDIT_CLASS_CHATTR, n))
    			return 1;
    		return 0;
    	case 1: /* 32bit on biarch */
    		if ((mask & AUDIT_PERM_WRITE) &&
    		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
    			return 1;
    		if ((mask & AUDIT_PERM_READ) &&
    		     audit_match_class(AUDIT_CLASS_READ_32, n))
    			return 1;
    		if ((mask & AUDIT_PERM_ATTR) &&
    		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
    			return 1;
    		return 0;
    	case 2: /* open */
    		return mask & ACC_MODE(ctx->argv[1]);
    	case 3: /* openat */
    		return mask & ACC_MODE(ctx->argv[2]);
    	case 4: /* socketcall */
    		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
    	case 5: /* execve */
    		return mask & AUDIT_PERM_EXEC;
    	default:
    		return 0;
    	}
    }
    
    static int audit_match_filetype(struct audit_context *ctx, int val)
    {
    	struct audit_names *n;
    	umode_t mode = (umode_t)val;
    
    	if (unlikely(!ctx))
    		return 0;
    
    	list_for_each_entry(n, &ctx->names_list, list) {
    		if ((n->ino != -1) &&
    		    ((n->mode & S_IFMT) == mode))
    			return 1;
    	}
    
    	return 0;
    }
    
    /*
     * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
     * ->first_trees points to its beginning, ->trees - to the current end of data.
     * ->tree_count is the number of free entries in array pointed to by ->trees.
     * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
     * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
     * it's going to remain 1-element for almost any setup) until we free context itself.
     * References in it _are_ dropped - at the same time we free/drop aux stuff.
     */
    
    #ifdef CONFIG_AUDIT_TREE
    static void audit_set_auditable(struct audit_context *ctx)
    {
    	if (!ctx->prio) {
    		ctx->prio = 1;
    		ctx->current_state = AUDIT_RECORD_CONTEXT;
    	}
    }
    
    static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
    {
    	struct audit_tree_refs *p = ctx->trees;
    	int left = ctx->tree_count;
    	if (likely(left)) {
    		p->c[--left] = chunk;
    		ctx->tree_count = left;
    		return 1;
    	}
    	if (!p)
    		return 0;
    	p = p->next;
    	if (p) {
    		p->c[30] = chunk;
    		ctx->trees = p;
    		ctx->tree_count = 30;
    		return 1;
    	}
    	return 0;
    }
    
    static int grow_tree_refs(struct audit_context *ctx)
    {
    	struct audit_tree_refs *p = ctx->trees;
    	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
    	if (!ctx->trees) {
    		ctx->trees = p;
    		return 0;
    	}
    	if (p)
    		p->next = ctx->trees;
    	else
    		ctx->first_trees = ctx->trees;
    	ctx->tree_count = 31;
    	return 1;
    }
    #endif
    
    static void unroll_tree_refs(struct audit_context *ctx,
    		      struct audit_tree_refs *p, int count)
    {
    #ifdef CONFIG_AUDIT_TREE
    	struct audit_tree_refs *q;
    	int n;
    	if (!p) {
    		/* we started with empty chain */
    		p = ctx->first_trees;
    		count = 31;
    		/* if the very first allocation has failed, nothing to do */
    		if (!p)
    			return;
    	}
    	n = count;
    	for (q = p; q != ctx->trees; q = q->next, n = 31) {
    		while (n--) {
    			audit_put_chunk(q->c[n]);
    			q->c[n] = NULL;
    		}
    	}
    	while (n-- > ctx->tree_count) {
    		audit_put_chunk(q->c[n]);
    		q->c[n] = NULL;
    	}
    	ctx->trees = p;
    	ctx->tree_count = count;
    #endif
    }
    
    static void free_tree_refs(struct audit_context *ctx)
    {
    	struct audit_tree_refs *p, *q;
    	for (p = ctx->first_trees; p; p = q) {
    		q = p->next;
    		kfree(p);
    	}
    }
    
    static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
    {
    #ifdef CONFIG_AUDIT_TREE
    	struct audit_tree_refs *p;
    	int n;
    	if (!tree)
    		return 0;
    	/* full ones */
    	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
    		for (n = 0; n < 31; n++)
    			if (audit_tree_match(p->c[n], tree))
    				return 1;
    	}
    	/* partial */
    	if (p) {
    		for (n = ctx->tree_count; n < 31; n++)
    			if (audit_tree_match(p->c[n], tree))
    				return 1;
    	}
    #endif
    	return 0;
    }
    
    /* Determine if any context name data matches a rule's watch data */
    /* Compare a task_struct with an audit_rule.  Return 1 on match, 0
     * otherwise.
     *
     * If task_creation is true, this is an explicit indication that we are
     * filtering a task rule at task creation time.  This and tsk == current are
     * the only situations where tsk->cred may be accessed without an rcu read lock.
     */
    static int audit_filter_rules(struct task_struct *tsk,
    			      struct audit_krule *rule,
    			      struct audit_context *ctx,
    			      struct audit_names *name,
    			      enum audit_state *state,
    			      bool task_creation)
    {
    	const struct cred *cred;
    	int i, need_sid = 1;
    	u32 sid;
    
    	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
    
    	for (i = 0; i < rule->field_count; i++) {
    		struct audit_field *f = &rule->fields[i];
    		struct audit_names *n;
    		int result = 0;
    
    		switch (f->type) {
    		case AUDIT_PID:
    			result = audit_comparator(tsk->pid, f->op, f->val);
    			break;
    		case AUDIT_PPID:
    			if (ctx) {
    				if (!ctx->ppid)
    					ctx->ppid = sys_getppid();
    				result = audit_comparator(ctx->ppid, f->op, f->val);
    			}
    			break;
    		case AUDIT_UID:
    			result = audit_comparator(cred->uid, f->op, f->val);
    			break;
    		case AUDIT_EUID:
    			result = audit_comparator(cred->euid, f->op, f->val);
    			break;
    		case AUDIT_SUID:
    			result = audit_comparator(cred->suid, f->op, f->val);
    			break;
    		case AUDIT_FSUID:
    			result = audit_comparator(cred->fsuid, f->op, f->val);
    			break;
    		case AUDIT_GID:
    			result = audit_comparator(cred->gid, f->op, f->val);
    			break;
    		case AUDIT_EGID:
    			result = audit_comparator(cred->egid, f->op, f->val);
    			break;
    		case AUDIT_SGID:
    			result = audit_comparator(cred->sgid, f->op, f->val);
    			break;
    		case AUDIT_FSGID:
    			result = audit_comparator(cred->fsgid, f->op, f->val);
    			break;
    		case AUDIT_PERS:
    			result = audit_comparator(tsk->personality, f->op, f->val);
    			break;
    		case AUDIT_ARCH:
    			if (ctx)
    				result = audit_comparator(ctx->arch, f->op, f->val);
    			break;
    
