Skip to content
Snippets Groups Projects
Select Git revision
  • bb5a93aaf25261321db0c499cde7da6ee9d8b164
  • add-visl-stable-frames default
  • add-rkvdec-multicore-support-iommu
  • add-rkvdec-multicore-support-on-v2
  • add-rkvdec-multicore-support
  • add-rkvdec-multicore-support-fix-3-streams
  • add-vdpu381-and-383-to-rkvdec-v3
  • add-rknpu
  • arm-dts-add-rkvdec-v2
  • add-vdpu381-and-383-to-rkvdec-v2
  • add-v4l2-st-lt-ref-set-support-v3
  • add-vdpu381-and-383-to-rkvdec
  • prepare-add-vdpu381-and-383-to-rkvdec
  • add-rkvdec2-driver-vdpu383-hevc
  • add-rkvdec2-driver-vdpu383
  • add-rkvdec2-driver-hevc
  • rkvdec-mov-to-structs
  • av1-fix-postproc-leak
  • add-rkvdec2-driver-iommu-422-10bits
  • patch-queue/jamba/trixie
  • hdmi-fix-1080p-rock4d-6.11
  • upstreaming/rk3576-rock4d-spi-v1
  • v6.3
  • v6.3-rc1
  • v6.2-rc1
  • v6.0-rc1
  • v5.19-rc3
  • v5.19-rc2
  • v5.19-rc1
  • v5.18
  • v5.18-rc7
  • v5.18-rc6
  • v5.18-rc5
  • v5.18-rc4
  • v5.18-rc3
  • v5.18-rc2
  • v5.18-rc1
  • v5.17
  • v5.17-rc8
  • v5.17-rc7
  • v5.17-rc6
  • v5.17-rc5
42 results

ldt.c

Blame
  • Forked from hardware-enablement / Rockchip upstream enablement efforts / linux
    Source project has a limited visibility.
    ldt.c 16.58 KiB
    // SPDX-License-Identifier: GPL-2.0
    /*
     * Copyright (C) 1992 Krishna Balasubramanian and Linus Torvalds
     * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
     * Copyright (C) 2002 Andi Kleen
     *
     * This handles calls from both 32bit and 64bit mode.
     *
     * Lock order:
     *	contex.ldt_usr_sem
     *	  mmap_lock
     *	    context.lock
     */
    
    #include <linux/errno.h>
    #include <linux/gfp.h>
    #include <linux/sched.h>
    #include <linux/string.h>
    #include <linux/mm.h>
    #include <linux/smp.h>
    #include <linux/syscalls.h>
    #include <linux/slab.h>
    #include <linux/vmalloc.h>
    #include <linux/uaccess.h>
    
    #include <asm/ldt.h>
    #include <asm/tlb.h>
    #include <asm/desc.h>
    #include <asm/mmu_context.h>
    #include <asm/pgtable_areas.h>
    
    #include <xen/xen.h>
    
    /* This is a multiple of PAGE_SIZE. */
    #define LDT_SLOT_STRIDE (LDT_ENTRIES * LDT_ENTRY_SIZE)
    
    static inline void *ldt_slot_va(int slot)
    {
    	return (void *)(LDT_BASE_ADDR + LDT_SLOT_STRIDE * slot);
    }
    
    void load_mm_ldt(struct mm_struct *mm)
    {
    	struct ldt_struct *ldt;
    
    	/* READ_ONCE synchronizes with smp_store_release */
    	ldt = READ_ONCE(mm->context.ldt);
    
    	/*
    	 * Any change to mm->context.ldt is followed by an IPI to all
    	 * CPUs with the mm active.  The LDT will not be freed until
    	 * after the IPI is handled by all such CPUs.  This means that,
    	 * if the ldt_struct changes before we return, the values we see
    	 * will be safe, and the new values will be loaded before we run
    	 * any user code.
    	 *
    	 * NB: don't try to convert this to use RCU without extreme care.
    	 * We would still need IRQs off, because we don't want to change
    	 * the local LDT after an IPI loaded a newer value than the one
    	 * that we can see.
    	 */
    
    	if (unlikely(ldt)) {
    		if (static_cpu_has(X86_FEATURE_PTI)) {
    			if (WARN_ON_ONCE((unsigned long)ldt->slot > 1)) {
    				/*
    				 * Whoops -- either the new LDT isn't mapped
    				 * (if slot == -1) or is mapped into a bogus
    				 * slot (if slot > 1).
    				 */
    				clear_LDT();
    				return;
    			}
    
