Skip to content
Snippets Groups Projects
Select Git revision
  • 77238f2b942b38ab4e7f3aced44084493e4a8675
  • add-vdpu381-and-383-to-rkvdec
  • prepare-add-vdpu381-and-383-to-rkvdec
  • add-rkvdec2-driver-vdpu383-hevc
  • add-rkvdec2-driver-vdpu383
  • add-rkvdec2-driver-hevc
  • rkvdec-mov-to-structs
  • av1-fix-postproc-leak
  • add-rkvdec2-driver-iommu-422-10bits
  • patch-queue/jamba/trixie
  • hdmi-fix-1080p-rock4d-6.11
  • upstreaming/rk3576-rock4d-spi-v1
  • upstreaming/rk3576-rock4d-support-v5
  • upstreaming/rk3588-hdmi-audio-6
  • upstreaming/rk3576-rock4d-support-v3
  • upstreaming/rk3576-rock4d-support-v1
  • upstreaming/rk3576-rock4d-support
  • add-rkvdec2-driver-iommu
  • upstream/rk3576-rock-4d
  • rk3588-hdmi-audio-2
  • fix-rk3588-i2s-tdm-clocks
  • v6.3
  • v6.3-rc1
  • v6.2-rc1
  • v6.0-rc1
  • v5.19-rc3
  • v5.19-rc2
  • v5.19-rc1
  • v5.18
  • v5.18-rc7
  • v5.18-rc6
  • v5.18-rc5
  • v5.18-rc4
  • v5.18-rc3
  • v5.18-rc2
  • v5.18-rc1
  • v5.17
  • v5.17-rc8
  • v5.17-rc7
  • v5.17-rc6
  • v5.17-rc5
41 results

af_unix.c

Blame
  • Forked from hardware-enablement / Rockchip upstream enablement efforts / linux
    Source project has a limited visibility.
    protocol.c 95.87 KiB
    // SPDX-License-Identifier: GPL-2.0
    /* Multipath TCP
     *
     * Copyright (c) 2017 - 2019, Intel Corporation.
     */
    
    #define pr_fmt(fmt) "MPTCP: " fmt
    
    #include <linux/kernel.h>
    #include <linux/module.h>
    #include <linux/netdevice.h>
    #include <linux/sched/signal.h>
    #include <linux/atomic.h>
    #include <net/sock.h>
    #include <net/inet_common.h>
    #include <net/inet_hashtables.h>
    #include <net/protocol.h>
    #include <net/tcp.h>
    #include <net/tcp_states.h>
    #if IS_ENABLED(CONFIG_MPTCP_IPV6)
    #include <net/transp_v6.h>
    #endif
    #include <net/mptcp.h>
    #include <net/xfrm.h>
    #include <asm/ioctls.h>
    #include "protocol.h"
    #include "mib.h"
    
    #define CREATE_TRACE_POINTS
    #include <trace/events/mptcp.h>
    
    #if IS_ENABLED(CONFIG_MPTCP_IPV6)
    struct mptcp6_sock {
    	struct mptcp_sock msk;
    	struct ipv6_pinfo np;
    };
    #endif
    
    struct mptcp_skb_cb {
    	u64 map_seq;
    	u64 end_seq;
    	u32 offset;
    	u8  has_rxtstamp:1;
    };
    
    #define MPTCP_SKB_CB(__skb)	((struct mptcp_skb_cb *)&((__skb)->cb[0]))
    
    enum {
    	MPTCP_CMSG_TS = BIT(0),
    	MPTCP_CMSG_INQ = BIT(1),
    };
    
    static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
    
    static void __mptcp_destroy_sock(struct sock *sk);
    static void __mptcp_check_send_data_fin(struct sock *sk);
    
    DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
    static struct net_device mptcp_napi_dev;
    
    /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not
     * completed yet or has failed, return the subflow socket.
     * Otherwise return NULL.
     */
    struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk)
    {
    	if (!msk->subflow || READ_ONCE(msk->can_ack))
    		return NULL;
    
    	return msk->subflow;
    }
    
    /* Returns end sequence number of the receiver's advertised window */
    static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
    {
    	return READ_ONCE(msk->wnd_end);
    }
    
    static bool mptcp_is_tcpsk(struct sock *sk)
    {
    	struct socket *sock = sk->sk_socket;
    
    	if (unlikely(sk->sk_prot == &tcp_prot)) {
    		/* we are being invoked after mptcp_accept() has
    		 * accepted a non-mp-capable flow: sk is a tcp_sk,
    		 * not an mptcp one.
    		 *
    		 * Hand the socket over to tcp so all further socket ops
    		 * bypass mptcp.
    		 */
    		sock->ops = &inet_stream_ops;
    		return true;
    #if IS_ENABLED(CONFIG_MPTCP_IPV6)
    	} else if (unlikely(sk->sk_prot == &tcpv6_prot)) {
    		sock->ops = &inet6_stream_ops;
    		return true;
    #endif
    	}
    
    	return false;
    }
    
    static int __mptcp_socket_create(struct mptcp_sock *msk)
    {
    	struct mptcp_subflow_context *subflow;
    	struct sock *sk = (struct sock *)msk;
    	struct socket *ssock;
    	int err;
    
    	err = mptcp_subflow_create_socket(sk, &ssock);
    	if (err)
    		return err;
    
    	msk->first = ssock->sk;
    	msk->subflow = ssock;
    	subflow = mptcp_subflow_ctx(ssock->sk);
    	list_add(&subflow->node, &msk->conn_list);
    	sock_hold(ssock->sk);
    	subflow->request_mptcp = 1;
    
    	/* This is the first subflow, always with id 0 */
    	subflow->local_id_valid = 1;
    	mptcp_sock_graft(msk->first, sk->sk_socket);
    
    	return 0;
    }
    
    static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
    {
    	sk_drops_add(sk, skb);
    	__kfree_skb(skb);
    }
    
    static void mptcp_rmem_charge(struct sock *sk, int size)
    {
    	mptcp_sk(sk)->rmem_fwd_alloc -= size;
    }
    
    static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
    			       struct sk_buff *from)
    {
    	bool fragstolen;
    	int delta;
    
    	if (MPTCP_SKB_CB(from)->offset ||
    	    !skb_try_coalesce(to, from, &fragstolen, &delta))
    		return false;
    
    	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
    		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
    		 to->len, MPTCP_SKB_CB(from)->end_seq);
    	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
    	kfree_skb_partial(from, fragstolen);
    	atomic_add(delta, &sk->sk_rmem_alloc);
    	mptcp_rmem_charge(sk, delta);
    	return true;
    }
    
    static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
    				   struct sk_buff *from)
    {
    	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
    		return false;
    
    	return mptcp_try_coalesce((struct sock *)msk, to, from);
    }
    
    static void __mptcp_rmem_reclaim(struct sock *sk, int amount)
    {
    	amount >>= PAGE_SHIFT;
    	mptcp_sk(sk)->rmem_fwd_alloc -= amount << PAGE_SHIFT;
    	__sk_mem_reduce_allocated(sk, amount);
    }
    
    static void mptcp_rmem_uncharge(struct sock *sk, int size)
    {
    	struct mptcp_sock *msk = mptcp_sk(sk);
    	int reclaimable;
    
    	msk->rmem_fwd_alloc += size;
    	reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk);
    
    	/* see sk_mem_uncharge() for the rationale behind the following schema */
    	if (unlikely(reclaimable >= PAGE_SIZE))
    		__mptcp_rmem_reclaim(sk, reclaimable);
    }
    
    static void mptcp_rfree(struct sk_buff *skb)
    {
    	unsigned int len = skb->truesize;
    	struct sock *sk = skb->sk;
    
    	atomic_sub(len, &sk->sk_rmem_alloc);
    	mptcp_rmem_uncharge(sk, len);
    }
    
    static void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk)
    {
    	skb_orphan(skb);
    	skb->sk = sk;
    	skb->destructor = mptcp_rfree;
    	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
    	mptcp_rmem_charge(sk, skb->truesize);
    }
    
    /* "inspired" by tcp_data_queue_ofo(), main differences:
     * - use mptcp seqs
     * - don't cope with sacks
     */
    static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
    {
    	struct sock *sk = (struct sock *)msk;
    	struct rb_node **p, *parent;
    	u64 seq, end_seq, max_seq;
    	struct sk_buff *skb1;
    
    	seq = MPTCP_SKB_CB(skb)->map_seq;
    	end_seq = MPTCP_SKB_CB(skb)->end_seq;
    	max_seq = atomic64_read(&msk->rcv_wnd_sent);
    
    	pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
    		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
    	if (after64(end_seq, max_seq)) {
    		/* out of window */
    		mptcp_drop(sk, skb);
    		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
    			 (unsigned long long)end_seq - (unsigned long)max_seq,
    			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
    		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
    		return;
    	}
    
    	p = &msk->out_of_order_queue.rb_node;
    	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
    	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
    		rb_link_node(&skb->rbnode, NULL, p);
    		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
    		msk->ooo_last_skb = skb;
    		goto end;
    	}
    
    	/* with 2 subflows, adding at end of ooo queue is quite likely
    	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
    	 */
    	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
    		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
    		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
    		return;
    	}
    
    	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
    	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
    		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
    		parent = &msk->ooo_last_skb->rbnode;
    		p = &parent->rb_right;
    		goto insert;
    	}
    
    	/* Find place to insert this segment. Handle overlaps on the way. */
    	parent = NULL;
    	while (*p) {
    		parent = *p;
    		skb1 = rb_to_skb(parent);
    		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
    			p = &parent->rb_left;
    			continue;
    		}
    		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
    			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
    				/* All the bits are present. Drop. */
    				mptcp_drop(sk, skb);
    				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
    				return;
    			}
    			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
    				/* partial overlap:
    				 *     |     skb      |
    				 *  |     skb1    |
    				 * continue traversing
    				 */
    			} else {
    				/* skb's seq == skb1's seq and skb covers skb1.
    				 * Replace skb1 with skb.
    				 */
    				rb_replace_node(&skb1->rbnode, &skb->rbnode,
    						&msk->out_of_order_queue);
    				mptcp_drop(sk, skb1);
    				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
    				goto merge_right;
    			}
    		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
    			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
    			return;
    		}
    		p = &parent->rb_right;
    	}
    
    insert:
    	/* Insert segment into RB tree. */
    	rb_link_node(&skb->rbnode, parent, p);
    	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
    
    merge_right:
    	/* Remove other segments covered by skb. */
    	while ((skb1 = skb_rb_next(skb)) != NULL) {
    		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
    			break;
    		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
    		mptcp_drop(sk, skb1);
    		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
    	}
    	/* If there is no skb after us, we are the last_skb ! */
    	if (!skb1)
    		msk->ooo_last_skb = skb;
    
    end:
    	skb_condense(skb);
    	mptcp_set_owner_r(skb, sk);
    }
    
    static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size)
    {
    	struct mptcp_sock *msk = mptcp_sk(sk);
    	int amt, amount;
    
    	if (size <= msk->rmem_fwd_alloc)
    		return true;
    
    	size -= msk->rmem_fwd_alloc;
    	amt = sk_mem_pages(size);
    	amount = amt << PAGE_SHIFT;
    	if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV))
    		return false;
    
    	msk->rmem_fwd_alloc += amount;
    	return true;
    }
    
    static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
    			     struct sk_buff *skb, unsigned int offset,
    			     size_t copy_len)
    {
    	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
    	struct sock *sk = (struct sock *)msk;
    	struct sk_buff *tail;
    	bool has_rxtstamp;
    
    	__skb_unlink(skb, &ssk->sk_receive_queue);
    
    	skb_ext_reset(skb);
    	skb_orphan(skb);
    
    	/* try to fetch required memory from subflow */
    	if (!mptcp_rmem_schedule(sk, ssk, skb->truesize))
    		goto drop;
    
    	has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
    
    	/* the skb map_seq accounts for the skb offset:
    	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
    	 * value
    	 */
    	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
    	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
    	MPTCP_SKB_CB(skb)->offset = offset;
    	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
    
    	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
    		/* in sequence */
    		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
    		tail = skb_peek_tail(&sk->sk_receive_queue);
    		if (tail && mptcp_try_coalesce(sk, tail, skb))
    			return true;
    
    		mptcp_set_owner_r(skb, sk);
    		__skb_queue_tail(&sk->sk_receive_queue, skb);
    		return true;
    	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
    		mptcp_data_queue_ofo(msk, skb);
    		return false;
    	}
    
    	/* old data, keep it simple and drop the whole pkt, sender
    	 * will retransmit as needed, if needed.
    	 */
    	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
    drop:
    	mptcp_drop(sk, skb);
    	return false;
    }
    
    static void mptcp_stop_timer(struct sock *sk)
    {
    	struct inet_connection_sock *icsk = inet_csk(sk);
    
    	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
    	mptcp_sk(sk)->timer_ival = 0;
    }
    
    static void mptcp_close_wake_up(struct sock *sk)
    {
    	if (sock_flag(sk, SOCK_DEAD))
    		return;
    
    	sk->sk_state_change(sk);
    	if (sk->sk_shutdown == SHUTDOWN_MASK ||
    	    sk->sk_state == TCP_CLOSE)
    		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
    	else
    		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
    }
    
    static bool mptcp_pending_data_fin_ack(struct sock *sk)
    {
    	struct mptcp_sock *msk = mptcp_sk(sk);
    
    	return !__mptcp_check_fallback(msk) &&
    	       ((1 << sk->sk_state) &
    		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
    	       msk->write_seq == READ_ONCE(msk->snd_una);
    }
    
    static void mptcp_check_data_fin_ack(struct sock *sk)
    {
    	struct mptcp_sock *msk = mptcp_sk(sk);
    