    		case AUDIT_EXIT:
    			if (ctx && ctx->return_valid)
    				result = audit_comparator(ctx->return_code, f->op, f->val);
    			break;
    		case AUDIT_SUCCESS:
    			if (ctx && ctx->return_valid) {
    				if (f->val)
    					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
    				else
    					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
    			}
    			break;
    		case AUDIT_DEVMAJOR:
    			if (name) {
    				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
    				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
    					++result;
    			} else if (ctx) {
    				list_for_each_entry(n, &ctx->names_list, list) {
    					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
    					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
    						++result;
    						break;
    					}
    				}
    			}
    			break;
    		case AUDIT_DEVMINOR:
    			if (name) {
    				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
    				    audit_comparator(MINOR(name->rdev), f->op, f->val))
    					++result;
    			} else if (ctx) {
    				list_for_each_entry(n, &ctx->names_list, list) {
    					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
    					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
    						++result;
    						break;
    					}
    				}
    			}
    			break;
    		case AUDIT_INODE:
    			if (name)
    				result = (name->ino == f->val);
    			else if (ctx) {
    				list_for_each_entry(n, &ctx->names_list, list) {
    					if (audit_comparator(n->ino, f->op, f->val)) {
    						++result;
    						break;
    					}
    				}
    			}
    			break;
    		case AUDIT_OBJ_UID:
    			if (name) {
    				result = audit_comparator(name->uid, f->op, f->val);
    			} else if (ctx) {
    				list_for_each_entry(n, &ctx->names_list, list) {
    					if (audit_comparator(n->uid, f->op, f->val)) {
    						++result;
    						break;
    					}
    				}
    			}
    			break;
    		case AUDIT_OBJ_GID:
    			if (name) {
    				result = audit_comparator(name->gid, f->op, f->val);
    			} else if (ctx) {
    				list_for_each_entry(n, &ctx->names_list, list) {
    					if (audit_comparator(n->gid, f->op, f->val)) {
    						++result;
    						break;
    					}
    				}
    			}
    			break;
    		case AUDIT_WATCH:
    			if (name)
    				result = audit_watch_compare(rule->watch, name->ino, name->dev);
    			break;
    		case AUDIT_DIR:
    			if (ctx)
    				result = match_tree_refs(ctx, rule->tree);
    			break;
    		case AUDIT_LOGINUID:
    			result = 0;
    			if (ctx)
    				result = audit_comparator(tsk->loginuid, f->op, f->val);
    			break;
    		case AUDIT_SUBJ_USER:
    		case AUDIT_SUBJ_ROLE:
    		case AUDIT_SUBJ_TYPE:
    		case AUDIT_SUBJ_SEN:
    		case AUDIT_SUBJ_CLR:
    			/* NOTE: this may return negative values indicating
    			   a temporary error.  We simply treat this as a
    			   match for now to avoid losing information that
    			   may be wanted.   An error message will also be
    			   logged upon error */
    			if (f->lsm_rule) {
    				if (need_sid) {
    					security_task_getsecid(tsk, &sid);
    					need_sid = 0;
    				}
    				result = security_audit_rule_match(sid, f->type,
    				                                  f->op,
    				                                  f->lsm_rule,
    				                                  ctx);
    			}
    			break;
    		case AUDIT_OBJ_USER:
    		case AUDIT_OBJ_ROLE:
    		case AUDIT_OBJ_TYPE:
    		case AUDIT_OBJ_LEV_LOW:
    		case AUDIT_OBJ_LEV_HIGH:
    			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
    			   also applies here */
    			if (f->lsm_rule) {
    				/* Find files that match */
    				if (name) {
    					result = security_audit_rule_match(
    					           name->osid, f->type, f->op,
    					           f->lsm_rule, ctx);
    				} else if (ctx) {
    					list_for_each_entry(n, &ctx->names_list, list) {
    						if (security_audit_rule_match(n->osid, f->type,
    									      f->op, f->lsm_rule,
    									      ctx)) {
    							++result;
    							break;
    						}
    					}
    				}
    				/* Find ipc objects that match */
    				if (!ctx || ctx->type != AUDIT_IPC)
    					break;
    				if (security_audit_rule_match(ctx->ipc.osid,
    							      f->type, f->op,
    							      f->lsm_rule, ctx))
    					++result;
    			}
    			break;
    		case AUDIT_ARG0:
    		case AUDIT_ARG1:
    		case AUDIT_ARG2:
    		case AUDIT_ARG3:
    			if (ctx)
    				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
    			break;
    		case AUDIT_FILTERKEY:
    			/* ignore this field for filtering */
    			result = 1;
    			break;
    		case AUDIT_PERM:
    			result = audit_match_perm(ctx, f->val);
    			break;
    		case AUDIT_FILETYPE:
    			result = audit_match_filetype(ctx, f->val);
    			break;
    		}
    
    		if (!result)
    			return 0;
    	}
    
    	if (ctx) {
    		if (rule->prio <= ctx->prio)
    			return 0;
    		if (rule->filterkey) {
    			kfree(ctx->filterkey);
    			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
    		}
    		ctx->prio = rule->prio;
    	}
    	switch (rule->action) {
    	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
    	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
    	}
    	return 1;
    }
    
    /* At process creation time, we can determine if system-call auditing is
     * completely disabled for this task.  Since we only have the task
     * structure at this point, we can only check uid and gid.
     */
    static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
    {
    	struct audit_entry *e;
    	enum audit_state   state;
    
    	rcu_read_lock();
    	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
    		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
    				       &state, true)) {
    			if (state == AUDIT_RECORD_CONTEXT)
    				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
    			rcu_read_unlock();
    			return state;
    		}
    	}
    	rcu_read_unlock();
    	return AUDIT_BUILD_CONTEXT;
    }
    
    /* At syscall entry and exit time, this filter is called if the
     * audit_state is not low enough that auditing cannot take place, but is
     * also not high enough that we already know we have to write an audit
     * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
     */
    static enum audit_state audit_filter_syscall(struct task_struct *tsk,
    					     struct audit_context *ctx,
    					     struct list_head *list)
    {
    	struct audit_entry *e;
    	enum audit_state state;
    
    	if (audit_pid && tsk->tgid == audit_pid)
    		return AUDIT_DISABLED;
    
    	rcu_read_lock();
    	if (!list_empty(list)) {
    		int word = AUDIT_WORD(ctx->major);
    		int bit  = AUDIT_BIT(ctx->major);
    
    		list_for_each_entry_rcu(e, list, list) {
    			if ((e->rule.mask[word] & bit) == bit &&
    			    audit_filter_rules(tsk, &e->rule, ctx, NULL,
    					       &state, false)) {
    				rcu_read_unlock();
    				ctx->current_state = state;
    				return state;
    			}
    		}
    	}
    	rcu_read_unlock();
    	return AUDIT_BUILD_CONTEXT;
    }
    
    /*
     * Given an audit_name check the inode hash table to see if they match.
     * Called holding the rcu read lock to protect the use of audit_inode_hash
     */
    static int audit_filter_inode_name(struct task_struct *tsk,
    				   struct audit_names *n,
    				   struct audit_context *ctx) {
    	int word, bit;
    	int h = audit_hash_ino((u32)n->ino);
    	struct list_head *list = &audit_inode_hash[h];
    	struct audit_entry *e;
    	enum audit_state state;
    
    	word = AUDIT_WORD(ctx->major);
    	bit  = AUDIT_BIT(ctx->major);
    
    	if (list_empty(list))
    		return 0;
    
    	list_for_each_entry_rcu(e, list, list) {
    		if ((e->rule.mask[word] & bit) == bit &&
    		    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
    			ctx->current_state = state;
    			return 1;
    		}
    	}
    
    	return 0;
    }
    
    /* At syscall exit time, this filter is called if any audit_names have been
     * collected during syscall processing.  We only check rules in sublists at hash
     * buckets applicable to the inode numbers in audit_names.
     * Regarding audit_state, same rules apply as for audit_filter_syscall().
     */
    void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
    {
    	struct audit_names *n;
    
    	if (audit_pid && tsk->tgid == audit_pid)
    		return;
    
    	rcu_read_lock();
    
    	list_for_each_entry(n, &ctx->names_list, list) {
    		if (audit_filter_inode_name(tsk, n, ctx))
    			break;
    	}
    	rcu_read_unlock();
    }
    
    static inline struct audit_context *audit_get_context(struct task_struct *tsk,
    						      int return_valid,
    						      long return_code)
    {
    	struct audit_context *context = tsk->audit_context;
    
    	if (!context)
    		return NULL;
    	context->return_valid = return_valid;
    
    	/*
    	 * we need to fix up the return code in the audit logs if the actual
    	 * return codes are later going to be fixed up by the arch specific
    	 * signal handlers
    	 *
    	 * This is actually a test for:
    	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
    	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
    	 *
    	 * but is faster than a bunch of ||
    	 */
    	if (unlikely(return_code <= -ERESTARTSYS) &&
    	    (return_code >= -ERESTART_RESTARTBLOCK) &&
    	    (return_code != -ENOIOCTLCMD))
    		context->return_code = -EINTR;
    	else
    		context->return_code  = return_code;
    
    	if (context->in_syscall && !context->dummy) {
    		audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
    		audit_filter_inodes(tsk, context);
    	}
    
    	tsk->audit_context = NULL;
    	return context;
    }
    
    static inline void audit_free_names(struct audit_context *context)
    {
    	struct audit_names *n, *next;
    