    			/*
    			 * If page table isolation is enabled, ldt->entries
    			 * will not be mapped in the userspace pagetables.
    			 * Tell the CPU to access the LDT through the alias
    			 * at ldt_slot_va(ldt->slot).
    			 */
    			set_ldt(ldt_slot_va(ldt->slot), ldt->nr_entries);
    		} else {
    			set_ldt(ldt->entries, ldt->nr_entries);
    		}
    	} else {
    		clear_LDT();
    	}
    }
    
    void switch_ldt(struct mm_struct *prev, struct mm_struct *next)
    {
    	/*
    	 * Load the LDT if either the old or new mm had an LDT.
    	 *
    	 * An mm will never go from having an LDT to not having an LDT.  Two
    	 * mms never share an LDT, so we don't gain anything by checking to
    	 * see whether the LDT changed.  There's also no guarantee that
    	 * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL,
    	 * then prev->context.ldt will also be non-NULL.
    	 *
    	 * If we really cared, we could optimize the case where prev == next
    	 * and we're exiting lazy mode.  Most of the time, if this happens,
    	 * we don't actually need to reload LDTR, but modify_ldt() is mostly
    	 * used by legacy code and emulators where we don't need this level of
    	 * performance.
    	 *
    	 * This uses | instead of || because it generates better code.
    	 */
    	if (unlikely((unsigned long)prev->context.ldt |
    		     (unsigned long)next->context.ldt))
    		load_mm_ldt(next);
    
    	DEBUG_LOCKS_WARN_ON(preemptible());
    }
    
    static void refresh_ldt_segments(void)
    {
    #ifdef CONFIG_X86_64
    	unsigned short sel;
    
    	/*
    	 * Make sure that the cached DS and ES descriptors match the updated
    	 * LDT.
    	 */
    	savesegment(ds, sel);
    	if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT)
    		loadsegment(ds, sel);
    
    	savesegment(es, sel);
    	if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT)
    		loadsegment(es, sel);
    #endif
    }
    
    /* context.lock is held by the task which issued the smp function call */
    static void flush_ldt(void *__mm)
    {
    	struct mm_struct *mm = __mm;
    
    	if (this_cpu_read(cpu_tlbstate.loaded_mm) != mm)
    		return;
    
    	load_mm_ldt(mm);
    
    	refresh_ldt_segments();
    }
    
    /* The caller must call finalize_ldt_struct on the result. LDT starts zeroed. */
    static struct ldt_struct *alloc_ldt_struct(unsigned int num_entries)
    {
    	struct ldt_struct *new_ldt;
    	unsigned int alloc_size;
    
    	if (num_entries > LDT_ENTRIES)
    		return NULL;
    
    	new_ldt = kmalloc(sizeof(struct ldt_struct), GFP_KERNEL);
    	if (!new_ldt)
    		return NULL;
    
    	BUILD_BUG_ON(LDT_ENTRY_SIZE != sizeof(struct desc_struct));
    	alloc_size = num_entries * LDT_ENTRY_SIZE;
    
    	/*
    	 * Xen is very picky: it requires a page-aligned LDT that has no
    	 * trailing nonzero bytes in any page that contains LDT descriptors.
    	 * Keep it simple: zero the whole allocation and never allocate less
    	 * than PAGE_SIZE.
    	 */
    	if (alloc_size > PAGE_SIZE)
    		new_ldt->entries = vzalloc(alloc_size);
    	else
    		new_ldt->entries = (void *)get_zeroed_page(GFP_KERNEL);
    
    	if (!new_ldt->entries) {
    		kfree(new_ldt);
    		return NULL;
    	}
    
    	/* The new LDT isn't aliased for PTI yet. */
    	new_ldt->slot = -1;
    
    	new_ldt->nr_entries = num_entries;
    	return new_ldt;
    }
    
    #ifdef CONFIG_PAGE_TABLE_ISOLATION
    
    static void do_sanity_check(struct mm_struct *mm,
    			    bool had_kernel_mapping,
    			    bool had_user_mapping)
    {
    	if (mm->context.ldt) {
    		/*
    		 * We already had an LDT.  The top-level entry should already
    		 * have been allocated and synchronized with the usermode
    		 * tables.
    		 */
    		WARN_ON(!had_kernel_mapping);
    		if (boot_cpu_has(X86_FEATURE_PTI))
    			WARN_ON(!had_user_mapping);
    	} else {
    		/*
    		 * This is the first time we're mapping an LDT for this process.
    		 * Sync the pgd to the usermode tables.
    		 */
    		WARN_ON(had_kernel_mapping);
    		if (boot_cpu_has(X86_FEATURE_PTI))
    			WARN_ON(had_user_mapping);
    	}
    }
    