    	/* Look for an acknowledged DATA_FIN */
    	if (mptcp_pending_data_fin_ack(sk)) {
    		WRITE_ONCE(msk->snd_data_fin_enable, 0);
    
    		switch (sk->sk_state) {
    		case TCP_FIN_WAIT1:
    			inet_sk_state_store(sk, TCP_FIN_WAIT2);
    			break;
    		case TCP_CLOSING:
    		case TCP_LAST_ACK:
    			inet_sk_state_store(sk, TCP_CLOSE);
    			break;
    		}
    
    		mptcp_close_wake_up(sk);
    	}
    }
    
    static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
    {
    	struct mptcp_sock *msk = mptcp_sk(sk);
    
    	if (READ_ONCE(msk->rcv_data_fin) &&
    	    ((1 << sk->sk_state) &
    	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
    		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
    
    		if (msk->ack_seq == rcv_data_fin_seq) {
    			if (seq)
    				*seq = rcv_data_fin_seq;
    
    			return true;
    		}
    	}
    
    	return false;
    }
    
    static void mptcp_set_datafin_timeout(const struct sock *sk)
    {
    	struct inet_connection_sock *icsk = inet_csk(sk);
    	u32 retransmits;
    
    	retransmits = min_t(u32, icsk->icsk_retransmits,
    			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
    
    	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
    }
    
    static void __mptcp_set_timeout(struct sock *sk, long tout)
    {
    	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
    }
    
    static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
    {
    	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
    
    	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
    	       inet_csk(ssk)->icsk_timeout - jiffies : 0;
    }
    
    static void mptcp_set_timeout(struct sock *sk)
    {
    	struct mptcp_subflow_context *subflow;
    	long tout = 0;
    
    	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
    		tout = max(tout, mptcp_timeout_from_subflow(subflow));
    	__mptcp_set_timeout(sk, tout);
    }
    
    static inline bool tcp_can_send_ack(const struct sock *ssk)
    {
    	return !((1 << inet_sk_state_load(ssk)) &
    	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
    }
    
    void __mptcp_subflow_send_ack(struct sock *ssk)
    {
    	if (tcp_can_send_ack(ssk))
    		tcp_send_ack(ssk);
    }
    
    static void mptcp_subflow_send_ack(struct sock *ssk)
    {
    	bool slow;
    
    	slow = lock_sock_fast(ssk);
    	__mptcp_subflow_send_ack(ssk);
    	unlock_sock_fast(ssk, slow);
    }
    
    static void mptcp_send_ack(struct mptcp_sock *msk)
    {
    	struct mptcp_subflow_context *subflow;
    
    	mptcp_for_each_subflow(msk, subflow)
    		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
    }
    
    static void mptcp_subflow_cleanup_rbuf(struct sock *ssk)
    {
    	bool slow;
    
    	slow = lock_sock_fast(ssk);
    	if (tcp_can_send_ack(ssk))
    		tcp_cleanup_rbuf(ssk, 1);
    	unlock_sock_fast(ssk, slow);
    }
    
    static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
    {
    	const struct inet_connection_sock *icsk = inet_csk(ssk);
    	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
    	const struct tcp_sock *tp = tcp_sk(ssk);
    
    	return (ack_pending & ICSK_ACK_SCHED) &&
    		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
    		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
    		 (rx_empty && ack_pending &
    			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
    }
    
    static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
    {
    	int old_space = READ_ONCE(msk->old_wspace);
    	struct mptcp_subflow_context *subflow;
    	struct sock *sk = (struct sock *)msk;
    	int space =  __mptcp_space(sk);
    	bool cleanup, rx_empty;
    
    	cleanup = (space > 0) && (space >= (old_space << 1));
    	rx_empty = !__mptcp_rmem(sk);
    
    	mptcp_for_each_subflow(msk, subflow) {
    		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
    
    		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
    			mptcp_subflow_cleanup_rbuf(ssk);
    	}
    }
    
    static bool mptcp_check_data_fin(struct sock *sk)
    {
    	struct mptcp_sock *msk = mptcp_sk(sk);
    	u64 rcv_data_fin_seq;
    	bool ret = false;
    
    	if (__mptcp_check_fallback(msk))
    		return ret;
    
    	/* Need to ack a DATA_FIN received from a peer while this side
    	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
    	 * msk->rcv_data_fin was set when parsing the incoming options
    	 * at the subflow level and the msk lock was not held, so this
    	 * is the first opportunity to act on the DATA_FIN and change
    	 * the msk state.
    	 *
    	 * If we are caught up to the sequence number of the incoming
    	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
    	 * not caught up, do nothing and let the recv code send DATA_ACK
    	 * when catching up.
    	 */
    
    	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
    		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
    		WRITE_ONCE(msk->rcv_data_fin, 0);
    
    		sk->sk_shutdown |= RCV_SHUTDOWN;
    		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
    
    		switch (sk->sk_state) {
    		case TCP_ESTABLISHED:
    			inet_sk_state_store(sk, TCP_CLOSE_WAIT);
    			break;
    		case TCP_FIN_WAIT1:
    			inet_sk_state_store(sk, TCP_CLOSING);
    			break;
    		case TCP_FIN_WAIT2:
    			inet_sk_state_store(sk, TCP_CLOSE);
    			break;
    		default:
    			/* Other states not expected */
    			WARN_ON_ONCE(1);
    			break;
    		}
    
    		ret = true;
    		mptcp_send_ack(msk);
    		mptcp_close_wake_up(sk);
    	}
    	return ret;
    }
    
    static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
    					   struct sock *ssk,
    					   unsigned int *bytes)
    {
    	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
    	struct sock *sk = (struct sock *)msk;
    	unsigned int moved = 0;
    	bool more_data_avail;
    	struct tcp_sock *tp;
    	bool done = false;
    	int sk_rbuf;
    
    	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
    
    	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
    		int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
    
    		if (unlikely(ssk_rbuf > sk_rbuf)) {
    			WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
    			sk_rbuf = ssk_rbuf;
    		}
    	}
    
    	pr_debug("msk=%p ssk=%p", msk, ssk);
    	tp = tcp_sk(ssk);
    	do {
    		u32 map_remaining, offset;
    		u32 seq = tp->copied_seq;
    		struct sk_buff *skb;
    		bool fin;
    
    		/* try to move as much data as available */
    		map_remaining = subflow->map_data_len -
    				mptcp_subflow_get_map_offset(subflow);
    
    		skb = skb_peek(&ssk->sk_receive_queue);
    		if (!skb) {
    			/* if no data is found, a racing workqueue/recvmsg
    			 * already processed the new data, stop here or we
    			 * can enter an infinite loop
    			 */
    			if (!moved)
    				done = true;
    			break;
    		}
    
    		if (__mptcp_check_fallback(msk)) {
    			/* if we are running under the workqueue, TCP could have
    			 * collapsed skbs between dummy map creation and now
    			 * be sure to adjust the size
    			 */
    			map_remaining = skb->len;
    			subflow->map_data_len = skb->len;
    		}
    
    		offset = seq - TCP_SKB_CB(skb)->seq;
    		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
    		if (fin) {
    			done = true;
    			seq++;
    		}
    
    		if (offset < skb->len) {
    			size_t len = skb->len - offset;
    
    			if (tp->urg_data)
    				done = true;
    
    			if (__mptcp_move_skb(msk, ssk, skb, offset, len))
    				moved += len;
    			seq += len;
    
    			if (WARN_ON_ONCE(map_remaining < len))
    				break;
    		} else {
    			WARN_ON_ONCE(!fin);
    			sk_eat_skb(ssk, skb);
    			done = true;
    		}
    
    		WRITE_ONCE(tp->copied_seq, seq);
    		more_data_avail = mptcp_subflow_data_available(ssk);
    
    		if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
    			done = true;
    			break;
    		}
    	} while (more_data_avail);
    
    	*bytes += moved;
    	return done;
    }
    
    static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
    {
    	struct sock *sk = (struct sock *)msk;
    	struct sk_buff *skb, *tail;
    	bool moved = false;
    	struct rb_node *p;
    	u64 end_seq;
    
    	p = rb_first(&msk->out_of_order_queue);
    	pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
    	while (p) {
    		skb = rb_to_skb(p);
    		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
    			break;
    
    		p = rb_next(p);
    		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
    
    		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
    				      msk->ack_seq))) {
    			mptcp_drop(sk, skb);
    			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
    			continue;
    		}
    
    		end_seq = MPTCP_SKB_CB(skb)->end_seq;
    		tail = skb_peek_tail(&sk->sk_receive_queue);
    		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
    			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
    
    			/* skip overlapping data, if any */
    			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
    				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
    				 delta);
    			MPTCP_SKB_CB(skb)->offset += delta;
    			MPTCP_SKB_CB(skb)->map_seq += delta;
    			__skb_queue_tail(&sk->sk_receive_queue, skb);
    		}
    		msk->ack_seq = end_seq;
    		moved = true;
    	}
    	return moved;
    }
    
    /* In most cases we will be able to lock the mptcp socket.  If its already
     * owned, we need to defer to the work queue to avoid ABBA deadlock.
     */
    static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
    {
    	struct sock *sk = (struct sock *)msk;
    	unsigned int moved = 0;
    
    	__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
    	__mptcp_ofo_queue(msk);
    	if (unlikely(ssk->sk_err)) {
    		if (!sock_owned_by_user(sk))
    			__mptcp_error_report(sk);
    		else
    			__set_bit(MPTCP_ERROR_REPORT,  &msk->cb_flags);
    	}
    
    	/* If the moves have caught up with the DATA_FIN sequence number
    	 * it's time to ack the DATA_FIN and change socket state, but
    	 * this is not a good place to change state. Let the workqueue
    	 * do it.
    	 */
    	if (mptcp_pending_data_fin(sk, NULL))
    		mptcp_schedule_work(sk);
    	return moved > 0;
    }
    
    void mptcp_data_ready(struct sock *sk, struct sock *ssk)
    {
    	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
    	struct mptcp_sock *msk = mptcp_sk(sk);
    	int sk_rbuf, ssk_rbuf;
    
    	/* The peer can send data while we are shutting down this
    	 * subflow at msk destruction time, but we must avoid enqueuing
    	 * more data to the msk receive queue
    	 */
    	if (unlikely(subflow->disposable))
    		return;
    
    	ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
    	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
    	if (unlikely(ssk_rbuf > sk_rbuf))
    		sk_rbuf = ssk_rbuf;
    
    	/* over limit? can't append more skbs to msk, Also, no need to wake-up*/
    	if (__mptcp_rmem(sk) > sk_rbuf) {
    		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
    		return;
    	}
    
    	/* Wake-up the reader only for in-sequence data */
    	mptcp_data_lock(sk);
    	if (move_skbs_to_msk(msk, ssk))
    		sk->sk_data_ready(sk);
    
    	mptcp_data_unlock(sk);
    }
    
    static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
    {
    	struct sock *sk = (struct sock *)msk;
    
    	if (sk->sk_state != TCP_ESTABLISHED)
    		return false;
    
    	/* attach to msk socket only after we are sure we will deal with it
    	 * at close time
    	 */
    	if (sk->sk_socket && !ssk->sk_socket)
    		mptcp_sock_graft(ssk, sk->sk_socket);
    
    	mptcp_propagate_sndbuf((struct sock *)msk, ssk);
    	mptcp_sockopt_sync_locked(msk, ssk);
    	return true;
    }
    
    static void __mptcp_flush_join_list(struct sock *sk)
    {
    	struct mptcp_subflow_context *tmp, *subflow;
    	struct mptcp_sock *msk = mptcp_sk(sk);
    
    	list_for_each_entry_safe(subflow, tmp, &msk->join_list, node) {
    		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
    		bool slow = lock_sock_fast(ssk);
    
    		list_move_tail(&subflow->node, &msk->conn_list);
    		if (!__mptcp_finish_join(msk, ssk))
    			mptcp_subflow_reset(ssk);
    		unlock_sock_fast(ssk, slow);
    	}
    }
    
    static bool mptcp_timer_pending(struct sock *sk)
    {
    	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
    }
    
    static void mptcp_reset_timer(struct sock *sk)
    {
    	struct inet_connection_sock *icsk = inet_csk(sk);
    	unsigned long tout;
    
    	/* prevent rescheduling on close */
    	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
    		return;
    
    	tout = mptcp_sk(sk)->timer_ival;
    	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
    }
    
    bool mptcp_schedule_work(struct sock *sk)
    {
    	if (inet_sk_state_load(sk) != TCP_CLOSE &&
    	    schedule_work(&mptcp_sk(sk)->work)) {
    		/* each subflow already holds a reference to the sk, and the
    		 * workqueue is invoked by a subflow, so sk can't go away here.
    		 */
    		sock_hold(sk);
    		return true;
    	}
    	return false;
    }
    
    void mptcp_subflow_eof(struct sock *sk)
    {
    	if (!test_and_set_bit(MPTCP_WORK_EOF, &mptcp_sk(sk)->flags))
    		mptcp_schedule_work(sk);
    }
    
    static void mptcp_check_for_eof(struct mptcp_sock *msk)
    {
    	struct mptcp_subflow_context *subflow;
    	struct sock *sk = (struct sock *)msk;
    	int receivers = 0;
    
    	mptcp_for_each_subflow(msk, subflow)
    		receivers += !subflow->rx_eof;
    	if (receivers)
    		return;
    
    	if (!(sk->sk_shutdown & RCV_SHUTDOWN)) {
    		/* hopefully temporary hack: propagate shutdown status
    		 * to msk, when all subflows agree on it
    		 */
    		sk->sk_shutdown |= RCV_SHUTDOWN;
    
    		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
    		sk->sk_data_ready(sk);
    	}
    
    	switch (sk->sk_state) {
    	case TCP_ESTABLISHED:
    		inet_sk_state_store(sk, TCP_CLOSE_WAIT);
    		break;
    	case TCP_FIN_WAIT1:
    		inet_sk_state_store(sk, TCP_CLOSING);
    		break;
    	case TCP_FIN_WAIT2:
    		inet_sk_state_store(sk, TCP_CLOSE);
    		break;
    	default:
    		return;
    	}
    	mptcp_close_wake_up(sk);
    }
    
    static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
    {
    	struct mptcp_subflow_context *subflow;
    	struct sock *sk = (struct sock *)msk;
    
    	sock_owned_by_me(sk);
    
    	mptcp_for_each_subflow(msk, subflow) {
    		if (READ_ONCE(subflow->data_avail))
    			return mptcp_subflow_tcp_sock(subflow);
    	}
    
    	return NULL;
    }
    
    static bool mptcp_skb_can_collapse_to(u64 write_seq,
    				      const struct sk_buff *skb,
    				      const struct mptcp_ext *mpext)
    {
    	if (!tcp_skb_can_collapse_to(skb))
    		return false;
    