    #if AUDIT_DEBUG == 2
    	if (context->put_count + context->ino_count != context->name_count) {
    		printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
    		       " name_count=%d put_count=%d"
    		       " ino_count=%d [NOT freeing]\n",
    		       __FILE__, __LINE__,
    		       context->serial, context->major, context->in_syscall,
    		       context->name_count, context->put_count,
    		       context->ino_count);
    		list_for_each_entry(n, &context->names_list, list) {
    			printk(KERN_ERR "names[%d] = %p = %s\n", i,
    			       n->name, n->name ?: "(null)");
    		}
    		dump_stack();
    		return;
    	}
    #endif
    #if AUDIT_DEBUG
    	context->put_count  = 0;
    	context->ino_count  = 0;
    #endif
    
    	list_for_each_entry_safe(n, next, &context->names_list, list) {
    		list_del(&n->list);
    		if (n->name && n->name_put)
    			__putname(n->name);
    		if (n->should_free)
    			kfree(n);
    	}
    	context->name_count = 0;
    	path_put(&context->pwd);
    	context->pwd.dentry = NULL;
    	context->pwd.mnt = NULL;
    }
    
    static inline void audit_free_aux(struct audit_context *context)
    {
    	struct audit_aux_data *aux;
    
    	while ((aux = context->aux)) {
    		context->aux = aux->next;
    		kfree(aux);
    	}
    	while ((aux = context->aux_pids)) {
    		context->aux_pids = aux->next;
    		kfree(aux);
    	}
    }
    
    static inline void audit_zero_context(struct audit_context *context,
    				      enum audit_state state)
    {
    	memset(context, 0, sizeof(*context));
    	context->state      = state;
    	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
    }
    
    static inline struct audit_context *audit_alloc_context(enum audit_state state)
    {
    	struct audit_context *context;
    
    	if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
    		return NULL;
    	audit_zero_context(context, state);
    	INIT_LIST_HEAD(&context->killed_trees);
    	INIT_LIST_HEAD(&context->names_list);
    	return context;
    }
    
    /**
     * audit_alloc - allocate an audit context block for a task
     * @tsk: task
     *
     * Filter on the task information and allocate a per-task audit context
     * if necessary.  Doing so turns on system call auditing for the
     * specified task.  This is called from copy_process, so no lock is
     * needed.
     */
    int audit_alloc(struct task_struct *tsk)
    {
    	struct audit_context *context;
    	enum audit_state     state;
    	char *key = NULL;
    
    	if (likely(!audit_ever_enabled))
    		return 0; /* Return if not auditing. */
    
    	state = audit_filter_task(tsk, &key);
    	if (state == AUDIT_DISABLED)
    		return 0;
    
    	if (!(context = audit_alloc_context(state))) {
    		kfree(key);
    		audit_log_lost("out of memory in audit_alloc");
    		return -ENOMEM;
    	}
    	context->filterkey = key;
    
    	tsk->audit_context  = context;
    	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
    	return 0;
    }
    
    static inline void audit_free_context(struct audit_context *context)
    {
    	struct audit_context *previous;
    	int		     count = 0;
    
    	do {
    		previous = context->previous;
    		if (previous || (count &&  count < 10)) {
    			++count;
    			printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
    			       " freeing multiple contexts (%d)\n",
    			       context->serial, context->major,
    			       context->name_count, count);
    		}
    		audit_free_names(context);
    		unroll_tree_refs(context, NULL, 0);
    		free_tree_refs(context);
    		audit_free_aux(context);
    		kfree(context->filterkey);
    		kfree(context->sockaddr);
    		kfree(context);
    		context  = previous;
    	} while (context);
    	if (count >= 10)
    		printk(KERN_ERR "audit: freed %d contexts\n", count);
    }
    
    void audit_log_task_context(struct audit_buffer *ab)
    {
    	char *ctx = NULL;
    	unsigned len;
    	int error;
    	u32 sid;
    
    	security_task_getsecid(current, &sid);
    	if (!sid)
    		return;
    
    	error = security_secid_to_secctx(sid, &ctx, &len);
    	if (error) {
    		if (error != -EINVAL)
    			goto error_path;
    		return;
    	}
    
    	audit_log_format(ab, " subj=%s", ctx);
    	security_release_secctx(ctx, len);
    	return;
    
    error_path:
    	audit_panic("error in audit_log_task_context");
    	return;
    }
    
    EXPORT_SYMBOL(audit_log_task_context);
    
    static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
    {
    	char name[sizeof(tsk->comm)];
    	struct mm_struct *mm = tsk->mm;
    	struct vm_area_struct *vma;
    
    	/* tsk == current */
    
    	get_task_comm(name, tsk);
    	audit_log_format(ab, " comm=");
    	audit_log_untrustedstring(ab, name);
    
    	if (mm) {
    		down_read(&mm->mmap_sem);
    		vma = mm->mmap;
    		while (vma) {
    			if ((vma->vm_flags & VM_EXECUTABLE) &&
    			    vma->vm_file) {
    				audit_log_d_path(ab, "exe=",
    						 &vma->vm_file->f_path);
    				break;
    			}
    			vma = vma->vm_next;
    		}
    		up_read(&mm->mmap_sem);
    	}
    	audit_log_task_context(ab);
    }
    
    static int audit_log_pid_context(struct audit_context *context, pid_t pid,
    				 uid_t auid, uid_t uid, unsigned int sessionid,
    				 u32 sid, char *comm)
    {
    	struct audit_buffer *ab;
    	char *ctx = NULL;
    	u32 len;
    	int rc = 0;
    
    	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
    	if (!ab)
    		return rc;
    
    	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
    			 uid, sessionid);
    	if (security_secid_to_secctx(sid, &ctx, &len)) {
    		audit_log_format(ab, " obj=(none)");
    		rc = 1;
    	} else {
    		audit_log_format(ab, " obj=%s", ctx);
    		security_release_secctx(ctx, len);
    	}
    	audit_log_format(ab, " ocomm=");
    	audit_log_untrustedstring(ab, comm);
    	audit_log_end(ab);
    
    	return rc;
    }
    
    /*
     * to_send and len_sent accounting are very loose estimates.  We aren't
     * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
     * within about 500 bytes (next page boundary)
     *
     * why snprintf?  an int is up to 12 digits long.  if we just assumed when
     * logging that a[%d]= was going to be 16 characters long we would be wasting
     * space in every audit message.  In one 7500 byte message we can log up to
     * about 1000 min size arguments.  That comes down to about 50% waste of space
     * if we didn't do the snprintf to find out how long arg_num_len was.
     */
    static int audit_log_single_execve_arg(struct audit_context *context,
    					struct audit_buffer **ab,
    					int arg_num,
    					size_t *len_sent,
    					const char __user *p,
    					char *buf)
    {
    	char arg_num_len_buf[12];
    	const char __user *tmp_p = p;
    	/* how many digits are in arg_num? 5 is the length of ' a=""' */
    	size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
    	size_t len, len_left, to_send;
    	size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
    	unsigned int i, has_cntl = 0, too_long = 0;
    	int ret;
    
    	/* strnlen_user includes the null we don't want to send */
    	len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
    
    	/*
    	 * We just created this mm, if we can't find the strings
    	 * we just copied into it something is _very_ wrong. Similar
    	 * for strings that are too long, we should not have created
    	 * any.
    	 */
    	if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
    		WARN_ON(1);
    		send_sig(SIGKILL, current, 0);
    		return -1;
    	}
    
    	/* walk the whole argument looking for non-ascii chars */
    	do {
    		if (len_left > MAX_EXECVE_AUDIT_LEN)
    			to_send = MAX_EXECVE_AUDIT_LEN;
    		else
    			to_send = len_left;
    		ret = copy_from_user(buf, tmp_p, to_send);
    		/*
    		 * There is no reason for this copy to be short. We just
    		 * copied them here, and the mm hasn't been exposed to user-
    		 * space yet.
    		 */
    		if (ret) {
    			WARN_ON(1);
    			send_sig(SIGKILL, current, 0);
    			return -1;
    		}
    		buf[to_send] = '\0';
    		has_cntl = audit_string_contains_control(buf, to_send);
    		if (has_cntl) {
    			/*
    			 * hex messages get logged as 2 bytes, so we can only
    			 * send half as much in each message
    			 */
    			max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
    			break;
    		}
    		len_left -= to_send;
    		tmp_p += to_send;
    	} while (len_left > 0);
    
    	len_left = len;
    
    	if (len > max_execve_audit_len)
    		too_long = 1;
    
    	/* rewalk the argument actually logging the message */
    	for (i = 0; len_left > 0; i++) {
    		int room_left;
    
    		if (len_left > max_execve_audit_len)
    			to_send = max_execve_audit_len;
    		else
    			to_send = len_left;
    