    	/* can collapse only if MPTCP level sequence is in order and this
    	 * mapping has not been xmitted yet
    	 */
    	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
    	       !mpext->frozen;
    }
    
    /* we can append data to the given data frag if:
     * - there is space available in the backing page_frag
     * - the data frag tail matches the current page_frag free offset
     * - the data frag end sequence number matches the current write seq
     */
    static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
    				       const struct page_frag *pfrag,
    				       const struct mptcp_data_frag *df)
    {
    	return df && pfrag->page == df->page &&
    		pfrag->size - pfrag->offset > 0 &&
    		pfrag->offset == (df->offset + df->data_len) &&
    		df->data_seq + df->data_len == msk->write_seq;
    }
    
    static void dfrag_uncharge(struct sock *sk, int len)
    {
    	sk_mem_uncharge(sk, len);
    	sk_wmem_queued_add(sk, -len);
    }
    
    static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
    {
    	int len = dfrag->data_len + dfrag->overhead;
    
    	list_del(&dfrag->list);
    	dfrag_uncharge(sk, len);
    	put_page(dfrag->page);
    }
    
    static void __mptcp_clean_una(struct sock *sk)
    {
    	struct mptcp_sock *msk = mptcp_sk(sk);
    	struct mptcp_data_frag *dtmp, *dfrag;
    	u64 snd_una;
    
    	/* on fallback we just need to ignore snd_una, as this is really
    	 * plain TCP
    	 */
    	if (__mptcp_check_fallback(msk))
    		msk->snd_una = READ_ONCE(msk->snd_nxt);
    
    	snd_una = msk->snd_una;
    	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
    		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
    			break;
    
    		if (unlikely(dfrag == msk->first_pending)) {
    			/* in recovery mode can see ack after the current snd head */
    			if (WARN_ON_ONCE(!msk->recovery))
    				break;
    
    			WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
    		}
    
    		dfrag_clear(sk, dfrag);
    	}
    
    	dfrag = mptcp_rtx_head(sk);
    	if (dfrag && after64(snd_una, dfrag->data_seq)) {
    		u64 delta = snd_una - dfrag->data_seq;
    
    		/* prevent wrap around in recovery mode */
    		if (unlikely(delta > dfrag->already_sent)) {
    			if (WARN_ON_ONCE(!msk->recovery))
    				goto out;
    			if (WARN_ON_ONCE(delta > dfrag->data_len))
    				goto out;
    			dfrag->already_sent += delta - dfrag->already_sent;
    		}
    
    		dfrag->data_seq += delta;
    		dfrag->offset += delta;
    		dfrag->data_len -= delta;
    		dfrag->already_sent -= delta;
    
    		dfrag_uncharge(sk, delta);
    	}
    
    	/* all retransmitted data acked, recovery completed */
    	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
    		msk->recovery = false;
    
    out:
    	if (snd_una == READ_ONCE(msk->snd_nxt) &&
    	    snd_una == READ_ONCE(msk->write_seq)) {
    		if (mptcp_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
    			mptcp_stop_timer(sk);
    	} else {
    		mptcp_reset_timer(sk);
    	}
    }
    
    static void __mptcp_clean_una_wakeup(struct sock *sk)
    {
    	lockdep_assert_held_once(&sk->sk_lock.slock);
    
    	__mptcp_clean_una(sk);
    	mptcp_write_space(sk);
    }
    
    static void mptcp_clean_una_wakeup(struct sock *sk)
    {
    	mptcp_data_lock(sk);
    	__mptcp_clean_una_wakeup(sk);
    	mptcp_data_unlock(sk);
    }
    
    static void mptcp_enter_memory_pressure(struct sock *sk)
    {
    	struct mptcp_subflow_context *subflow;
    	struct mptcp_sock *msk = mptcp_sk(sk);
    	bool first = true;
    
    	sk_stream_moderate_sndbuf(sk);
    	mptcp_for_each_subflow(msk, subflow) {
    		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
    
    		if (first)
    			tcp_enter_memory_pressure(ssk);
    		sk_stream_moderate_sndbuf(ssk);
    		first = false;
    	}
    }
    
    /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
     * data
     */
    static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
    {
    	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
    					pfrag, sk->sk_allocation)))
    		return true;
    
    	mptcp_enter_memory_pressure(sk);
    	return false;
    }
    
    static struct mptcp_data_frag *
    mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
    		      int orig_offset)
    {
    	int offset = ALIGN(orig_offset, sizeof(long));
    	struct mptcp_data_frag *dfrag;
    
    	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
    	dfrag->data_len = 0;
    	dfrag->data_seq = msk->write_seq;
    	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
    	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
    	dfrag->already_sent = 0;
    	dfrag->page = pfrag->page;
    
    	return dfrag;
    }
    
    struct mptcp_sendmsg_info {
    	int mss_now;
    	int size_goal;
    	u16 limit;
    	u16 sent;
    	unsigned int flags;
    	bool data_lock_held;
    };
    
    static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
    				    u64 data_seq, int avail_size)
    {
    	u64 window_end = mptcp_wnd_end(msk);
    	u64 mptcp_snd_wnd;
    
    	if (__mptcp_check_fallback(msk))
    		return avail_size;
    
    	mptcp_snd_wnd = window_end - data_seq;
    	avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
    
    	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
    		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
    		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
    	}
    
    	return avail_size;
    }
    
    static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
    {
    	struct skb_ext *mpext = __skb_ext_alloc(gfp);
    
    	if (!mpext)
    		return false;
    	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
    	return true;
    }
    
    static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
    {
    	struct sk_buff *skb;
    
    	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
    	if (likely(skb)) {
    		if (likely(__mptcp_add_ext(skb, gfp))) {
    			skb_reserve(skb, MAX_TCP_HEADER);
    			skb->ip_summed = CHECKSUM_PARTIAL;
    			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
    			return skb;
    		}
    		__kfree_skb(skb);
    	} else {
    		mptcp_enter_memory_pressure(sk);
    	}
    	return NULL;
    }
    
    static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
    {
    	struct sk_buff *skb;
    
    	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
    	if (!skb)
    		return NULL;
    
    	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
    		tcp_skb_entail(ssk, skb);
    		return skb;
    	}
    	tcp_skb_tsorted_anchor_cleanup(skb);
    	kfree_skb(skb);
    	return NULL;
    }
    
    static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
    {
    	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
    
    	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
    }
    
    /* note: this always recompute the csum on the whole skb, even
     * if we just appended a single frag. More status info needed
     */
    static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
    {
    	struct mptcp_ext *mpext = mptcp_get_ext(skb);
    	__wsum csum = ~csum_unfold(mpext->csum);
    	int offset = skb->len - added;
    
    	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
    }
    
    static void mptcp_update_infinite_map(struct mptcp_sock *msk,
    				      struct sock *ssk,
    				      struct mptcp_ext *mpext)
    {
    	if (!mpext)
    		return;
    
    	mpext->infinite_map = 1;
    	mpext->data_len = 0;
    
    	MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
    	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
    	pr_fallback(msk);
    	mptcp_do_fallback(ssk);
    }
    
    static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
    			      struct mptcp_data_frag *dfrag,
    			      struct mptcp_sendmsg_info *info)
    {
    	u64 data_seq = dfrag->data_seq + info->sent;
    	int offset = dfrag->offset + info->sent;
    	struct mptcp_sock *msk = mptcp_sk(sk);
    	bool zero_window_probe = false;
    	struct mptcp_ext *mpext = NULL;
    	bool can_coalesce = false;
    	bool reuse_skb = true;
    	struct sk_buff *skb;
    	size_t copy;
    	int i;
    
    	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u",
    		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
    
    	if (WARN_ON_ONCE(info->sent > info->limit ||
    			 info->limit > dfrag->data_len))
    		return 0;
    
    	if (unlikely(!__tcp_can_send(ssk)))
    		return -EAGAIN;
    
    	/* compute send limit */
    	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
    	copy = info->size_goal;
    
    	skb = tcp_write_queue_tail(ssk);
    	if (skb && copy > skb->len) {
    		/* Limit the write to the size available in the
    		 * current skb, if any, so that we create at most a new skb.
    		 * Explicitly tells TCP internals to avoid collapsing on later
    		 * queue management operation, to avoid breaking the ext <->
    		 * SSN association set here
    		 */
    		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
    		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
    			TCP_SKB_CB(skb)->eor = 1;
    			goto alloc_skb;
    		}
    
    		i = skb_shinfo(skb)->nr_frags;
    		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
    		if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
    			tcp_mark_push(tcp_sk(ssk), skb);
    			goto alloc_skb;
    		}
    
    		copy -= skb->len;
    	} else {
    alloc_skb:
    		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
    		if (!skb)
    			return -ENOMEM;
    
    		i = skb_shinfo(skb)->nr_frags;
    		reuse_skb = false;
    		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
    	}
    
    	/* Zero window and all data acked? Probe. */
    	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
    	if (copy == 0) {
    		u64 snd_una = READ_ONCE(msk->snd_una);
    
    		if (snd_una != msk->snd_nxt) {
    			tcp_remove_empty_skb(ssk);
    			return 0;
    		}
    
    		zero_window_probe = true;
    		data_seq = snd_una - 1;
    		copy = 1;
    
    		/* all mptcp-level data is acked, no skbs should be present into the
    		 * ssk write queue
    		 */
    		WARN_ON_ONCE(reuse_skb);
    	}
    
    	copy = min_t(size_t, copy, info->limit - info->sent);
    	if (!sk_wmem_schedule(ssk, copy)) {
    		tcp_remove_empty_skb(ssk);
    		return -ENOMEM;
    	}
    
    	if (can_coalesce) {
    		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
    	} else {
    		get_page(dfrag->page);
    		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
    	}
    
    	skb->len += copy;
    	skb->data_len += copy;
    	skb->truesize += copy;
    	sk_wmem_queued_add(ssk, copy);
    	sk_mem_charge(ssk, copy);
    	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
    	TCP_SKB_CB(skb)->end_seq += copy;
    	tcp_skb_pcount_set(skb, 0);
    
    	/* on skb reuse we just need to update the DSS len */
    	if (reuse_skb) {
    		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
    		mpext->data_len += copy;
    		WARN_ON_ONCE(zero_window_probe);
    		goto out;
    	}
    
    	memset(mpext, 0, sizeof(*mpext));
    	mpext->data_seq = data_seq;
    	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
    	mpext->data_len = copy;
    	mpext->use_map = 1;
    	mpext->dsn64 = 1;
    
    	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
    		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
    		 mpext->dsn64);
    
    	if (zero_window_probe) {
    		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
    		mpext->frozen = 1;
    		if (READ_ONCE(msk->csum_enabled))
    			mptcp_update_data_checksum(skb, copy);
    		tcp_push_pending_frames(ssk);
    		return 0;
    	}
    out:
    	if (READ_ONCE(msk->csum_enabled))
    		mptcp_update_data_checksum(skb, copy);
    	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
    		mptcp_update_infinite_map(msk, ssk, mpext);
    	trace_mptcp_sendmsg_frag(mpext);
    	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
    	return copy;
    }
    
    #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
    					 sizeof(struct tcphdr) - \
    					 MAX_TCP_OPTION_SPACE - \
    					 sizeof(struct ipv6hdr) - \
    					 sizeof(struct frag_hdr))
    
    struct subflow_send_info {
    	struct sock *ssk;
    	u64 linger_time;
    };
    
    void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
    {
    	if (!subflow->stale)
    		return;
    
    	subflow->stale = 0;
    	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
    }
    
    bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
    {
    	if (unlikely(subflow->stale)) {
    		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
    
    		if (subflow->stale_rcv_tstamp == rcv_tstamp)
    			return false;
    
    		mptcp_subflow_set_active(subflow);
    	}
    	return __mptcp_subflow_active(subflow);
    }
    
    #define SSK_MODE_ACTIVE	0
    #define SSK_MODE_BACKUP	1
    #define SSK_MODE_MAX	2
    
    /* implement the mptcp packet scheduler;
     * returns the subflow that will transmit the next DSS
     * additionally updates the rtx timeout
     */
    static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
    {
    	struct subflow_send_info send_info[SSK_MODE_MAX];
    	struct mptcp_subflow_context *subflow;
    	struct sock *sk = (struct sock *)msk;
    	u32 pace, burst, wmem;
    	int i, nr_active = 0;
    	struct sock *ssk;
    	u64 linger_time;
    	long tout = 0;
    
    	sock_owned_by_me(sk);
    
    	if (__mptcp_check_fallback(msk)) {
    		if (!msk->first)
    			return NULL;
    		return __tcp_can_send(msk->first) &&
    		       sk_stream_memory_free(msk->first) ? msk->first : NULL;
    	}
    
    	/* re-use last subflow, if the burst allow that */
    	if (msk->last_snd && msk->snd_burst > 0 &&
    	    sk_stream_memory_free(msk->last_snd) &&
    	    mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) {
    		mptcp_set_timeout(sk);
    		return msk->last_snd;
    	}
    
    	/* pick the subflow with the lower wmem/wspace ratio */
    	for (i = 0; i < SSK_MODE_MAX; ++i) {
    		send_info[i].ssk = NULL;
    		send_info[i].linger_time = -1;
    	}
    
    	mptcp_for_each_subflow(msk, subflow) {
    		trace_mptcp_subflow_get_send(subflow);
    		ssk =  mptcp_subflow_tcp_sock(subflow);
    		if (!mptcp_subflow_active(subflow))
    			continue;
    
    		tout = max(tout, mptcp_timeout_from_subflow(subflow));
    		nr_active += !subflow->backup;
    		pace = subflow->avg_pacing_rate;
    		if (unlikely(!pace)) {
    			/* init pacing rate from socket */
    			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
    			pace = subflow->avg_pacing_rate;
    			if (!pace)
    				continue;
    		}
    
    		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
    		if (linger_time < send_info[subflow->backup].linger_time) {
    			send_info[subflow->backup].ssk = ssk;
    			send_info[subflow->backup].linger_time = linger_time;
    		}
    	}
    	__mptcp_set_timeout(sk, tout);
    
    	/* pick the best backup if no other subflow is active */
    	if (!nr_active)
    		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
    