    		/* do we have space left to send this argument in this ab? */
    		room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
    		if (has_cntl)
    			room_left -= (to_send * 2);
    		else
    			room_left -= to_send;
    		if (room_left < 0) {
    			*len_sent = 0;
    			audit_log_end(*ab);
    			*ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
    			if (!*ab)
    				return 0;
    		}
    
    		/*
    		 * first record needs to say how long the original string was
    		 * so we can be sure nothing was lost.
    		 */
    		if ((i == 0) && (too_long))
    			audit_log_format(*ab, " a%d_len=%zu", arg_num,
    					 has_cntl ? 2*len : len);
    
    		/*
    		 * normally arguments are small enough to fit and we already
    		 * filled buf above when we checked for control characters
    		 * so don't bother with another copy_from_user
    		 */
    		if (len >= max_execve_audit_len)
    			ret = copy_from_user(buf, p, to_send);
    		else
    			ret = 0;
    		if (ret) {
    			WARN_ON(1);
    			send_sig(SIGKILL, current, 0);
    			return -1;
    		}
    		buf[to_send] = '\0';
    
    		/* actually log it */
    		audit_log_format(*ab, " a%d", arg_num);
    		if (too_long)
    			audit_log_format(*ab, "[%d]", i);
    		audit_log_format(*ab, "=");
    		if (has_cntl)
    			audit_log_n_hex(*ab, buf, to_send);
    		else
    			audit_log_string(*ab, buf);
    
    		p += to_send;
    		len_left -= to_send;
    		*len_sent += arg_num_len;
    		if (has_cntl)
    			*len_sent += to_send * 2;
    		else
    			*len_sent += to_send;
    	}
    	/* include the null we didn't log */
    	return len + 1;
    }
    
    static void audit_log_execve_info(struct audit_context *context,
    				  struct audit_buffer **ab,
    				  struct audit_aux_data_execve *axi)
    {
    	int i;
    	size_t len, len_sent = 0;
    	const char __user *p;
    	char *buf;
    
    	if (axi->mm != current->mm)
    		return; /* execve failed, no additional info */
    
    	p = (const char __user *)axi->mm->arg_start;
    
    	audit_log_format(*ab, "argc=%d", axi->argc);
    
    	/*
    	 * we need some kernel buffer to hold the userspace args.  Just
    	 * allocate one big one rather than allocating one of the right size
    	 * for every single argument inside audit_log_single_execve_arg()
    	 * should be <8k allocation so should be pretty safe.
    	 */
    	buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
    	if (!buf) {
    		audit_panic("out of memory for argv string\n");
    		return;
    	}
    
    	for (i = 0; i < axi->argc; i++) {
    		len = audit_log_single_execve_arg(context, ab, i,
    						  &len_sent, p, buf);
    		if (len <= 0)
    			break;
    		p += len;
    	}
    	kfree(buf);
    }
    
    static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
    {
    	int i;
    
    	audit_log_format(ab, " %s=", prefix);
    	CAP_FOR_EACH_U32(i) {
    		audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
    	}
    }
    
    static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
    {
    	kernel_cap_t *perm = &name->fcap.permitted;
    	kernel_cap_t *inh = &name->fcap.inheritable;
    	int log = 0;
    
    	if (!cap_isclear(*perm)) {
    		audit_log_cap(ab, "cap_fp", perm);
    		log = 1;
    	}
    	if (!cap_isclear(*inh)) {
    		audit_log_cap(ab, "cap_fi", inh);
    		log = 1;
    	}
    
    	if (log)
    		audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
    }
    
    static void show_special(struct audit_context *context, int *call_panic)
    {
    	struct audit_buffer *ab;
    	int i;
    
    	ab = audit_log_start(context, GFP_KERNEL, context->type);
    	if (!ab)
    		return;
    
    	switch (context->type) {
    	case AUDIT_SOCKETCALL: {
    		int nargs = context->socketcall.nargs;
    		audit_log_format(ab, "nargs=%d", nargs);
    		for (i = 0; i < nargs; i++)
    			audit_log_format(ab, " a%d=%lx", i,
    				context->socketcall.args[i]);
    		break; }
    	case AUDIT_IPC: {
    		u32 osid = context->ipc.osid;
    
    		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
    			 context->ipc.uid, context->ipc.gid, context->ipc.mode);
    		if (osid) {
    			char *ctx = NULL;
    			u32 len;
    			if (security_secid_to_secctx(osid, &ctx, &len)) {
    				audit_log_format(ab, " osid=%u", osid);
    				*call_panic = 1;
    			} else {
    				audit_log_format(ab, " obj=%s", ctx);
    				security_release_secctx(ctx, len);
    			}
    		}
    		if (context->ipc.has_perm) {
    			audit_log_end(ab);
    			ab = audit_log_start(context, GFP_KERNEL,
    					     AUDIT_IPC_SET_PERM);
    			audit_log_format(ab,
    				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
    				context->ipc.qbytes,
    				context->ipc.perm_uid,
    				context->ipc.perm_gid,
    				context->ipc.perm_mode);
    			if (!ab)
    				return;
    		}
    		break; }
    	case AUDIT_MQ_OPEN: {
    		audit_log_format(ab,
    			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
    			"mq_msgsize=%ld mq_curmsgs=%ld",
    			context->mq_open.oflag, context->mq_open.mode,
    			context->mq_open.attr.mq_flags,
    			context->mq_open.attr.mq_maxmsg,
    			context->mq_open.attr.mq_msgsize,
    			context->mq_open.attr.mq_curmsgs);
    		break; }
    	case AUDIT_MQ_SENDRECV: {
    		audit_log_format(ab,
    			"mqdes=%d msg_len=%zd msg_prio=%u "
    			"abs_timeout_sec=%ld abs_timeout_nsec=%ld",
    			context->mq_sendrecv.mqdes,
    			context->mq_sendrecv.msg_len,
    			context->mq_sendrecv.msg_prio,
    			context->mq_sendrecv.abs_timeout.tv_sec,
    			context->mq_sendrecv.abs_timeout.tv_nsec);
    		break; }
    	case AUDIT_MQ_NOTIFY: {
    		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
    				context->mq_notify.mqdes,
    				context->mq_notify.sigev_signo);
    		break; }
    	case AUDIT_MQ_GETSETATTR: {
    		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
    		audit_log_format(ab,
    			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
    			"mq_curmsgs=%ld ",
    			context->mq_getsetattr.mqdes,
    			attr->mq_flags, attr->mq_maxmsg,
    			attr->mq_msgsize, attr->mq_curmsgs);
    		break; }
    	case AUDIT_CAPSET: {
    		audit_log_format(ab, "pid=%d", context->capset.pid);
    		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
    		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
    		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
    		break; }
    	case AUDIT_MMAP: {
    		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
    				 context->mmap.flags);
    		break; }
    	}
    	audit_log_end(ab);
    }
    
    static void audit_log_name(struct audit_context *context, struct audit_names *n,
    			   int record_num, int *call_panic)
    {
    	struct audit_buffer *ab;
    	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
    	if (!ab)
    		return; /* audit_panic has been called */
    
    	audit_log_format(ab, "item=%d", record_num);
    
    	if (n->name) {
    		switch (n->name_len) {
    		case AUDIT_NAME_FULL:
    			/* log the full path */
    			audit_log_format(ab, " name=");
    			audit_log_untrustedstring(ab, n->name);
    			break;
    		case 0:
    			/* name was specified as a relative path and the
    			 * directory component is the cwd */
    			audit_log_d_path(ab, "name=", &context->pwd);
    			break;
    		default:
    			/* log the name's directory component */
    			audit_log_format(ab, " name=");
    			audit_log_n_untrustedstring(ab, n->name,
    						    n->name_len);
    		}
    	} else
    		audit_log_format(ab, " name=(null)");
    
    	if (n->ino != (unsigned long)-1) {
    		audit_log_format(ab, " inode=%lu"
    				 " dev=%02x:%02x mode=%#ho"
    				 " ouid=%u ogid=%u rdev=%02x:%02x",
    				 n->ino,
    				 MAJOR(n->dev),
    				 MINOR(n->dev),
    				 n->mode,
    				 n->uid,
    				 n->gid,
    				 MAJOR(n->rdev),
    				 MINOR(n->rdev));
    	}
    	if (n->osid != 0) {
    		char *ctx = NULL;
    		u32 len;
    		if (security_secid_to_secctx(
    			n->osid, &ctx, &len)) {
    			audit_log_format(ab, " osid=%u", n->osid);
    			*call_panic = 2;
    		} else {
    			audit_log_format(ab, " obj=%s", ctx);
    			security_release_secctx(ctx, len);
    		}
    	}
    
    	audit_log_fcaps(ab, n);
    
    	audit_log_end(ab);
    }
    
    static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
    {
    	const struct cred *cred;
    	int i, call_panic = 0;
    	struct audit_buffer *ab;
    	struct audit_aux_data *aux;
    	const char *tty;
    	struct audit_names *n;
    