    	/* According to the blest algorithm, to avoid HoL blocking for the
    	 * faster flow, we need to:
    	 * - estimate the faster flow linger time
    	 * - use the above to estimate the amount of byte transferred
    	 *   by the faster flow
    	 * - check that the amount of queued data is greter than the above,
    	 *   otherwise do not use the picked, slower, subflow
    	 * We select the subflow with the shorter estimated time to flush
    	 * the queued mem, which basically ensure the above. We just need
    	 * to check that subflow has a non empty cwin.
    	 */
    	ssk = send_info[SSK_MODE_ACTIVE].ssk;
    	if (!ssk || !sk_stream_memory_free(ssk))
    		return NULL;
    
    	burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
    	wmem = READ_ONCE(ssk->sk_wmem_queued);
    	if (!burst) {
    		msk->last_snd = NULL;
    		return ssk;
    	}
    
    	subflow = mptcp_subflow_ctx(ssk);
    	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
    					   READ_ONCE(ssk->sk_pacing_rate) * burst,
    					   burst + wmem);
    	msk->last_snd = ssk;
    	msk->snd_burst = burst;
    	return ssk;
    }
    
    static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
    {
    	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
    	release_sock(ssk);
    }
    
    static void mptcp_update_post_push(struct mptcp_sock *msk,
    				   struct mptcp_data_frag *dfrag,
    				   u32 sent)
    {
    	u64 snd_nxt_new = dfrag->data_seq;
    
    	dfrag->already_sent += sent;
    
    	msk->snd_burst -= sent;
    
    	snd_nxt_new += dfrag->already_sent;
    
    	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
    	 * is recovering after a failover. In that event, this re-sends
    	 * old segments.
    	 *
    	 * Thus compute snd_nxt_new candidate based on
    	 * the dfrag->data_seq that was sent and the data
    	 * that has been handed to the subflow for transmission
    	 * and skip update in case it was old dfrag.
    	 */
    	if (likely(after64(snd_nxt_new, msk->snd_nxt)))
    		msk->snd_nxt = snd_nxt_new;
    }
    
    void mptcp_check_and_set_pending(struct sock *sk)
    {
    	if (mptcp_send_head(sk))
    		mptcp_sk(sk)->push_pending |= BIT(MPTCP_PUSH_PENDING);
    }
    
    void __mptcp_push_pending(struct sock *sk, unsigned int flags)
    {
    	struct sock *prev_ssk = NULL, *ssk = NULL;
    	struct mptcp_sock *msk = mptcp_sk(sk);
    	struct mptcp_sendmsg_info info = {
    				.flags = flags,
    	};
    	struct mptcp_data_frag *dfrag;
    	int len, copied = 0;
    
    	while ((dfrag = mptcp_send_head(sk))) {
    		info.sent = dfrag->already_sent;
    		info.limit = dfrag->data_len;
    		len = dfrag->data_len - dfrag->already_sent;
    		while (len > 0) {
    			int ret = 0;
    
    			prev_ssk = ssk;
    			ssk = mptcp_subflow_get_send(msk);
    
    			/* First check. If the ssk has changed since
    			 * the last round, release prev_ssk
    			 */
    			if (ssk != prev_ssk && prev_ssk)
    				mptcp_push_release(prev_ssk, &info);
    			if (!ssk)
    				goto out;
    
    			/* Need to lock the new subflow only if different
    			 * from the previous one, otherwise we are still
    			 * helding the relevant lock
    			 */
    			if (ssk != prev_ssk)
    				lock_sock(ssk);
    
    			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
    			if (ret <= 0) {
    				if (ret == -EAGAIN)
    					continue;
    				mptcp_push_release(ssk, &info);
    				goto out;
    			}
    
    			info.sent += ret;
    			copied += ret;
    			len -= ret;
    
    			mptcp_update_post_push(msk, dfrag, ret);
    		}
    		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
    	}
    
    	/* at this point we held the socket lock for the last subflow we used */
    	if (ssk)
    		mptcp_push_release(ssk, &info);
    
    out:
    	/* ensure the rtx timer is running */
    	if (!mptcp_timer_pending(sk))
    		mptcp_reset_timer(sk);
    	if (copied)
    		__mptcp_check_send_data_fin(sk);
    }
    
    static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk)
    {
    	struct mptcp_sock *msk = mptcp_sk(sk);
    	struct mptcp_sendmsg_info info = {
    		.data_lock_held = true,
    	};
    	struct mptcp_data_frag *dfrag;
    	struct sock *xmit_ssk;
    	int len, copied = 0;
    	bool first = true;
    
    	info.flags = 0;
    	while ((dfrag = mptcp_send_head(sk))) {
    		info.sent = dfrag->already_sent;
    		info.limit = dfrag->data_len;
    		len = dfrag->data_len - dfrag->already_sent;
    		while (len > 0) {
    			int ret = 0;
    
    			/* the caller already invoked the packet scheduler,
    			 * check for a different subflow usage only after
    			 * spooling the first chunk of data
    			 */
    			xmit_ssk = first ? ssk : mptcp_subflow_get_send(mptcp_sk(sk));
    			if (!xmit_ssk)
    				goto out;
    			if (xmit_ssk != ssk) {
    				mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk),
    						       MPTCP_DELEGATE_SEND);
    				goto out;
    			}
    
    			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
    			if (ret <= 0)
    				goto out;
    
    			info.sent += ret;
    			copied += ret;
    			len -= ret;
    			first = false;
    
    			mptcp_update_post_push(msk, dfrag, ret);
    		}
    		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
    	}
    
    out:
    	/* __mptcp_alloc_tx_skb could have released some wmem and we are
    	 * not going to flush it via release_sock()
    	 */
    	if (copied) {
    		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
    			 info.size_goal);
    		if (!mptcp_timer_pending(sk))
    			mptcp_reset_timer(sk);
    
    		if (msk->snd_data_fin_enable &&
    		    msk->snd_nxt + 1 == msk->write_seq)
    			mptcp_schedule_work(sk);
    	}
    }
    
    static void mptcp_set_nospace(struct sock *sk)
    {
    	/* enable autotune */
    	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
    
    	/* will be cleared on avail space */
    	set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
    }
    
    static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
    {
    	struct mptcp_sock *msk = mptcp_sk(sk);
    	struct page_frag *pfrag;
    	size_t copied = 0;
    	int ret = 0;
    	long timeo;
    
    	/* we don't support FASTOPEN yet */
    	if (msg->msg_flags & MSG_FASTOPEN)
    		return -EOPNOTSUPP;
    
    	/* silently ignore everything else */
    	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL;
    
    	lock_sock(sk);
    
    	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
    
    	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
    		ret = sk_stream_wait_connect(sk, &timeo);
    		if (ret)
    			goto out;
    	}
    
    	pfrag = sk_page_frag(sk);
    
    	while (msg_data_left(msg)) {
    		int total_ts, frag_truesize = 0;
    		struct mptcp_data_frag *dfrag;
    		bool dfrag_collapsed;
    		size_t psize, offset;
    
    		if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) {
    			ret = -EPIPE;
    			goto out;
    		}
    
    		/* reuse tail pfrag, if possible, or carve a new one from the
    		 * page allocator
    		 */
    		dfrag = mptcp_pending_tail(sk);
    		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
    		if (!dfrag_collapsed) {
    			if (!sk_stream_memory_free(sk))
    				goto wait_for_memory;
    
    			if (!mptcp_page_frag_refill(sk, pfrag))
    				goto wait_for_memory;
    
    			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
    			frag_truesize = dfrag->overhead;
    		}
    
    		/* we do not bound vs wspace, to allow a single packet.
    		 * memory accounting will prevent execessive memory usage
    		 * anyway
    		 */
    		offset = dfrag->offset + dfrag->data_len;
    		psize = pfrag->size - offset;
    		psize = min_t(size_t, psize, msg_data_left(msg));
    		total_ts = psize + frag_truesize;
    
    		if (!sk_wmem_schedule(sk, total_ts))
    			goto wait_for_memory;
    
    		if (copy_page_from_iter(dfrag->page, offset, psize,
    					&msg->msg_iter) != psize) {
    			ret = -EFAULT;
    			goto out;
    		}
    
    		/* data successfully copied into the write queue */
    		sk->sk_forward_alloc -= total_ts;
    		copied += psize;
    		dfrag->data_len += psize;
    		frag_truesize += psize;
    		pfrag->offset += frag_truesize;
    		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
    
    		/* charge data on mptcp pending queue to the msk socket
    		 * Note: we charge such data both to sk and ssk
    		 */
    		sk_wmem_queued_add(sk, frag_truesize);
    		if (!dfrag_collapsed) {
    			get_page(dfrag->page);
    			list_add_tail(&dfrag->list, &msk->rtx_queue);
    			if (!msk->first_pending)
    				WRITE_ONCE(msk->first_pending, dfrag);
    		}
    		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk,
    			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
    			 !dfrag_collapsed);
    
    		continue;
    
    wait_for_memory:
    		mptcp_set_nospace(sk);
    		__mptcp_push_pending(sk, msg->msg_flags);
    		ret = sk_stream_wait_memory(sk, &timeo);
    		if (ret)
    			goto out;
    	}
    
    	if (copied)
    		__mptcp_push_pending(sk, msg->msg_flags);
    
    out:
    	release_sock(sk);
    	return copied ? : ret;
    }
    
    static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
    				struct msghdr *msg,
    				size_t len, int flags,
    				struct scm_timestamping_internal *tss,
    				int *cmsg_flags)
    {
    	struct sk_buff *skb, *tmp;
    	int copied = 0;
    
    	skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
    		u32 offset = MPTCP_SKB_CB(skb)->offset;
    		u32 data_len = skb->len - offset;
    		u32 count = min_t(size_t, len - copied, data_len);
    		int err;
    
    		if (!(flags & MSG_TRUNC)) {
    			err = skb_copy_datagram_msg(skb, offset, msg, count);
    			if (unlikely(err < 0)) {
    				if (!copied)
    					return err;
    				break;
    			}
    		}
    
    		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
    			tcp_update_recv_tstamps(skb, tss);
    			*cmsg_flags |= MPTCP_CMSG_TS;
    		}
    
    		copied += count;
    
    		if (count < data_len) {
    			if (!(flags & MSG_PEEK)) {
    				MPTCP_SKB_CB(skb)->offset += count;
    				MPTCP_SKB_CB(skb)->map_seq += count;
    			}
    			break;
    		}
    
    		if (!(flags & MSG_PEEK)) {
    			/* we will bulk release the skb memory later */
    			skb->destructor = NULL;
    			WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
    			__skb_unlink(skb, &msk->receive_queue);
    			__kfree_skb(skb);
    		}
    
    		if (copied >= len)
    			break;
    	}
    
    	return copied;
    }
    
    /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
     *
     * Only difference: Use highest rtt estimate of the subflows in use.
     */
    static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
    {
    	struct mptcp_subflow_context *subflow;
    	struct sock *sk = (struct sock *)msk;
    	u32 time, advmss = 1;
    	u64 rtt_us, mstamp;
    
    	sock_owned_by_me(sk);
    
    	if (copied <= 0)
    		return;
    
    	msk->rcvq_space.copied += copied;
    
    	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
    	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
    
    	rtt_us = msk->rcvq_space.rtt_us;
    	if (rtt_us && time < (rtt_us >> 3))
    		return;
    
    	rtt_us = 0;
    	mptcp_for_each_subflow(msk, subflow) {
    		const struct tcp_sock *tp;
    		u64 sf_rtt_us;
    		u32 sf_advmss;
    
    		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
    
    		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
    		sf_advmss = READ_ONCE(tp->advmss);
    
    		rtt_us = max(sf_rtt_us, rtt_us);
    		advmss = max(sf_advmss, advmss);
    	}
    
    	msk->rcvq_space.rtt_us = rtt_us;
    	if (time < (rtt_us >> 3) || rtt_us == 0)
    		return;
    
    	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
    		goto new_measure;
    
    	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
    	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
    		int rcvmem, rcvbuf;
    		u64 rcvwin, grow;
    
    		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
    
    		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
    
    		do_div(grow, msk->rcvq_space.space);
    		rcvwin += (grow << 1);
    
    		rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER);
    		while (tcp_win_from_space(sk, rcvmem) < advmss)
    			rcvmem += 128;
    
    		do_div(rcvwin, advmss);
    		rcvbuf = min_t(u64, rcvwin * rcvmem,
    			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
    
    		if (rcvbuf > sk->sk_rcvbuf) {
    			u32 window_clamp;
    
    			window_clamp = tcp_win_from_space(sk, rcvbuf);
    			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
    
    			/* Make subflows follow along.  If we do not do this, we
    			 * get drops at subflow level if skbs can't be moved to
    			 * the mptcp rx queue fast enough (announced rcv_win can
    			 * exceed ssk->sk_rcvbuf).
    			 */
    			mptcp_for_each_subflow(msk, subflow) {
    				struct sock *ssk;
    				bool slow;
    
    				ssk = mptcp_subflow_tcp_sock(subflow);
    				slow = lock_sock_fast(ssk);
    				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
    				tcp_sk(ssk)->window_clamp = window_clamp;
    				tcp_cleanup_rbuf(ssk, 1);
    				unlock_sock_fast(ssk, slow);
    			}
    		}
    	}
    
    	msk->rcvq_space.space = msk->rcvq_space.copied;
    new_measure:
    	msk->rcvq_space.copied = 0;
    	msk->rcvq_space.time = mstamp;
    }
    
    static void __mptcp_update_rmem(struct sock *sk)
    {
    	struct mptcp_sock *msk = mptcp_sk(sk);
    
    	if (!msk->rmem_released)
    		return;
    
    	atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
    	mptcp_rmem_uncharge(sk, msk->rmem_released);
    	WRITE_ONCE(msk->rmem_released, 0);
    }
    
    static void __mptcp_splice_receive_queue(struct sock *sk)
    {
    	struct mptcp_sock *msk = mptcp_sk(sk);
    
    	skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
    }
    
    static bool __mptcp_move_skbs(struct mptcp_sock *msk)
    {
    	struct sock *sk = (struct sock *)msk;
    	unsigned int moved = 0;
    	bool ret, done;
    
    	do {
    		struct sock *ssk = mptcp_subflow_recv_lookup(msk);
    		bool slowpath;
    