    	/* tsk == current */
    	context->pid = tsk->pid;
    	if (!context->ppid)
    		context->ppid = sys_getppid();
    	cred = current_cred();
    	context->uid   = cred->uid;
    	context->gid   = cred->gid;
    	context->euid  = cred->euid;
    	context->suid  = cred->suid;
    	context->fsuid = cred->fsuid;
    	context->egid  = cred->egid;
    	context->sgid  = cred->sgid;
    	context->fsgid = cred->fsgid;
    	context->personality = tsk->personality;
    
    	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
    	if (!ab)
    		return;		/* audit_panic has been called */
    	audit_log_format(ab, "arch=%x syscall=%d",
    			 context->arch, context->major);
    	if (context->personality != PER_LINUX)
    		audit_log_format(ab, " per=%lx", context->personality);
    	if (context->return_valid)
    		audit_log_format(ab, " success=%s exit=%ld",
    				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
    				 context->return_code);
    
    	spin_lock_irq(&tsk->sighand->siglock);
    	if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
    		tty = tsk->signal->tty->name;
    	else
    		tty = "(none)";
    	spin_unlock_irq(&tsk->sighand->siglock);
    
    	audit_log_format(ab,
    		  " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
    		  " ppid=%d pid=%d auid=%u uid=%u gid=%u"
    		  " euid=%u suid=%u fsuid=%u"
    		  " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
    		  context->argv[0],
    		  context->argv[1],
    		  context->argv[2],
    		  context->argv[3],
    		  context->name_count,
    		  context->ppid,
    		  context->pid,
    		  tsk->loginuid,
    		  context->uid,
    		  context->gid,
    		  context->euid, context->suid, context->fsuid,
    		  context->egid, context->sgid, context->fsgid, tty,
    		  tsk->sessionid);
    
    
    	audit_log_task_info(ab, tsk);
    	audit_log_key(ab, context->filterkey);
    	audit_log_end(ab);
    
    	for (aux = context->aux; aux; aux = aux->next) {
    
    		ab = audit_log_start(context, GFP_KERNEL, aux->type);
    		if (!ab)
    			continue; /* audit_panic has been called */
    
    		switch (aux->type) {
    
    		case AUDIT_EXECVE: {
    			struct audit_aux_data_execve *axi = (void *)aux;
    			audit_log_execve_info(context, &ab, axi);
    			break; }
    
    		case AUDIT_BPRM_FCAPS: {
    			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
    			audit_log_format(ab, "fver=%x", axs->fcap_ver);
    			audit_log_cap(ab, "fp", &axs->fcap.permitted);
    			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
    			audit_log_format(ab, " fe=%d", axs->fcap.fE);
    			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
    			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
    			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
    			audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
    			audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
    			audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
    			break; }
    
    		}
    		audit_log_end(ab);
    	}
    
    	if (context->type)
    		show_special(context, &call_panic);
    
    	if (context->fds[0] >= 0) {
    		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
    		if (ab) {
    			audit_log_format(ab, "fd0=%d fd1=%d",
    					context->fds[0], context->fds[1]);
    			audit_log_end(ab);
    		}
    	}
    
    	if (context->sockaddr_len) {
    		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
    		if (ab) {
    			audit_log_format(ab, "saddr=");
    			audit_log_n_hex(ab, (void *)context->sockaddr,
    					context->sockaddr_len);
    			audit_log_end(ab);
    		}
    	}
    
    	for (aux = context->aux_pids; aux; aux = aux->next) {
    		struct audit_aux_data_pids *axs = (void *)aux;
    
    		for (i = 0; i < axs->pid_count; i++)
    			if (audit_log_pid_context(context, axs->target_pid[i],
    						  axs->target_auid[i],
    						  axs->target_uid[i],
    						  axs->target_sessionid[i],
    						  axs->target_sid[i],
    						  axs->target_comm[i]))
    				call_panic = 1;
    	}
    
    	if (context->target_pid &&
    	    audit_log_pid_context(context, context->target_pid,
    				  context->target_auid, context->target_uid,
    				  context->target_sessionid,
    				  context->target_sid, context->target_comm))
    			call_panic = 1;
    
    	if (context->pwd.dentry && context->pwd.mnt) {
    		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
    		if (ab) {
    			audit_log_d_path(ab, "cwd=", &context->pwd);
    			audit_log_end(ab);
    		}
    	}
    
    	i = 0;
    	list_for_each_entry(n, &context->names_list, list)
    		audit_log_name(context, n, i++, &call_panic);
    
    	/* Send end of event record to help user space know we are finished */
    	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
    	if (ab)
    		audit_log_end(ab);
    	if (call_panic)
    		audit_panic("error converting sid to string");
    }
    
    /**
     * audit_free - free a per-task audit context
     * @tsk: task whose audit context block to free
     *
     * Called from copy_process and do_exit
     */
    void __audit_free(struct task_struct *tsk)
    {
    	struct audit_context *context;
    
    	context = audit_get_context(tsk, 0, 0);
    	if (!context)
    		return;
    
    	/* Check for system calls that do not go through the exit
    	 * function (e.g., exit_group), then free context block.
    	 * We use GFP_ATOMIC here because we might be doing this
    	 * in the context of the idle thread */
    	/* that can happen only if we are called from do_exit() */
    	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
    		audit_log_exit(context, tsk);
    	if (!list_empty(&context->killed_trees))
    		audit_kill_trees(&context->killed_trees);
    
    	audit_free_context(context);
    }
    
    /**
     * audit_syscall_entry - fill in an audit record at syscall entry
     * @arch: architecture type
     * @major: major syscall type (function)
     * @a1: additional syscall register 1
     * @a2: additional syscall register 2
     * @a3: additional syscall register 3
     * @a4: additional syscall register 4
     *
     * Fill in audit context at syscall entry.  This only happens if the
     * audit context was created when the task was created and the state or
     * filters demand the audit context be built.  If the state from the
     * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
     * then the record will be written at syscall exit time (otherwise, it
     * will only be written if another part of the kernel requests that it
     * be written).
     */
    void __audit_syscall_entry(int arch, int major,
    			 unsigned long a1, unsigned long a2,
    			 unsigned long a3, unsigned long a4)
    {
    	struct task_struct *tsk = current;
    	struct audit_context *context = tsk->audit_context;
    	enum audit_state     state;
    
    	if (!context)
    		return;
    
    	/*
    	 * This happens only on certain architectures that make system
    	 * calls in kernel_thread via the entry.S interface, instead of
    	 * with direct calls.  (If you are porting to a new
    	 * architecture, hitting this condition can indicate that you
    	 * got the _exit/_leave calls backward in entry.S.)
    	 *
    	 * i386     no
    	 * x86_64   no
    	 * ppc64    yes (see arch/powerpc/platforms/iseries/misc.S)
    	 *
    	 * This also happens with vm86 emulation in a non-nested manner
    	 * (entries without exits), so this case must be caught.
    	 */
    	if (context->in_syscall) {
    		struct audit_context *newctx;
    
    #if AUDIT_DEBUG
    		printk(KERN_ERR
    		       "audit(:%d) pid=%d in syscall=%d;"
    		       " entering syscall=%d\n",
    		       context->serial, tsk->pid, context->major, major);
    #endif
    		newctx = audit_alloc_context(context->state);
    		if (newctx) {
    			newctx->previous   = context;
    			context		   = newctx;
    			tsk->audit_context = newctx;
    		} else	{
    			/* If we can't alloc a new context, the best we
    			 * can do is to leak memory (any pending putname
    			 * will be lost).  The only other alternative is
    			 * to abandon auditing. */
    			audit_zero_context(context, context->state);
    		}
    	}
    	BUG_ON(context->in_syscall || context->name_count);
    
    	if (!audit_enabled)
    		return;
    
    	context->arch	    = arch;
    	context->major      = major;
    	context->argv[0]    = a1;
    	context->argv[1]    = a2;
    	context->argv[2]    = a3;
    	context->argv[3]    = a4;
    
    	state = context->state;
    	context->dummy = !audit_n_rules;
    	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
    		context->prio = 0;
    		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
    	}
    	if (state == AUDIT_DISABLED)
    		return;
    
    	context->serial     = 0;
    	context->ctime      = CURRENT_TIME;
    	context->in_syscall = 1;
    	context->current_state  = state;
    	context->ppid       = 0;
    }
    
    /**
     * audit_syscall_exit - deallocate audit context after a system call
     * @pt_regs: syscall registers
     *
     * Tear down after system call.  If the audit context has been marked as
     * auditable (either because of the AUDIT_RECORD_CONTEXT state from
     * filtering, or because some other part of the kernel write an audit
     * message), then write out the syscall information.  In call cases,
     * free the names stored from getname().
     */
    void __audit_syscall_exit(int success, long return_code)
    {
    	struct task_struct *tsk = current;
    	struct audit_context *context;
    
    	if (success)
    		success = AUDITSC_SUCCESS;
    	else
    		success = AUDITSC_FAILURE;
    
    	context = audit_get_context(tsk, success, return_code);
    	if (!context)
    		return;
    
    	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
    		audit_log_exit(context, tsk);
    
    	context->in_syscall = 0;
    	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
    
    	if (!list_empty(&context->killed_trees))
    		audit_kill_trees(&context->killed_trees);
    
    	if (context->previous) {
    		struct audit_context *new_context = context->previous;
    		context->previous  = NULL;
    		audit_free_context(context);
    		tsk->audit_context = new_context;
    	} else {
    		audit_free_names(context);
    		unroll_tree_refs(context, NULL, 0);
    		audit_free_aux(context);
    		context->aux = NULL;
    		context->aux_pids = NULL;
    		context->target_pid = 0;
    		context->target_sid = 0;
    		context->sockaddr_len = 0;
    		context->type = 0;
    		context->fds[0] = -1;
    		if (context->state != AUDIT_RECORD_CONTEXT) {
    			kfree(context->filterkey);
    			context->filterkey = NULL;
    		}
    		tsk->audit_context = context;
    	}
    }
    
    static inline void handle_one(const struct inode *inode)
    {
    #ifdef CONFIG_AUDIT_TREE
    	struct audit_context *context;
    	struct audit_tree_refs *p;
    	struct audit_chunk *chunk;
    	int count;
    	if (likely(hlist_empty(&inode->i_fsnotify_marks)))
    		return;
    	context = current->audit_context;
    	p = context->trees;
    	count = context->tree_count;
    	rcu_read_lock();
    	chunk = audit_tree_lookup(inode);
    	rcu_read_unlock();
    	if (!chunk)
    		return;
    	if (likely(put_tree_ref(context, chunk)))
    		return;
    	if (unlikely(!grow_tree_refs(context))) {
    		printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
    		audit_set_auditable(context);
    		audit_put_chunk(chunk);
    		unroll_tree_refs(context, p, count);
    		return;
    	}
    	put_tree_ref(context, chunk);
    #endif
    }
    
    static void handle_path(const struct dentry *dentry)
    {
    #ifdef CONFIG_AUDIT_TREE
    	struct audit_context *context;
    	struct audit_tree_refs *p;
    	const struct dentry *d, *parent;
    	struct audit_chunk *drop;
    	unsigned long seq;
    	int count;
    
    	context = current->audit_context;
    	p = context->trees;
    	count = context->tree_count;
    retry:
    	drop = NULL;
    	d = dentry;
    	rcu_read_lock();
    	seq = read_seqbegin(&rename_lock);
    	for(;;) {
    		struct inode *inode = d->d_inode;
    		if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
    			struct audit_chunk *chunk;
    			chunk = audit_tree_lookup(inode);
    			if (chunk) {
    				if (unlikely(!put_tree_ref(context, chunk))) {
    					drop = chunk;
    					break;
    				}
    			}
    		}
    		parent = d->d_parent;
    		if (parent == d)
    			break;
    		d = parent;
    	}
    	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
    		rcu_read_unlock();
    		if (!drop) {
    			/* just a race with rename */
    			unroll_tree_refs(context, p, count);
    			goto retry;
    		}
    		audit_put_chunk(drop);
    		if (grow_tree_refs(context)) {
    			/* OK, got more space */
    			unroll_tree_refs(context, p, count);
    			goto retry;
    		}
    		/* too bad */
    		printk(KERN_WARNING
    			"out of memory, audit has lost a tree reference\n");
    		unroll_tree_refs(context, p, count);
    		audit_set_auditable(context);
    		return;
    	}
    	rcu_read_unlock();
    #endif
    }
    
    static struct audit_names *audit_alloc_name(struct audit_context *context)
    {
    	struct audit_names *aname;
    
    	if (context->name_count < AUDIT_NAMES) {
    		aname = &context->preallocated_names[context->name_count];
    		memset(aname, 0, sizeof(*aname));
    	} else {
    		aname = kzalloc(sizeof(*aname), GFP_NOFS);
    		if (!aname)
    			return NULL;
    		aname->should_free = true;
    	}
    
    	aname->ino = (unsigned long)-1;
    	list_add_tail(&aname->list, &context->names_list);
    
    	context->name_count++;
    #if AUDIT_DEBUG
    	context->ino_count++;
    #endif
    	return aname;
    }
    
    /**
     * audit_getname - add a name to the list
     * @name: name to add
     *
     * Add a name to the list of audit names for this context.
     * Called from fs/namei.c:getname().
     */
    void __audit_getname(const char *name)
    {
    	struct audit_context *context = current->audit_context;
    	struct audit_names *n;
    
    	if (IS_ERR(name) || !name)
    		return;
    
    	if (!context->in_syscall) {
    #if AUDIT_DEBUG == 2
    		printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
    		       __FILE__, __LINE__, context->serial, name);
    		dump_stack();
    #endif
    		return;
    	}
    
    	n = audit_alloc_name(context);
    	if (!n)
    		return;
    
    	n->name = name;
    	n->name_len = AUDIT_NAME_FULL;
    	n->name_put = true;
    
    	if (!context->pwd.dentry)
    		get_fs_pwd(current->fs, &context->pwd);
    }
    
    /* audit_putname - intercept a putname request
     * @name: name to intercept and delay for putname
     *
     * If we have stored the name from getname in the audit context,
     * then we delay the putname until syscall exit.
     * Called from include/linux/fs.h:putname().
     */
    void audit_putname(const char *name)
    {
    	struct audit_context *context = current->audit_context;
    
    	BUG_ON(!context);
    	if (!context->in_syscall) {
    #if AUDIT_DEBUG == 2
    		printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
    		       __FILE__, __LINE__, context->serial, name);
    		if (context->name_count) {
    			struct audit_names *n;
    			int i;
    
    			list_for_each_entry(n, &context->names_list, list)
    				printk(KERN_ERR "name[%d] = %p = %s\n", i,
    				       n->name, n->name ?: "(null)");
    			}
    #endif
    		__putname(name);
    	}
    #if AUDIT_DEBUG
    	else {
    		++context->put_count;
    		if (context->put_count > context->name_count) {
    			printk(KERN_ERR "%s:%d(:%d): major=%d"
    			       " in_syscall=%d putname(%p) name_count=%d"
    			       " put_count=%d\n",
    			       __FILE__, __LINE__,
    			       context->serial, context->major,
    			       context->in_syscall, name, context->name_count,
    			       context->put_count);
    			dump_stack();
    		}
    	}
    #endif
    }
    
    static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
    {
    	struct cpu_vfs_cap_data caps;
    	int rc;
    
    	if (!dentry)
    		return 0;
    
    	rc = get_vfs_caps_from_disk(dentry, &caps);
    	if (rc)
    		return rc;
    
    	name->fcap.permitted = caps.permitted;
    	name->fcap.inheritable = caps.inheritable;
    	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
    	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
    
    	return 0;
    }
    
    
    /* Copy inode data into an audit_names. */
    static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
    			     const struct inode *inode)
    {
    	name->ino   = inode->i_ino;
    	name->dev   = inode->i_sb->s_dev;
    	name->mode  = inode->i_mode;
    	name->uid   = inode->i_uid;
    	name->gid   = inode->i_gid;
    	name->rdev  = inode->i_rdev;
    	security_inode_getsecid(inode, &name->osid);
    	audit_copy_fcaps(name, dentry);
    }
    