    		/* we can have data pending in the subflows only if the msk
    		 * receive buffer was full at subflow_data_ready() time,
    		 * that is an unlikely slow path.
    		 */
    		if (likely(!ssk))
    			break;
    
    		slowpath = lock_sock_fast(ssk);
    		mptcp_data_lock(sk);
    		__mptcp_update_rmem(sk);
    		done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
    		mptcp_data_unlock(sk);
    
    		if (unlikely(ssk->sk_err))
    			__mptcp_error_report(sk);
    		unlock_sock_fast(ssk, slowpath);
    	} while (!done);
    
    	/* acquire the data lock only if some input data is pending */
    	ret = moved > 0;
    	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
    	    !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
    		mptcp_data_lock(sk);
    		__mptcp_update_rmem(sk);
    		ret |= __mptcp_ofo_queue(msk);
    		__mptcp_splice_receive_queue(sk);
    		mptcp_data_unlock(sk);
    	}
    	if (ret)
    		mptcp_check_data_fin((struct sock *)msk);
    	return !skb_queue_empty(&msk->receive_queue);
    }
    
    static unsigned int mptcp_inq_hint(const struct sock *sk)
    {
    	const struct mptcp_sock *msk = mptcp_sk(sk);
    	const struct sk_buff *skb;
    
    	skb = skb_peek(&msk->receive_queue);
    	if (skb) {
    		u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
    
    		if (hint_val >= INT_MAX)
    			return INT_MAX;
    
    		return (unsigned int)hint_val;
    	}
    
    	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
    		return 1;
    
    	return 0;
    }
    
    static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
    			 int flags, int *addr_len)
    {
    	struct mptcp_sock *msk = mptcp_sk(sk);
    	struct scm_timestamping_internal tss;
    	int copied = 0, cmsg_flags = 0;
    	int target;
    	long timeo;
    
    	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
    	if (unlikely(flags & MSG_ERRQUEUE))
    		return inet_recv_error(sk, msg, len, addr_len);
    
    	lock_sock(sk);
    	if (unlikely(sk->sk_state == TCP_LISTEN)) {
    		copied = -ENOTCONN;
    		goto out_err;
    	}
    
    	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
    
    	len = min_t(size_t, len, INT_MAX);
    	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
    
    	if (unlikely(msk->recvmsg_inq))
    		cmsg_flags = MPTCP_CMSG_INQ;
    
    	while (copied < len) {
    		int bytes_read;
    
    		bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
    		if (unlikely(bytes_read < 0)) {
    			if (!copied)
    				copied = bytes_read;
    			goto out_err;
    		}
    
    		copied += bytes_read;
    
    		/* be sure to advertise window change */
    		mptcp_cleanup_rbuf(msk);
    
    		if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
    			continue;
    
    		/* only the master socket status is relevant here. The exit
    		 * conditions mirror closely tcp_recvmsg()
    		 */
    		if (copied >= target)
    			break;
    
    		if (copied) {
    			if (sk->sk_err ||
    			    sk->sk_state == TCP_CLOSE ||
    			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
    			    !timeo ||
    			    signal_pending(current))
    				break;
    		} else {
    			if (sk->sk_err) {
    				copied = sock_error(sk);
    				break;
    			}
    
    			if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
    				mptcp_check_for_eof(msk);
    
    			if (sk->sk_shutdown & RCV_SHUTDOWN) {
    				/* race breaker: the shutdown could be after the
    				 * previous receive queue check
    				 */
    				if (__mptcp_move_skbs(msk))
    					continue;
    				break;
    			}
    
    			if (sk->sk_state == TCP_CLOSE) {
    				copied = -ENOTCONN;
    				break;
    			}
    
    			if (!timeo) {
    				copied = -EAGAIN;
    				break;
    			}
    
    			if (signal_pending(current)) {
    				copied = sock_intr_errno(timeo);
    				break;
    			}
    		}
    
    		pr_debug("block timeout %ld", timeo);
    		sk_wait_data(sk, &timeo, NULL);
    	}
    
    out_err:
    	if (cmsg_flags && copied >= 0) {
    		if (cmsg_flags & MPTCP_CMSG_TS)
    			tcp_recv_timestamp(msg, sk, &tss);
    
    		if (cmsg_flags & MPTCP_CMSG_INQ) {
    			unsigned int inq = mptcp_inq_hint(sk);
    
    			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
    		}
    	}
    
    	pr_debug("msk=%p rx queue empty=%d:%d copied=%d",
    		 msk, skb_queue_empty_lockless(&sk->sk_receive_queue),
    		 skb_queue_empty(&msk->receive_queue), copied);
    	if (!(flags & MSG_PEEK))
    		mptcp_rcv_space_adjust(msk, copied);
    
    	release_sock(sk);
    	return copied;
    }
    
    static void mptcp_retransmit_timer(struct timer_list *t)
    {
    	struct inet_connection_sock *icsk = from_timer(icsk, t,
    						       icsk_retransmit_timer);
    	struct sock *sk = &icsk->icsk_inet.sk;
    	struct mptcp_sock *msk = mptcp_sk(sk);
    
    	bh_lock_sock(sk);
    	if (!sock_owned_by_user(sk)) {
    		/* we need a process context to retransmit */
    		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
    			mptcp_schedule_work(sk);
    	} else {
    		/* delegate our work to tcp_release_cb() */
    		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
    	}
    	bh_unlock_sock(sk);
    	sock_put(sk);
    }
    
    static void mptcp_timeout_timer(struct timer_list *t)
    {
    	struct sock *sk = from_timer(sk, t, sk_timer);
    
    	mptcp_schedule_work(sk);
    	sock_put(sk);
    }
    
    /* Find an idle subflow.  Return NULL if there is unacked data at tcp
     * level.
     *
     * A backup subflow is returned only if that is the only kind available.
     */
    static struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
    {
    	struct sock *backup = NULL, *pick = NULL;
    	struct mptcp_subflow_context *subflow;
    	int min_stale_count = INT_MAX;
    
    	sock_owned_by_me((const struct sock *)msk);
    
    	if (__mptcp_check_fallback(msk))
    		return NULL;
    
    	mptcp_for_each_subflow(msk, subflow) {
    		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
    
    		if (!__mptcp_subflow_active(subflow))
    			continue;
    
    		/* still data outstanding at TCP level? skip this */
    		if (!tcp_rtx_and_write_queues_empty(ssk)) {
    			mptcp_pm_subflow_chk_stale(msk, ssk);
    			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
    			continue;
    		}
    
    		if (subflow->backup) {
    			if (!backup)
    				backup = ssk;
    			continue;
    		}
    
    		if (!pick)
    			pick = ssk;
    	}
    
    	if (pick)
    		return pick;
    
    	/* use backup only if there are no progresses anywhere */
    	return min_stale_count > 1 ? backup : NULL;
    }
    
    static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk)
    {
    	if (msk->subflow) {
    		iput(SOCK_INODE(msk->subflow));
    		msk->subflow = NULL;
    	}
    }
    
    bool __mptcp_retransmit_pending_data(struct sock *sk)
    {
    	struct mptcp_data_frag *cur, *rtx_head;
    	struct mptcp_sock *msk = mptcp_sk(sk);
    
    	if (__mptcp_check_fallback(mptcp_sk(sk)))
    		return false;
    
    	if (tcp_rtx_and_write_queues_empty(sk))
    		return false;
    
    	/* the closing socket has some data untransmitted and/or unacked:
    	 * some data in the mptcp rtx queue has not really xmitted yet.
    	 * keep it simple and re-inject the whole mptcp level rtx queue
    	 */
    	mptcp_data_lock(sk);
    	__mptcp_clean_una_wakeup(sk);
    	rtx_head = mptcp_rtx_head(sk);
    	if (!rtx_head) {
    		mptcp_data_unlock(sk);
    		return false;
    	}
    
    	msk->recovery_snd_nxt = msk->snd_nxt;
    	msk->recovery = true;
    	mptcp_data_unlock(sk);
    
    	msk->first_pending = rtx_head;
    	msk->snd_burst = 0;
    
    	/* be sure to clear the "sent status" on all re-injected fragments */
    	list_for_each_entry(cur, &msk->rtx_queue, list) {
    		if (!cur->already_sent)
    			break;
    		cur->already_sent = 0;
    	}
    
    	return true;
    }
    
    /* flags for __mptcp_close_ssk() */
    #define MPTCP_CF_PUSH		BIT(1)
    #define MPTCP_CF_FASTCLOSE	BIT(2)
    
    /* subflow sockets can be either outgoing (connect) or incoming
     * (accept).
     *
     * Outgoing subflows use in-kernel sockets.
     * Incoming subflows do not have their own 'struct socket' allocated,
     * so we need to use tcp_close() after detaching them from the mptcp
     * parent socket.
     */
    static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
    			      struct mptcp_subflow_context *subflow,
    			      unsigned int flags)
    {
    	struct mptcp_sock *msk = mptcp_sk(sk);
    	bool need_push, dispose_it;
    
    	dispose_it = !msk->subflow || ssk != msk->subflow->sk;
    	if (dispose_it)
    		list_del(&subflow->node);
    
    	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
    
    	if (flags & MPTCP_CF_FASTCLOSE)
    		subflow->send_fastclose = 1;
    
    	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
    	if (!dispose_it) {
    		tcp_disconnect(ssk, 0);
    		msk->subflow->state = SS_UNCONNECTED;
    		mptcp_subflow_ctx_reset(subflow);
    		release_sock(ssk);
    
    		goto out;
    	}
    
    	/* if we are invoked by the msk cleanup code, the subflow is
    	 * already orphaned
    	 */
    	if (ssk->sk_socket)
    		sock_orphan(ssk);
    
    	subflow->disposable = 1;
    
    	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
    	 * the ssk has been already destroyed, we just need to release the
    	 * reference owned by msk;
    	 */
    	if (!inet_csk(ssk)->icsk_ulp_ops) {
    		kfree_rcu(subflow, rcu);
    	} else {
    		/* otherwise tcp will dispose of the ssk and subflow ctx */
    		if (ssk->sk_state == TCP_LISTEN) {
    			tcp_set_state(ssk, TCP_CLOSE);
    			mptcp_subflow_queue_clean(ssk);
    			inet_csk_listen_stop(ssk);
    		}
    		__tcp_close(ssk, 0);
    
    		/* close acquired an extra ref */
    		__sock_put(ssk);
    	}
    	release_sock(ssk);
    
    	sock_put(ssk);
    
    	if (ssk == msk->first)
    		msk->first = NULL;
    
    out:
    	if (ssk == msk->last_snd)
    		msk->last_snd = NULL;
    
    	if (need_push)
    		__mptcp_push_pending(sk, 0);
    }
    
    void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
    		     struct mptcp_subflow_context *subflow)
    {
    	if (sk->sk_state == TCP_ESTABLISHED)
    		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
    
    	/* subflow aborted before reaching the fully_established status
    	 * attempt the creation of the next subflow
    	 */
    	mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow);
    
    	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
    }
    
    static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
    {
    	return 0;
    }
    
    static void __mptcp_close_subflow(struct mptcp_sock *msk)
    {
    	struct mptcp_subflow_context *subflow, *tmp;
    
    	might_sleep();
    
    	list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
    		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
    
    		if (inet_sk_state_load(ssk) != TCP_CLOSE)
    			continue;
    
    		/* 'subflow_data_ready' will re-sched once rx queue is empty */
    		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
    			continue;
    
    		mptcp_close_ssk((struct sock *)msk, ssk, subflow);
    	}
    }
    
    static bool mptcp_check_close_timeout(const struct sock *sk)
    {
    	s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp;
    	struct mptcp_subflow_context *subflow;
    
    	if (delta >= TCP_TIMEWAIT_LEN)
    		return true;
    
    	/* if all subflows are in closed status don't bother with additional
    	 * timeout
    	 */
    	mptcp_for_each_subflow(mptcp_sk(sk), subflow) {
    		if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) !=
    		    TCP_CLOSE)
    			return false;
    	}
    	return true;
    }
    
    static void mptcp_check_fastclose(struct mptcp_sock *msk)
    {
    	struct mptcp_subflow_context *subflow, *tmp;
    	struct sock *sk = &msk->sk.icsk_inet.sk;
    
    	if (likely(!READ_ONCE(msk->rcv_fastclose)))
    		return;
    
    	mptcp_token_destroy(msk);
    
    	list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
    		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
    		bool slow;
    
    		slow = lock_sock_fast(tcp_sk);
    		if (tcp_sk->sk_state != TCP_CLOSE) {
    			tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
    			tcp_set_state(tcp_sk, TCP_CLOSE);
    		}
    		unlock_sock_fast(tcp_sk, slow);
    	}
    
    	inet_sk_state_store(sk, TCP_CLOSE);
    	sk->sk_shutdown = SHUTDOWN_MASK;
    	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
    	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
    
    	mptcp_close_wake_up(sk);
    }
    
    static void __mptcp_retrans(struct sock *sk)
    {
    	struct mptcp_sock *msk = mptcp_sk(sk);
    	struct mptcp_sendmsg_info info = {};
    	struct mptcp_data_frag *dfrag;
    	size_t copied = 0;
    	struct sock *ssk;
    	int ret;
    
    	mptcp_clean_una_wakeup(sk);
    
    	/* first check ssk: need to kick "stale" logic */
    	ssk = mptcp_subflow_get_retrans(msk);
    	dfrag = mptcp_rtx_head(sk);
    	if (!dfrag) {
    		if (mptcp_data_fin_enabled(msk)) {
    			struct inet_connection_sock *icsk = inet_csk(sk);
    
    			icsk->icsk_retransmits++;
    			mptcp_set_datafin_timeout(sk);
    			mptcp_send_ack(msk);
    
    			goto reset_timer;
    		}
    
    		if (!mptcp_send_head(sk))
    			return;
    
    		goto reset_timer;
    	}
    
    	if (!ssk)
    		goto reset_timer;
    
    	lock_sock(ssk);
    
    	/* limit retransmission to the bytes already sent on some subflows */
    	info.sent = 0;
    	info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : dfrag->already_sent;
    	while (info.sent < info.limit) {
    		ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
    		if (ret <= 0)
    			break;
    
    		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
    		copied += ret;
    		info.sent += ret;
    	}
    	if (copied) {
    		dfrag->already_sent = max(dfrag->already_sent, info.sent);
    		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
    			 info.size_goal);
    		WRITE_ONCE(msk->allow_infinite_fallback, false);
    	}
    
    	release_sock(ssk);
    
    reset_timer:
    	mptcp_check_and_set_pending(sk);
    
    	if (!mptcp_timer_pending(sk))
    		mptcp_reset_timer(sk);
    }
    
    /* schedule the timeout timer for the relevant event: either close timeout
     * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
     */
    void mptcp_reset_timeout(struct mptcp_sock *msk, unsigned long fail_tout)
    {
    	struct sock *sk = (struct sock *)msk;
    	unsigned long timeout, close_timeout;
    
    	if (!fail_tout && !sock_flag(sk, SOCK_DEAD))
    		return;
    
    	close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies + TCP_TIMEWAIT_LEN;
    
    	/* the close timeout takes precedence on the fail one, and here at least one of
    	 * them is active
    	 */
    	timeout = sock_flag(sk, SOCK_DEAD) ? close_timeout : fail_tout;
    
    	sk_reset_timer(sk, &sk->sk_timer, timeout);
    }
    
    static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
    {
    	struct sock *ssk = msk->first;
    	bool slow;
    
    	if (!ssk)
    		return;
    
    	pr_debug("MP_FAIL doesn't respond, reset the subflow");
    
    	slow = lock_sock_fast(ssk);
    	mptcp_subflow_reset(ssk);
    	WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
    	unlock_sock_fast(ssk, slow);
    
    	mptcp_reset_timeout(msk, 0);
    }
    
    static void mptcp_worker(struct work_struct *work)
    {
    	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
    	struct sock *sk = &msk->sk.icsk_inet.sk;
    	unsigned long fail_tout;
    	int state;
    
    	lock_sock(sk);
    	state = sk->sk_state;
    	if (unlikely(state == TCP_CLOSE))
    		goto unlock;
    
    	mptcp_check_data_fin_ack(sk);
    
    	mptcp_check_fastclose(msk);
    
    	mptcp_pm_nl_work(msk);
    
    	if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
    		mptcp_check_for_eof(msk);
    
    	__mptcp_check_send_data_fin(sk);
    	mptcp_check_data_fin(sk);
    
    	/* There is no point in keeping around an orphaned sk timedout or
    	 * closed, but we need the msk around to reply to incoming DATA_FIN,
    	 * even if it is orphaned and in FIN_WAIT2 state
    	 */
    	if (sock_flag(sk, SOCK_DEAD) &&
    	    (mptcp_check_close_timeout(sk) || sk->sk_state == TCP_CLOSE)) {
    		inet_sk_state_store(sk, TCP_CLOSE);
    		__mptcp_destroy_sock(sk);
    		goto unlock;
    	}
    
    	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
    		__mptcp_close_subflow(msk);
    
    	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
    		__mptcp_retrans(sk);
    
    	fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
    	if (fail_tout && time_after(jiffies, fail_tout))
    		mptcp_mp_fail_no_response(msk);
    
    unlock:
    	release_sock(sk);
    	sock_put(sk);
    }
    
    static int __mptcp_init_sock(struct sock *sk)
    {
    	struct mptcp_sock *msk = mptcp_sk(sk);
    
    	INIT_LIST_HEAD(&msk->conn_list);
    	INIT_LIST_HEAD(&msk->join_list);
    	INIT_LIST_HEAD(&msk->rtx_queue);
    	INIT_WORK(&msk->work, mptcp_worker);
    	__skb_queue_head_init(&msk->receive_queue);
    	msk->out_of_order_queue = RB_ROOT;
    	msk->first_pending = NULL;
    	msk->rmem_fwd_alloc = 0;
    	WRITE_ONCE(msk->rmem_released, 0);
    	msk->timer_ival = TCP_RTO_MIN;
    
    	msk->first = NULL;
    	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
    	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
    	WRITE_ONCE(msk->allow_infinite_fallback, true);
    	msk->recovery = false;
    
    	mptcp_pm_data_init(msk);
    
    	/* re-use the csk retrans timer for MPTCP-level retrans */
    	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
    	timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0);
    
    	return 0;
    }
    
    static void mptcp_ca_reset(struct sock *sk)
    {
    	struct inet_connection_sock *icsk = inet_csk(sk);
    
    	tcp_assign_congestion_control(sk);
    	strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name);
    
    	/* no need to keep a reference to the ops, the name will suffice */
    	tcp_cleanup_congestion_control(sk);
    	icsk->icsk_ca_ops = NULL;
    }
    
    static int mptcp_init_sock(struct sock *sk)
    {
    	struct net *net = sock_net(sk);
    	int ret;
    
    	ret = __mptcp_init_sock(sk);
    	if (ret)
    		return ret;
    
    	if (!mptcp_is_enabled(net))
    		return -ENOPROTOOPT;
    
    	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
    		return -ENOMEM;
    
    	ret = __mptcp_socket_create(mptcp_sk(sk));
    	if (ret)
    		return ret;
    
    	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
    	 * propagate the correct value
    	 */
    	mptcp_ca_reset(sk);
    
    	sk_sockets_allocated_inc(sk);
    	sk->sk_rcvbuf = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]);
    	sk->sk_sndbuf = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]);
    
    	return 0;
    }
    
    static void __mptcp_clear_xmit(struct sock *sk)
    {
    	struct mptcp_sock *msk = mptcp_sk(sk);
    	struct mptcp_data_frag *dtmp, *dfrag;
    
    	WRITE_ONCE(msk->first_pending, NULL);
    	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
    		dfrag_clear(sk, dfrag);
    }
    
    static void mptcp_cancel_work(struct sock *sk)
    {
    	struct mptcp_sock *msk = mptcp_sk(sk);
    
    	if (cancel_work_sync(&msk->work))
    		__sock_put(sk);
    }
    
    void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
    {
    	lock_sock(ssk);
    
    	switch (ssk->sk_state) {
    	case TCP_LISTEN:
    		if (!(how & RCV_SHUTDOWN))
    			break;
    		fallthrough;
    	case TCP_SYN_SENT:
    		tcp_disconnect(ssk, O_NONBLOCK);
    		break;
    	default:
    		if (__mptcp_check_fallback(mptcp_sk(sk))) {
    			pr_debug("Fallback");
    			ssk->sk_shutdown |= how;
    			tcp_shutdown(ssk, how);
    		} else {
    			pr_debug("Sending DATA_FIN on subflow %p", ssk);
    			tcp_send_ack(ssk);
    			if (!mptcp_timer_pending(sk))
    				mptcp_reset_timer(sk);
    		}
    		break;
    	}
    
    	release_sock(ssk);
    }
    
    static const unsigned char new_state[16] = {
    	/* current state:     new state:      action:	*/
    	[0 /* (Invalid) */] = TCP_CLOSE,
    	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
    	[TCP_SYN_SENT]      = TCP_CLOSE,
    	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
    	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
    	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
    	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
    	[TCP_CLOSE]         = TCP_CLOSE,
    	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
    	[TCP_LAST_ACK]      = TCP_LAST_ACK,
    	[TCP_LISTEN]        = TCP_CLOSE,
    	[TCP_CLOSING]       = TCP_CLOSING,
    	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
    };
    
    static int mptcp_close_state(struct sock *sk)
    {
    	int next = (int)new_state[sk->sk_state];
    	int ns = next & TCP_STATE_MASK;
    
    	inet_sk_state_store(sk, ns);
    
    	return next & TCP_ACTION_FIN;
    }
    
    static void __mptcp_check_send_data_fin(struct sock *sk)
    {
    	struct mptcp_subflow_context *subflow;
    	struct mptcp_sock *msk = mptcp_sk(sk);
    
    	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu",
    		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
    		 msk->snd_nxt, msk->write_seq);
    
    	/* we still need to enqueue subflows or not really shutting down,
    	 * skip this
    	 */
    	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
    	    mptcp_send_head(sk))
    		return;
    
    	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
    
    	/* fallback socket will not get data_fin/ack, can move to the next
    	 * state now
    	 */
    	if (__mptcp_check_fallback(msk)) {
    		WRITE_ONCE(msk->snd_una, msk->write_seq);
    		if ((1 << sk->sk_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
    			inet_sk_state_store(sk, TCP_CLOSE);
    			mptcp_close_wake_up(sk);
    		} else if (sk->sk_state == TCP_FIN_WAIT1) {
    			inet_sk_state_store(sk, TCP_FIN_WAIT2);
    		}
    	}
    
    	mptcp_for_each_subflow(msk, subflow) {
    		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
    
    		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
    	}
    }
    
    static void __mptcp_wr_shutdown(struct sock *sk)
    {
    	struct mptcp_sock *msk = mptcp_sk(sk);
    
    	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d",
    		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
    		 !!mptcp_send_head(sk));
    
    	/* will be ignored by fallback sockets */
    	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
    	WRITE_ONCE(msk->snd_data_fin_enable, 1);
    
    	__mptcp_check_send_data_fin(sk);
    }
    
    static void __mptcp_destroy_sock(struct sock *sk)
    {
    	struct mptcp_sock *msk = mptcp_sk(sk);
    
    	pr_debug("msk=%p", msk);
    
    	might_sleep();
    
    	mptcp_stop_timer(sk);
    	sk_stop_timer(sk, &sk->sk_timer);
    	msk->pm.status = 0;
    
    	sk->sk_prot->destroy(sk);
    
    	WARN_ON_ONCE(msk->rmem_fwd_alloc);
    	WARN_ON_ONCE(msk->rmem_released);
    	sk_stream_kill_queues(sk);
    	xfrm_sk_free_policy(sk);
    
    	sk_refcnt_debug_release(sk);
    	sock_put(sk);
    }
    
    static void mptcp_close(struct sock *sk, long timeout)
    {
    	struct mptcp_subflow_context *subflow;
    	struct mptcp_sock *msk = mptcp_sk(sk);
    	bool do_cancel_work = false;
    
    	lock_sock(sk);
    	sk->sk_shutdown = SHUTDOWN_MASK;
    
    	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
    		inet_sk_state_store(sk, TCP_CLOSE);
    		goto cleanup;
    	}
    
    	if (mptcp_close_state(sk))
    		__mptcp_wr_shutdown(sk);
    
    	sk_stream_wait_close(sk, timeout);
    
    cleanup:
    	/* orphan all the subflows */
    	inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32;
    	mptcp_for_each_subflow(msk, subflow) {
    		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
    		bool slow = lock_sock_fast_nested(ssk);
    
    		/* since the close timeout takes precedence on the fail one,
    		 * cancel the latter
    		 */
    		if (ssk == msk->first)
    			subflow->fail_tout = 0;
    
    		sock_orphan(ssk);
    		unlock_sock_fast(ssk, slow);
    	}
    	sock_orphan(sk);
    
    	sock_hold(sk);
    	pr_debug("msk=%p state=%d", sk, sk->sk_state);
    	if (mptcp_sk(sk)->token)
    		mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
    
    	if (sk->sk_state == TCP_CLOSE) {
    		__mptcp_destroy_sock(sk);
    		do_cancel_work = true;
    	} else {
    		mptcp_reset_timeout(msk, 0);
    	}
    	release_sock(sk);
    	if (do_cancel_work)
    		mptcp_cancel_work(sk);
    
    	sock_put(sk);
    }
    
    static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
    {
    #if IS_ENABLED(CONFIG_MPTCP_IPV6)
    	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
    	struct ipv6_pinfo *msk6 = inet6_sk(msk);
    
    	msk->sk_v6_daddr = ssk->sk_v6_daddr;
    	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
    
    	if (msk6 && ssk6) {
    		msk6->saddr = ssk6->saddr;
    		msk6->flow_label = ssk6->flow_label;
    	}
    #endif
    
    	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
    	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
    	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
    	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
    	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
    	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
    }
    
    static int mptcp_disconnect(struct sock *sk, int flags)
    {
    	struct mptcp_sock *msk = mptcp_sk(sk);
    
    	inet_sk_state_store(sk, TCP_CLOSE);
    
    	mptcp_stop_timer(sk);
    	sk_stop_timer(sk, &sk->sk_timer);
    
    	if (mptcp_sk(sk)->token)
    		mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL);
    
    	/* msk->subflow is still intact, the following will not free the first
    	 * subflow
    	 */
    	mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
    	msk->last_snd = NULL;
    	WRITE_ONCE(msk->flags, 0);
    	msk->cb_flags = 0;
    	msk->push_pending = 0;
    	msk->recovery = false;
    	msk->can_ack = false;
    	msk->fully_established = false;
    	msk->rcv_data_fin = false;
    	msk->snd_data_fin_enable = false;
    	msk->rcv_fastclose = false;
    	msk->use_64bit_ack = false;
    	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
    	mptcp_pm_data_reset(msk);
    	mptcp_ca_reset(sk);
    
    	sk->sk_shutdown = 0;
    	sk_error_report(sk);
    	return 0;
    }
    
    #if IS_ENABLED(CONFIG_MPTCP_IPV6)
    static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
    {
    	unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
    
    	return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
    }
    #endif
    
    struct sock *mptcp_sk_clone(const struct sock *sk,
    			    const struct mptcp_options_received *mp_opt,
    			    struct request_sock *req)
    {
    	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
    	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
    	struct mptcp_sock *msk;
    	u64 ack_seq;
    
    	if (!nsk)
    		return NULL;
    
    #if IS_ENABLED(CONFIG_MPTCP_IPV6)
    	if (nsk->sk_family == AF_INET6)
    		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
    #endif
    
    	__mptcp_init_sock(nsk);
    
    	msk = mptcp_sk(nsk);
    	msk->local_key = subflow_req->local_key;
    	msk->token = subflow_req->token;
    	msk->subflow = NULL;
    	WRITE_ONCE(msk->fully_established, false);
    	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
    		WRITE_ONCE(msk->csum_enabled, true);
    
    	msk->write_seq = subflow_req->idsn + 1;
    	msk->snd_nxt = msk->write_seq;
    	msk->snd_una = msk->write_seq;
    	msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd;
    	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
    
    	if (mp_opt->suboptions & OPTIONS_MPTCP_MPC) {
    		msk->can_ack = true;
    		msk->remote_key = mp_opt->sndr_key;
    		mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq);
    		ack_seq++;
    		WRITE_ONCE(msk->ack_seq, ack_seq);
    		atomic64_set(&msk->rcv_wnd_sent, ack_seq);
    	}
    
    	sock_reset_flag(nsk, SOCK_RCU_FREE);
    	/* will be fully established after successful MPC subflow creation */
    	inet_sk_state_store(nsk, TCP_SYN_RECV);
    
    	security_inet_csk_clone(nsk, req);
    	bh_unlock_sock(nsk);
    