    /**
     * audit_inode - store the inode and device from a lookup
     * @name: name being audited
     * @dentry: dentry being audited
     *
     * Called from fs/namei.c:path_lookup().
     */
    void __audit_inode(const char *name, const struct dentry *dentry)
    {
    	struct audit_context *context = current->audit_context;
    	const struct inode *inode = dentry->d_inode;
    	struct audit_names *n;
    
    	if (!context->in_syscall)
    		return;
    
    	list_for_each_entry_reverse(n, &context->names_list, list) {
    		if (n->name && (n->name == name))
    			goto out;
    	}
    
    	/* unable to find the name from a previous getname() */
    	n = audit_alloc_name(context);
    	if (!n)
    		return;
    out:
    	handle_path(dentry);
    	audit_copy_inode(n, dentry, inode);
    }
    
    /**
     * audit_inode_child - collect inode info for created/removed objects
     * @dentry: dentry being audited
     * @parent: inode of dentry parent
     *
     * For syscalls that create or remove filesystem objects, audit_inode
     * can only collect information for the filesystem object's parent.
     * This call updates the audit context with the child's information.
     * Syscalls that create a new filesystem object must be hooked after
     * the object is created.  Syscalls that remove a filesystem object
     * must be hooked prior, in order to capture the target inode during
     * unsuccessful attempts.
     */
    void __audit_inode_child(const struct dentry *dentry,
    			 const struct inode *parent)
    {
    	struct audit_context *context = current->audit_context;
    	const char *found_parent = NULL, *found_child = NULL;
    	const struct inode *inode = dentry->d_inode;
    	const char *dname = dentry->d_name.name;
    	struct audit_names *n;
    	int dirlen = 0;
    
    	if (!context->in_syscall)
    		return;
    
    	if (inode)
    		handle_one(inode);
    
    	/* parent is more likely, look for it first */
    	list_for_each_entry(n, &context->names_list, list) {
    		if (!n->name)
    			continue;
    
    		if (n->ino == parent->i_ino &&
    		    !audit_compare_dname_path(dname, n->name, &dirlen)) {
    			n->name_len = dirlen; /* update parent data in place */
    			found_parent = n->name;
    			goto add_names;
    		}
    	}
    
    	/* no matching parent, look for matching child */
    	list_for_each_entry(n, &context->names_list, list) {
    		if (!n->name)
    			continue;
    
    		/* strcmp() is the more likely scenario */
    		if (!strcmp(dname, n->name) ||
    		     !audit_compare_dname_path(dname, n->name, &dirlen)) {
    			if (inode)
    				audit_copy_inode(n, NULL, inode);
    			else
    				n->ino = (unsigned long)-1;
    			found_child = n->name;
    			goto add_names;
    		}
    	}
    
    add_names:
    	if (!found_parent) {
    		n = audit_alloc_name(context);
    		if (!n)
    			return;
    		audit_copy_inode(n, NULL, parent);
    	}
    
    	if (!found_child) {
    		n = audit_alloc_name(context);
    		if (!n)
    			return;
    
    		/* Re-use the name belonging to the slot for a matching parent
    		 * directory. All names for this context are relinquished in
    		 * audit_free_names() */
    		if (found_parent) {
    			n->name = found_parent;
    			n->name_len = AUDIT_NAME_FULL;
    			/* don't call __putname() */
    			n->name_put = false;
    		}
    
    		if (inode)
    			audit_copy_inode(n, NULL, inode);
    	}
    }
    EXPORT_SYMBOL_GPL(__audit_inode_child);
    
    /**
     * auditsc_get_stamp - get local copies of audit_context values
     * @ctx: audit_context for the task
     * @t: timespec to store time recorded in the audit_context
     * @serial: serial value that is recorded in the audit_context
     *
     * Also sets the context as auditable.
     */
    int auditsc_get_stamp(struct audit_context *ctx,
    		       struct timespec *t, unsigned int *serial)
    {
    	if (!ctx->in_syscall)
    		return 0;
    	if (!ctx->serial)
    		ctx->serial = audit_serial();
    	t->tv_sec  = ctx->ctime.tv_sec;
    	t->tv_nsec = ctx->ctime.tv_nsec;
    	*serial    = ctx->serial;
    	if (!ctx->prio) {
    		ctx->prio = 1;
    		ctx->current_state = AUDIT_RECORD_CONTEXT;
    	}
    	return 1;
    }
    
    /* global counter which is incremented every time something logs in */
    static atomic_t session_id = ATOMIC_INIT(0);
    
    /**
     * audit_set_loginuid - set a task's audit_context loginuid
     * @task: task whose audit context is being modified
     * @loginuid: loginuid value
     *
     * Returns 0.
     *
     * Called (set) from fs/proc/base.c::proc_loginuid_write().
     */
    int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
    {
    	unsigned int sessionid = atomic_inc_return(&session_id);
    	struct audit_context *context = task->audit_context;
    
    	if (context && context->in_syscall) {
    		struct audit_buffer *ab;
    
    		ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
    		if (ab) {
    			audit_log_format(ab, "login pid=%d uid=%u "
    				"old auid=%u new auid=%u"
    				" old ses=%u new ses=%u",
    				task->pid, task_uid(task),
    				task->loginuid, loginuid,
    				task->sessionid, sessionid);
    			audit_log_end(ab);
    		}
    	}
    	task->sessionid = sessionid;
    	task->loginuid = loginuid;
    	return 0;
    }
    
    /**
     * __audit_mq_open - record audit data for a POSIX MQ open
     * @oflag: open flag
     * @mode: mode bits
     * @attr: queue attributes
     *
     */
    void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
    {
    	struct audit_context *context = current->audit_context;
    
    	if (attr)
    		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
    	else
    		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
    
    	context->mq_open.oflag = oflag;
    	context->mq_open.mode = mode;
    
    	context->type = AUDIT_MQ_OPEN;
    }
    
    /**
     * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
     * @mqdes: MQ descriptor
     * @msg_len: Message length
     * @msg_prio: Message priority
     * @abs_timeout: Message timeout in absolute time
     *
     */
    void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
    			const struct timespec *abs_timeout)
    {
    	struct audit_context *context = current->audit_context;
    	struct timespec *p = &context->mq_sendrecv.abs_timeout;
    
    	if (abs_timeout)
    		memcpy(p, abs_timeout, sizeof(struct timespec));
    	else
    		memset(p, 0, sizeof(struct timespec));
    
    	context->mq_sendrecv.mqdes = mqdes;
    	context->mq_sendrecv.msg_len = msg_len;
    	context->mq_sendrecv.msg_prio = msg_prio;
    
    	context->type = AUDIT_MQ_SENDRECV;
    }
    
    /**
     * __audit_mq_notify - record audit data for a POSIX MQ notify
     * @mqdes: MQ descriptor
     * @notification: Notification event
     *
     */
    
    void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
    {
    	struct audit_context *context = current->audit_context;
    
    	if (notification)
    		context->mq_notify.sigev_signo = notification->sigev_signo;
    	else
    		context->mq_notify.sigev_signo = 0;
    
    	context->mq_notify.mqdes = mqdes;
    	context->type = AUDIT_MQ_NOTIFY;
    }
    
    /**
     * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
     * @mqdes: MQ descriptor
     * @mqstat: MQ flags
     *
     */
    void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
    {
    	struct audit_context *context = current->audit_context;
    	context->mq_getsetattr.mqdes = mqdes;
    	context->mq_getsetattr.mqstat = *mqstat;
    	context->type = AUDIT_MQ_GETSETATTR;
    }
    
    /**
     * audit_ipc_obj - record audit data for ipc object
     * @ipcp: ipc permissions
     *
     */
    void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
    {
    	struct audit_context *context = current->audit_context;
    	context->ipc.uid = ipcp->uid;
    	context->ipc.gid = ipcp->gid;
    	context->ipc.mode = ipcp->mode;
    	context->ipc.has_perm = 0;
    	security_ipc_getsecid(ipcp, &context->ipc.osid);
    	context->type = AUDIT_IPC;
    }
    