    	/* keep a single reference */
    	__sock_put(nsk);
    	return nsk;
    }
    
    void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
    {
    	const struct tcp_sock *tp = tcp_sk(ssk);
    
    	msk->rcvq_space.copied = 0;
    	msk->rcvq_space.rtt_us = 0;
    
    	msk->rcvq_space.time = tp->tcp_mstamp;
    
    	/* initial rcv_space offering made to peer */
    	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
    				      TCP_INIT_CWND * tp->advmss);
    	if (msk->rcvq_space.space == 0)
    		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
    
    	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
    }
    
    static struct sock *mptcp_accept(struct sock *sk, int flags, int *err,
    				 bool kern)
    {
    	struct mptcp_sock *msk = mptcp_sk(sk);
    	struct socket *listener;
    	struct sock *newsk;
    
    	listener = __mptcp_nmpc_socket(msk);
    	if (WARN_ON_ONCE(!listener)) {
    		*err = -EINVAL;
    		return NULL;
    	}
    
    	pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk));
    	newsk = inet_csk_accept(listener->sk, flags, err, kern);
    	if (!newsk)
    		return NULL;
    
    	pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk));
    	if (sk_is_mptcp(newsk)) {
    		struct mptcp_subflow_context *subflow;
    		struct sock *new_mptcp_sock;
    
    		subflow = mptcp_subflow_ctx(newsk);
    		new_mptcp_sock = subflow->conn;
    
    		/* is_mptcp should be false if subflow->conn is missing, see
    		 * subflow_syn_recv_sock()
    		 */
    		if (WARN_ON_ONCE(!new_mptcp_sock)) {
    			tcp_sk(newsk)->is_mptcp = 0;
    			goto out;
    		}
    
    		/* acquire the 2nd reference for the owning socket */
    		sock_hold(new_mptcp_sock);
    		newsk = new_mptcp_sock;
    		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
    	} else {
    		MPTCP_INC_STATS(sock_net(sk),
    				MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
    	}
    
    out:
    	newsk->sk_kern_sock = kern;
    	return newsk;
    }
    
    void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
    {
    	struct mptcp_subflow_context *subflow, *tmp;
    	struct sock *sk = (struct sock *)msk;
    
    	__mptcp_clear_xmit(sk);
    
    	/* join list will be eventually flushed (with rst) at sock lock release time */
    	list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node)
    		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
    
    	/* move to sk_receive_queue, sk_stream_kill_queues will purge it */
    	mptcp_data_lock(sk);
    	skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
    	__skb_queue_purge(&sk->sk_receive_queue);
    	skb_rbtree_purge(&msk->out_of_order_queue);
    	mptcp_data_unlock(sk);
    
    	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
    	 * inet_sock_destruct() will dispose it
    	 */
    	sk->sk_forward_alloc += msk->rmem_fwd_alloc;
    	msk->rmem_fwd_alloc = 0;
    	mptcp_token_destroy(msk);
    	mptcp_pm_free_anno_list(msk);
    	mptcp_free_local_addr_list(msk);
    }
    
    static void mptcp_destroy(struct sock *sk)
    {
    	struct mptcp_sock *msk = mptcp_sk(sk);
    
    	/* clears msk->subflow, allowing the following to close
    	 * even the initial subflow
    	 */
    	mptcp_dispose_initial_subflow(msk);
    	mptcp_destroy_common(msk, 0);
    	sk_sockets_allocated_dec(sk);
    }
    
    void __mptcp_data_acked(struct sock *sk)
    {
    	if (!sock_owned_by_user(sk))
    		__mptcp_clean_una(sk);
    	else
    		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
    
    	if (mptcp_pending_data_fin_ack(sk))
    		mptcp_schedule_work(sk);
    }
    
    void __mptcp_check_push(struct sock *sk, struct sock *ssk)
    {
    	if (!mptcp_send_head(sk))
    		return;
    
    	if (!sock_owned_by_user(sk)) {
    		struct sock *xmit_ssk = mptcp_subflow_get_send(mptcp_sk(sk));
    
    		if (xmit_ssk == ssk)
    			__mptcp_subflow_push_pending(sk, ssk);
    		else if (xmit_ssk)
    			mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk), MPTCP_DELEGATE_SEND);
    	} else {
    		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
    	}
    }
    
    #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
    				      BIT(MPTCP_RETRANSMIT) | \
    				      BIT(MPTCP_FLUSH_JOIN_LIST))
    
    /* processes deferred events and flush wmem */
    static void mptcp_release_cb(struct sock *sk)
    	__must_hold(&sk->sk_lock.slock)
    {
    	struct mptcp_sock *msk = mptcp_sk(sk);
    
    	for (;;) {
    		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED) |
    				      msk->push_pending;
    		if (!flags)
    			break;
    
    		/* the following actions acquire the subflow socket lock
    		 *
    		 * 1) can't be invoked in atomic scope
    		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
    		 *    datapath acquires the msk socket spinlock while helding
    		 *    the subflow socket lock
    		 */
    		msk->push_pending = 0;
    		msk->cb_flags &= ~flags;
    		spin_unlock_bh(&sk->sk_lock.slock);
    		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
    			__mptcp_flush_join_list(sk);
    		if (flags & BIT(MPTCP_PUSH_PENDING))
    			__mptcp_push_pending(sk, 0);
    		if (flags & BIT(MPTCP_RETRANSMIT))
    			__mptcp_retrans(sk);
    
    		cond_resched();
    		spin_lock_bh(&sk->sk_lock.slock);
    	}
    
    	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
    		__mptcp_clean_una_wakeup(sk);
    	if (unlikely(&msk->cb_flags)) {
    		/* be sure to set the current sk state before tacking actions
    		 * depending on sk_state, that is processing MPTCP_ERROR_REPORT
    		 */
    		if (__test_and_clear_bit(MPTCP_CONNECTED, &msk->cb_flags))
    			__mptcp_set_connected(sk);
    		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
    			__mptcp_error_report(sk);
    		if (__test_and_clear_bit(MPTCP_RESET_SCHEDULER, &msk->cb_flags))
    			msk->last_snd = NULL;
    	}
    
    	__mptcp_update_rmem(sk);
    }
    
    /* MP_JOIN client subflow must wait for 4th ack before sending any data:
     * TCP can't schedule delack timer before the subflow is fully established.
     * MPTCP uses the delack timer to do 3rd ack retransmissions
     */
    static void schedule_3rdack_retransmission(struct sock *ssk)
    {
    	struct inet_connection_sock *icsk = inet_csk(ssk);
    	struct tcp_sock *tp = tcp_sk(ssk);
    	unsigned long timeout;
    
    	if (mptcp_subflow_ctx(ssk)->fully_established)
    		return;
    
    	/* reschedule with a timeout above RTT, as we must look only for drop */
    	if (tp->srtt_us)
    		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
    	else
    		timeout = TCP_TIMEOUT_INIT;
    	timeout += jiffies;
    
    	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
    	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
    	icsk->icsk_ack.timeout = timeout;
    	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
    }
    
    void mptcp_subflow_process_delegated(struct sock *ssk)
    {
    	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
    	struct sock *sk = subflow->conn;
    
    	if (test_bit(MPTCP_DELEGATE_SEND, &subflow->delegated_status)) {
    		mptcp_data_lock(sk);
    		if (!sock_owned_by_user(sk))
    			__mptcp_subflow_push_pending(sk, ssk);
    		else
    			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
    		mptcp_data_unlock(sk);
    		mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_SEND);
    	}
    	if (test_bit(MPTCP_DELEGATE_ACK, &subflow->delegated_status)) {
    		schedule_3rdack_retransmission(ssk);
    		mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_ACK);
    	}
    }
    
    static int mptcp_hash(struct sock *sk)
    {
    	/* should never be called,
    	 * we hash the TCP subflows not the master socket
    	 */
    	WARN_ON_ONCE(1);
    	return 0;
    }
    
    static void mptcp_unhash(struct sock *sk)
    {
    	/* called from sk_common_release(), but nothing to do here */
    }
    
    static int mptcp_get_port(struct sock *sk, unsigned short snum)
    {
    	struct mptcp_sock *msk = mptcp_sk(sk);
    	struct socket *ssock;
    
    	ssock = __mptcp_nmpc_socket(msk);
    	pr_debug("msk=%p, subflow=%p", msk, ssock);
    	if (WARN_ON_ONCE(!ssock))
    		return -EINVAL;
    
    	return inet_csk_get_port(ssock->sk, snum);
    }
    
    void mptcp_finish_connect(struct sock *ssk)
    {
    	struct mptcp_subflow_context *subflow;
    	struct mptcp_sock *msk;
    	struct sock *sk;
    	u64 ack_seq;
    
    	subflow = mptcp_subflow_ctx(ssk);
    	sk = subflow->conn;
    	msk = mptcp_sk(sk);
    
    	pr_debug("msk=%p, token=%u", sk, subflow->token);
    
    	mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq);
    	ack_seq++;
    	subflow->map_seq = ack_seq;
    	subflow->map_subflow_seq = 1;
    
    	/* the socket is not connected yet, no msk/subflow ops can access/race
    	 * accessing the field below
    	 */
    	WRITE_ONCE(msk->remote_key, subflow->remote_key);
    	WRITE_ONCE(msk->local_key, subflow->local_key);
    	WRITE_ONCE(msk->write_seq, subflow->idsn + 1);
    	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
    	WRITE_ONCE(msk->ack_seq, ack_seq);
    	WRITE_ONCE(msk->can_ack, 1);
    	WRITE_ONCE(msk->snd_una, msk->write_seq);
    	atomic64_set(&msk->rcv_wnd_sent, ack_seq);
    
    	mptcp_pm_new_connection(msk, ssk, 0);
    
    	mptcp_rcv_space_init(msk, ssk);
    }
    
    void mptcp_sock_graft(struct sock *sk, struct socket *parent)
    {
    	write_lock_bh(&sk->sk_callback_lock);
    	rcu_assign_pointer(sk->sk_wq, &parent->wq);
    	sk_set_socket(sk, parent);
    	sk->sk_uid = SOCK_INODE(parent)->i_uid;
    	write_unlock_bh(&sk->sk_callback_lock);
    }
    
    bool mptcp_finish_join(struct sock *ssk)
    {
    	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
    	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
    	struct sock *parent = (void *)msk;
    	bool ret = true;
    
    	pr_debug("msk=%p, subflow=%p", msk, subflow);
    
    	/* mptcp socket already closing? */
    	if (!mptcp_is_fully_established(parent)) {
    		subflow->reset_reason = MPTCP_RST_EMPTCP;
    		return false;
    	}
    
    	if (!list_empty(&subflow->node))
    		goto out;
    
    	if (!mptcp_pm_allow_new_subflow(msk))
    		goto err_prohibited;
    
    	/* active connections are already on conn_list.
    	 * If we can't acquire msk socket lock here, let the release callback
    	 * handle it
    	 */
    	mptcp_data_lock(parent);
    	if (!sock_owned_by_user(parent)) {
    		ret = __mptcp_finish_join(msk, ssk);
    		if (ret) {
    			sock_hold(ssk);
    			list_add_tail(&subflow->node, &msk->conn_list);
    		}
    	} else {
    		sock_hold(ssk);
    		list_add_tail(&subflow->node, &msk->join_list);
    		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
    	}
    	mptcp_data_unlock(parent);
    
    	if (!ret) {
    err_prohibited:
    		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
    		return false;
    	}
    
    	subflow->map_seq = READ_ONCE(msk->ack_seq);
    	WRITE_ONCE(msk->allow_infinite_fallback, false);
    
    out:
    	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
    	return true;
    }
    
    static void mptcp_shutdown(struct sock *sk, int how)
    {
    	pr_debug("sk=%p, how=%d", sk, how);
    
    	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
    		__mptcp_wr_shutdown(sk);
    }
    
    static int mptcp_forward_alloc_get(const struct sock *sk)
    {
    	return sk->sk_forward_alloc + mptcp_sk(sk)->rmem_fwd_alloc;
    }
    
    static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
    {
    	const struct sock *sk = (void *)msk;
    	u64 delta;
    
    	if (sk->sk_state == TCP_LISTEN)
    		return -EINVAL;
    
    	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
    		return 0;
    
    	delta = msk->write_seq - v;
    	if (__mptcp_check_fallback(msk) && msk->first) {
    		struct tcp_sock *tp = tcp_sk(msk->first);
    
    		/* the first subflow is disconnected after close - see
    		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
    		 * so ignore that status, too.
    		 */
    		if (!((1 << msk->first->sk_state) &
    		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
    			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
    	}
    	if (delta > INT_MAX)
    		delta = INT_MAX;
    
    	return (int)delta;
    }
    
    static int mptcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
    {
    	struct mptcp_sock *msk = mptcp_sk(sk);
    	bool slow;
    	int answ;
    
    	switch (cmd) {
    	case SIOCINQ:
    		if (sk->sk_state == TCP_LISTEN)
    			return -EINVAL;
    
    		lock_sock(sk);
    		__mptcp_move_skbs(msk);
    		answ = mptcp_inq_hint(sk);
    		release_sock(sk);
    		break;
    	case SIOCOUTQ:
    		slow = lock_sock_fast(sk);
    		answ = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
    		unlock_sock_fast(sk, slow);
    		break;
    	case SIOCOUTQNSD:
    		slow = lock_sock_fast(sk);
    		answ = mptcp_ioctl_outq(msk, msk->snd_nxt);
    		unlock_sock_fast(sk, slow);
    		break;
    	default:
    		return -ENOIOCTLCMD;
    	}
    
    	return put_user(answ, (int __user *)arg);
    }
    
    static struct proto mptcp_prot = {
    	.name		= "MPTCP",
    	.owner		= THIS_MODULE,
    	.init		= mptcp_init_sock,
    	.disconnect	= mptcp_disconnect,
    	.close		= mptcp_close,
    	.accept		= mptcp_accept,
    	.setsockopt	= mptcp_setsockopt,
    	.getsockopt	= mptcp_getsockopt,
    	.shutdown	= mptcp_shutdown,
    	.destroy	= mptcp_destroy,
    	.sendmsg	= mptcp_sendmsg,
    	.ioctl		= mptcp_ioctl,
    	.recvmsg	= mptcp_recvmsg,
    	.release_cb	= mptcp_release_cb,
    	.hash		= mptcp_hash,
    	.unhash		= mptcp_unhash,
    	.get_port	= mptcp_get_port,
    	.forward_alloc_get	= mptcp_forward_alloc_get,
    	.sockets_allocated	= &mptcp_sockets_allocated,
    
    	.memory_allocated	= &tcp_memory_allocated,
    	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
    
    	.memory_pressure	= &tcp_memory_pressure,
    	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
    	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
    	.sysctl_mem	= sysctl_tcp_mem,
    	.obj_size	= sizeof(struct mptcp_sock),
    	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
    	.no_autobind	= true,
    };
    
    static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
    {
    	struct mptcp_sock *msk = mptcp_sk(sock->sk);
    	struct socket *ssock;
    	int err;
    
    	lock_sock(sock->sk);
    	ssock = __mptcp_nmpc_socket(msk);
    	if (!ssock) {
    		err = -EINVAL;
    		goto unlock;
    	}
    
    	err = ssock->ops->bind(ssock, uaddr, addr_len);
    	if (!err)
    		mptcp_copy_inaddrs(sock->sk, ssock->sk);
    
    unlock:
    	release_sock(sock->sk);
    	return err;
    }
    
    static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
    					 struct mptcp_subflow_context *subflow)
    {
    	subflow->request_mptcp = 0;
    	__mptcp_do_fallback(msk);
    }
    
    static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr,
    				int addr_len, int flags)
    {
    	struct mptcp_sock *msk = mptcp_sk(sock->sk);
    	struct mptcp_subflow_context *subflow;
    	struct socket *ssock;
    	int err = -EINVAL;
    
    	lock_sock(sock->sk);
    	if (uaddr) {
    		if (addr_len < sizeof(uaddr->sa_family))
    			goto unlock;
    
    		if (uaddr->sa_family == AF_UNSPEC) {
    			err = mptcp_disconnect(sock->sk, flags);
    			sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED;
    			goto unlock;
    		}
    	}
    
    	if (sock->state != SS_UNCONNECTED && msk->subflow) {
    		/* pending connection or invalid state, let existing subflow
    		 * cope with that
    		 */
    		ssock = msk->subflow;
    		goto do_connect;
    	}
    
    	ssock = __mptcp_nmpc_socket(msk);
    	if (!ssock)
    		goto unlock;
    
    	mptcp_token_destroy(msk);
    	inet_sk_state_store(sock->sk, TCP_SYN_SENT);
    	subflow = mptcp_subflow_ctx(ssock->sk);
    #ifdef CONFIG_TCP_MD5SIG
    	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
    	 * TCP option space.
    	 */
    	if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info))
    		mptcp_subflow_early_fallback(msk, subflow);
    #endif
    	if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) {
    		MPTCP_INC_STATS(sock_net(ssock->sk), MPTCP_MIB_TOKENFALLBACKINIT);
    		mptcp_subflow_early_fallback(msk, subflow);
    	}
    	if (likely(!__mptcp_check_fallback(msk)))
    		MPTCP_INC_STATS(sock_net(sock->sk), MPTCP_MIB_MPCAPABLEACTIVE);
    
    do_connect:
    	err = ssock->ops->connect(ssock, uaddr, addr_len, flags);
    	sock->state = ssock->state;
    
    	/* on successful connect, the msk state will be moved to established by
    	 * subflow_finish_connect()
    	 */
    	if (!err || err == -EINPROGRESS)
    		mptcp_copy_inaddrs(sock->sk, ssock->sk);
    	else
    		inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
    
    unlock:
    	release_sock(sock->sk);
    	return err;
    }
    
    static int mptcp_listen(struct socket *sock, int backlog)
    {
    	struct mptcp_sock *msk = mptcp_sk(sock->sk);
    	struct socket *ssock;
    	int err;
    
    	pr_debug("msk=%p", msk);
    
    	lock_sock(sock->sk);
    	ssock = __mptcp_nmpc_socket(msk);
    	if (!ssock) {
    		err = -EINVAL;
    		goto unlock;
    	}
    
    	mptcp_token_destroy(msk);
    	inet_sk_state_store(sock->sk, TCP_LISTEN);
    	sock_set_flag(sock->sk, SOCK_RCU_FREE);
    
    	err = ssock->ops->listen(ssock, backlog);
    	inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
    	if (!err)
    		mptcp_copy_inaddrs(sock->sk, ssock->sk);
    
    unlock:
    	release_sock(sock->sk);
    	return err;
    }
    
    static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
    			       int flags, bool kern)
    {
    	struct mptcp_sock *msk = mptcp_sk(sock->sk);
    	struct socket *ssock;
    	int err;
    
    	pr_debug("msk=%p", msk);
    
    	ssock = __mptcp_nmpc_socket(msk);
    	if (!ssock)
    		return -EINVAL;
    
    	err = ssock->ops->accept(sock, newsock, flags, kern);
    	if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) {
    		struct mptcp_sock *msk = mptcp_sk(newsock->sk);
    		struct mptcp_subflow_context *subflow;
    		struct sock *newsk = newsock->sk;
    
    		lock_sock(newsk);
    
    		/* PM/worker can now acquire the first subflow socket
    		 * lock without racing with listener queue cleanup,
    		 * we can notify it, if needed.
    		 *
    		 * Even if remote has reset the initial subflow by now
    		 * the refcnt is still at least one.
    		 */
    		subflow = mptcp_subflow_ctx(msk->first);
    		list_add(&subflow->node, &msk->conn_list);
    		sock_hold(msk->first);
    		if (mptcp_is_fully_established(newsk))
    			mptcp_pm_fully_established(msk, msk->first, GFP_KERNEL);
    
    		mptcp_copy_inaddrs(newsk, msk->first);
    		mptcp_rcv_space_init(msk, msk->first);
    		mptcp_propagate_sndbuf(newsk, msk->first);
    
    		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
    		 * This is needed so NOSPACE flag can be set from tcp stack.
    		 */
    		mptcp_for_each_subflow(msk, subflow) {
    			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
    
    			if (!ssk->sk_socket)
    				mptcp_sock_graft(ssk, newsock);
    		}
    		release_sock(newsk);
    	}
    
    	return err;
    }
    
    static __poll_t mptcp_check_readable(struct mptcp_sock *msk)
    {
    	/* Concurrent splices from sk_receive_queue into receive_queue will
    	 * always show at least one non-empty queue when checked in this order.
    	 */
    	if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) &&
    	    skb_queue_empty_lockless(&msk->receive_queue))
    		return 0;
    
    	return EPOLLIN | EPOLLRDNORM;
    }
    
    static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
    {
    	struct sock *sk = (struct sock *)msk;
    
    	if (unlikely(sk->sk_shutdown & SEND_SHUTDOWN))
    		return EPOLLOUT | EPOLLWRNORM;
    
    	if (sk_stream_is_writeable(sk))
    		return EPOLLOUT | EPOLLWRNORM;
    
    	mptcp_set_nospace(sk);
    	smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
    	if (sk_stream_is_writeable(sk))
    		return EPOLLOUT | EPOLLWRNORM;
    
    	return 0;
    }
    
    static __poll_t mptcp_poll(struct file *file, struct socket *sock,
    			   struct poll_table_struct *wait)
    {
    	struct sock *sk = sock->sk;
    	struct mptcp_sock *msk;
    	__poll_t mask = 0;
    	int state;
    
    	msk = mptcp_sk(sk);
    	sock_poll_wait(file, sock, wait);
    
    	state = inet_sk_state_load(sk);
    	pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
    	if (state == TCP_LISTEN) {
    		if (WARN_ON_ONCE(!msk->subflow || !msk->subflow->sk))
    			return 0;
    
    		return inet_csk_listen_poll(msk->subflow->sk);
    	}
    
    	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
    		mask |= mptcp_check_readable(msk);
    		mask |= mptcp_check_writeable(msk);
    	}
    	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
    		mask |= EPOLLHUP;
    	if (sk->sk_shutdown & RCV_SHUTDOWN)
    		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
    
    	/* This barrier is coupled with smp_wmb() in tcp_reset() */
    	smp_rmb();
    	if (sk->sk_err)
    		mask |= EPOLLERR;
    
    	return mask;
    }
    
    static const struct proto_ops mptcp_stream_ops = {
    	.family		   = PF_INET,
    	.owner		   = THIS_MODULE,
    	.release	   = inet_release,
    	.bind		   = mptcp_bind,
    	.connect	   = mptcp_stream_connect,
    	.socketpair	   = sock_no_socketpair,
    	.accept		   = mptcp_stream_accept,
    	.getname	   = inet_getname,
    	.poll		   = mptcp_poll,
    	.ioctl		   = inet_ioctl,
    	.gettstamp	   = sock_gettstamp,
    	.listen		   = mptcp_listen,
    	.shutdown	   = inet_shutdown,
    	.setsockopt	   = sock_common_setsockopt,
    	.getsockopt	   = sock_common_getsockopt,
    	.sendmsg	   = inet_sendmsg,
    	.recvmsg	   = inet_recvmsg,
    	.mmap		   = sock_no_mmap,
    	.sendpage	   = inet_sendpage,
    };
    
    static struct inet_protosw mptcp_protosw = {
    	.type		= SOCK_STREAM,
    	.protocol	= IPPROTO_MPTCP,
    	.prot		= &mptcp_prot,
    	.ops		= &mptcp_stream_ops,
    	.flags		= INET_PROTOSW_ICSK,
    };
    
    static int mptcp_napi_poll(struct napi_struct *napi, int budget)
    {
    	struct mptcp_delegated_action *delegated;
    	struct mptcp_subflow_context *subflow;
    	int work_done = 0;
    
    	delegated = container_of(napi, struct mptcp_delegated_action, napi);
    	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
    		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
    
    		bh_lock_sock_nested(ssk);
    		if (!sock_owned_by_user(ssk) &&
    		    mptcp_subflow_has_delegated_action(subflow))
    			mptcp_subflow_process_delegated(ssk);
    		/* ... elsewhere tcp_release_cb_override already processed
    		 * the action or will do at next release_sock().
    		 * In both case must dequeue the subflow here - on the same
    		 * CPU that scheduled it.
    		 */
    		bh_unlock_sock(ssk);
    		sock_put(ssk);
    
    		if (++work_done == budget)
    			return budget;
    	}
    
    	/* always provide a 0 'work_done' argument, so that napi_complete_done
    	 * will not try accessing the NULL napi->dev ptr
    	 */
    	napi_complete_done(napi, 0);
    	return work_done;
    }
    
    void __init mptcp_proto_init(void)
    {
    	struct mptcp_delegated_action *delegated;
    	int cpu;
    
    	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
    
    	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
    		panic("Failed to allocate MPTCP pcpu counter\n");
    
    	init_dummy_netdev(&mptcp_napi_dev);
    	for_each_possible_cpu(cpu) {
    		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
    		INIT_LIST_HEAD(&delegated->head);
    		netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi,
    				  mptcp_napi_poll);
    		napi_enable(&delegated->napi);
    	}
    
    	mptcp_subflow_init();
    	mptcp_pm_init();
    	mptcp_token_init();
    
    	if (proto_register(&mptcp_prot, 1) != 0)
    		panic("Failed to register MPTCP proto.\n");
    
    	inet_register_protosw(&mptcp_protosw);
    
    	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
    }
    
    #if IS_ENABLED(CONFIG_MPTCP_IPV6)
    static const struct proto_ops mptcp_v6_stream_ops = {
    	.family		   = PF_INET6,
    	.owner		   = THIS_MODULE,
    	.release	   = inet6_release,
    	.bind		   = mptcp_bind,
    	.connect	   = mptcp_stream_connect,
    	.socketpair	   = sock_no_socketpair,
    	.accept		   = mptcp_stream_accept,
    	.getname	   = inet6_getname,
    	.poll		   = mptcp_poll,
    	.ioctl		   = inet6_ioctl,
    	.gettstamp	   = sock_gettstamp,
    	.listen		   = mptcp_listen,
    	.shutdown	   = inet_shutdown,
    	.setsockopt	   = sock_common_setsockopt,
    	.getsockopt	   = sock_common_getsockopt,
    	.sendmsg	   = inet6_sendmsg,
    	.recvmsg	   = inet6_recvmsg,
    	.mmap		   = sock_no_mmap,
    	.sendpage	   = inet_sendpage,
    #ifdef CONFIG_COMPAT
    	.compat_ioctl	   = inet6_compat_ioctl,
    #endif
    };
    
    static struct proto mptcp_v6_prot;
    
    static void mptcp_v6_destroy(struct sock *sk)
    {
    	mptcp_destroy(sk);
    	inet6_destroy_sock(sk);
    }
    
    static struct inet_protosw mptcp_v6_protosw = {
    	.type		= SOCK_STREAM,
    	.protocol	= IPPROTO_MPTCP,
    	.prot		= &mptcp_v6_prot,
    	.ops		= &mptcp_v6_stream_ops,
    	.flags		= INET_PROTOSW_ICSK,
    };
    
    int __init mptcp_proto_v6_init(void)
    {
    	int err;
    
    	mptcp_v6_prot = mptcp_prot;
    	strcpy(mptcp_v6_prot.name, "MPTCPv6");
    	mptcp_v6_prot.slab = NULL;
    	mptcp_v6_prot.destroy = mptcp_v6_destroy;
    	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
    
    	err = proto_register(&mptcp_v6_prot, 1);
    	if (err)
    		return err;
    
    	err = inet6_register_protosw(&mptcp_v6_protosw);
    	if (err)
    		proto_unregister(&mptcp_v6_prot);
    
    	return err;
    }
    #endif