    /**
     * audit_ipc_set_perm - record audit data for new ipc permissions
     * @qbytes: msgq bytes
     * @uid: msgq user id
     * @gid: msgq group id
     * @mode: msgq mode (permissions)
     *
     * Called only after audit_ipc_obj().
     */
    void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
    {
    	struct audit_context *context = current->audit_context;
    
    	context->ipc.qbytes = qbytes;
    	context->ipc.perm_uid = uid;
    	context->ipc.perm_gid = gid;
    	context->ipc.perm_mode = mode;
    	context->ipc.has_perm = 1;
    }
    
    int __audit_bprm(struct linux_binprm *bprm)
    {
    	struct audit_aux_data_execve *ax;
    	struct audit_context *context = current->audit_context;
    
    	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
    	if (!ax)
    		return -ENOMEM;
    
    	ax->argc = bprm->argc;
    	ax->envc = bprm->envc;
    	ax->mm = bprm->mm;
    	ax->d.type = AUDIT_EXECVE;
    	ax->d.next = context->aux;
    	context->aux = (void *)ax;
    	return 0;
    }
    
    
    /**
     * audit_socketcall - record audit data for sys_socketcall
     * @nargs: number of args
     * @args: args array
     *
     */
    void __audit_socketcall(int nargs, unsigned long *args)
    {
    	struct audit_context *context = current->audit_context;
    
    	context->type = AUDIT_SOCKETCALL;
    	context->socketcall.nargs = nargs;
    	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
    }
    
    /**
     * __audit_fd_pair - record audit data for pipe and socketpair
     * @fd1: the first file descriptor
     * @fd2: the second file descriptor
     *
     */
    void __audit_fd_pair(int fd1, int fd2)
    {
    	struct audit_context *context = current->audit_context;
    	context->fds[0] = fd1;
    	context->fds[1] = fd2;
    }
    
    /**
     * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
     * @len: data length in user space
     * @a: data address in kernel space
     *
     * Returns 0 for success or NULL context or < 0 on error.
     */
    int __audit_sockaddr(int len, void *a)
    {
    	struct audit_context *context = current->audit_context;
    
    	if (!context->sockaddr) {
    		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
    		if (!p)
    			return -ENOMEM;
    		context->sockaddr = p;
    	}
    
    	context->sockaddr_len = len;
    	memcpy(context->sockaddr, a, len);
    	return 0;
    }
    
    void __audit_ptrace(struct task_struct *t)
    {
    	struct audit_context *context = current->audit_context;
    
    	context->target_pid = t->pid;
    	context->target_auid = audit_get_loginuid(t);
    	context->target_uid = task_uid(t);
    	context->target_sessionid = audit_get_sessionid(t);
    	security_task_getsecid(t, &context->target_sid);
    	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
    }
    
    /**
     * audit_signal_info - record signal info for shutting down audit subsystem
     * @sig: signal value
     * @t: task being signaled
     *
     * If the audit subsystem is being terminated, record the task (pid)
     * and uid that is doing that.
     */
    int __audit_signal_info(int sig, struct task_struct *t)
    {
    	struct audit_aux_data_pids *axp;
    	struct task_struct *tsk = current;
    	struct audit_context *ctx = tsk->audit_context;
    	uid_t uid = current_uid(), t_uid = task_uid(t);
    
    	if (audit_pid && t->tgid == audit_pid) {
    		if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
    			audit_sig_pid = tsk->pid;
    			if (tsk->loginuid != -1)
    				audit_sig_uid = tsk->loginuid;
    			else
    				audit_sig_uid = uid;
    			security_task_getsecid(tsk, &audit_sig_sid);
    		}
    		if (!audit_signals || audit_dummy_context())
    			return 0;
    	}
    
    	/* optimize the common case by putting first signal recipient directly
    	 * in audit_context */
    	if (!ctx->target_pid) {
    		ctx->target_pid = t->tgid;
    		ctx->target_auid = audit_get_loginuid(t);
    		ctx->target_uid = t_uid;
    		ctx->target_sessionid = audit_get_sessionid(t);
    		security_task_getsecid(t, &ctx->target_sid);
    		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
    		return 0;
    	}
    
    	axp = (void *)ctx->aux_pids;
    	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
    		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
    		if (!axp)
    			return -ENOMEM;
    
    		axp->d.type = AUDIT_OBJ_PID;
    		axp->d.next = ctx->aux_pids;
    		ctx->aux_pids = (void *)axp;
    	}
    	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
    
    	axp->target_pid[axp->pid_count] = t->tgid;
    	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
    	axp->target_uid[axp->pid_count] = t_uid;
    	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
    	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
    	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
    	axp->pid_count++;
    
    	return 0;
    }
    
    /**
     * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
     * @bprm: pointer to the bprm being processed
     * @new: the proposed new credentials
     * @old: the old credentials
     *
     * Simply check if the proc already has the caps given by the file and if not
     * store the priv escalation info for later auditing at the end of the syscall
     *
     * -Eric
     */
    int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
    			   const struct cred *new, const struct cred *old)
    {
    	struct audit_aux_data_bprm_fcaps *ax;
    	struct audit_context *context = current->audit_context;
    	struct cpu_vfs_cap_data vcaps;
    	struct dentry *dentry;
    
    	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
    	if (!ax)
    		return -ENOMEM;
    
    	ax->d.type = AUDIT_BPRM_FCAPS;
    	ax->d.next = context->aux;
    	context->aux = (void *)ax;
    
    	dentry = dget(bprm->file->f_dentry);
    	get_vfs_caps_from_disk(dentry, &vcaps);
    	dput(dentry);
    
    	ax->fcap.permitted = vcaps.permitted;
    	ax->fcap.inheritable = vcaps.inheritable;
    	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
    	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
    
    	ax->old_pcap.permitted   = old->cap_permitted;
    	ax->old_pcap.inheritable = old->cap_inheritable;
    	ax->old_pcap.effective   = old->cap_effective;
    
    	ax->new_pcap.permitted   = new->cap_permitted;
    	ax->new_pcap.inheritable = new->cap_inheritable;
    	ax->new_pcap.effective   = new->cap_effective;
    	return 0;
    }
    
    /**
     * __audit_log_capset - store information about the arguments to the capset syscall
     * @pid: target pid of the capset call
     * @new: the new credentials
     * @old: the old (current) credentials
     *
     * Record the aguments userspace sent to sys_capset for later printing by the
     * audit system if applicable
     */
    void __audit_log_capset(pid_t pid,
    		       const struct cred *new, const struct cred *old)
    {
    	struct audit_context *context = current->audit_context;
    	context->capset.pid = pid;
    	context->capset.cap.effective   = new->cap_effective;
    	context->capset.cap.inheritable = new->cap_effective;
    	context->capset.cap.permitted   = new->cap_permitted;
    	context->type = AUDIT_CAPSET;
    }
    
    void __audit_mmap_fd(int fd, int flags)
    {
    	struct audit_context *context = current->audit_context;
    	context->mmap.fd = fd;
    	context->mmap.flags = flags;
    	context->type = AUDIT_MMAP;
    }
    
    static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
    {
    	uid_t auid, uid;
    	gid_t gid;
    	unsigned int sessionid;
    
    	auid = audit_get_loginuid(current);
    	sessionid = audit_get_sessionid(current);
    	current_uid_gid(&uid, &gid);
    
    	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
    			 auid, uid, gid, sessionid);
    	audit_log_task_context(ab);
    	audit_log_format(ab, " pid=%d comm=", current->pid);
    	audit_log_untrustedstring(ab, current->comm);
    	audit_log_format(ab, " reason=");
    	audit_log_string(ab, reason);
    	audit_log_format(ab, " sig=%ld", signr);
    }
    /**
     * audit_core_dumps - record information about processes that end abnormally
     * @signr: signal value
     *
     * If a process ends with a core dump, something fishy is going on and we
     * should record the event for investigation.
     */
    void audit_core_dumps(long signr)
    {
    	struct audit_buffer *ab;
    
    	if (!audit_enabled)
    		return;
    
    	if (signr == SIGQUIT)	/* don't care for those */
    		return;
    
    	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
    	audit_log_abend(ab, "memory violation", signr);
    	audit_log_end(ab);
    }
    
    void __audit_seccomp(unsigned long syscall)
    {
    	struct audit_buffer *ab;
    
    	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
    	audit_log_abend(ab, "seccomp", SIGKILL);
    	audit_log_format(ab, " syscall=%ld", syscall);
    	audit_log_end(ab);
    }
    
    struct list_head *audit_killed_trees(void)
    {
    	struct audit_context *ctx = current->audit_context;
    	if (likely(!ctx || !ctx->in_syscall))
    		return NULL;
    	return &ctx->killed_trees;
    }