    #ifdef CONFIG_X86_PAE
    
    static pmd_t *pgd_to_pmd_walk(pgd_t *pgd, unsigned long va)
    {
    	p4d_t *p4d;
    	pud_t *pud;
    
    	if (pgd->pgd == 0)
    		return NULL;
    
    	p4d = p4d_offset(pgd, va);
    	if (p4d_none(*p4d))
    		return NULL;
    
    	pud = pud_offset(p4d, va);
    	if (pud_none(*pud))
    		return NULL;
    
    	return pmd_offset(pud, va);
    }
    
    static void map_ldt_struct_to_user(struct mm_struct *mm)
    {
    	pgd_t *k_pgd = pgd_offset(mm, LDT_BASE_ADDR);
    	pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
    	pmd_t *k_pmd, *u_pmd;
    
    	k_pmd = pgd_to_pmd_walk(k_pgd, LDT_BASE_ADDR);
    	u_pmd = pgd_to_pmd_walk(u_pgd, LDT_BASE_ADDR);
    
    	if (boot_cpu_has(X86_FEATURE_PTI) && !mm->context.ldt)
    		set_pmd(u_pmd, *k_pmd);
    }
    
    static void sanity_check_ldt_mapping(struct mm_struct *mm)
    {
    	pgd_t *k_pgd = pgd_offset(mm, LDT_BASE_ADDR);
    	pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
    	bool had_kernel, had_user;
    	pmd_t *k_pmd, *u_pmd;
    
    	k_pmd      = pgd_to_pmd_walk(k_pgd, LDT_BASE_ADDR);
    	u_pmd      = pgd_to_pmd_walk(u_pgd, LDT_BASE_ADDR);
    	had_kernel = (k_pmd->pmd != 0);
    	had_user   = (u_pmd->pmd != 0);
    
    	do_sanity_check(mm, had_kernel, had_user);
    }
    
    #else /* !CONFIG_X86_PAE */
    
    static void map_ldt_struct_to_user(struct mm_struct *mm)
    {
    	pgd_t *pgd = pgd_offset(mm, LDT_BASE_ADDR);
    
    	if (boot_cpu_has(X86_FEATURE_PTI) && !mm->context.ldt)
    		set_pgd(kernel_to_user_pgdp(pgd), *pgd);
    }
    
    static void sanity_check_ldt_mapping(struct mm_struct *mm)
    {
    	pgd_t *pgd = pgd_offset(mm, LDT_BASE_ADDR);
    	bool had_kernel = (pgd->pgd != 0);
    	bool had_user   = (kernel_to_user_pgdp(pgd)->pgd != 0);
    
    	do_sanity_check(mm, had_kernel, had_user);
    }
    
    #endif /* CONFIG_X86_PAE */
    
    /*
     * If PTI is enabled, this maps the LDT into the kernelmode and
     * usermode tables for the given mm.
     */
    static int
    map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot)
    {
    	unsigned long va;
    	bool is_vmalloc;
    	spinlock_t *ptl;
    	int i, nr_pages;
    
    	if (!boot_cpu_has(X86_FEATURE_PTI))
    		return 0;
    
    	/*
    	 * Any given ldt_struct should have map_ldt_struct() called at most
    	 * once.
    	 */
    	WARN_ON(ldt->slot != -1);
    
    	/* Check if the current mappings are sane */
    	sanity_check_ldt_mapping(mm);
    
    	is_vmalloc = is_vmalloc_addr(ldt->entries);
    
    	nr_pages = DIV_ROUND_UP(ldt->nr_entries * LDT_ENTRY_SIZE, PAGE_SIZE);
    
    	for (i = 0; i < nr_pages; i++) {
    		unsigned long offset = i << PAGE_SHIFT;
    		const void *src = (char *)ldt->entries + offset;
    		unsigned long pfn;
    		pgprot_t pte_prot;
    		pte_t pte, *ptep;
    
    		va = (unsigned long)ldt_slot_va(slot) + offset;
    		pfn = is_vmalloc ? vmalloc_to_pfn(src) :
    			page_to_pfn(virt_to_page(src));
    		/*
    		 * Treat the PTI LDT range as a *userspace* range.
    		 * get_locked_pte() will allocate all needed pagetables
    		 * and account for them in this mm.
    		 */
    		ptep = get_locked_pte(mm, va, &ptl);
    		if (!ptep)
    			return -ENOMEM;
    		/*
    		 * Map it RO so the easy to find address is not a primary
    		 * target via some kernel interface which misses a
    		 * permission check.
    		 */
    		pte_prot = __pgprot(__PAGE_KERNEL_RO & ~_PAGE_GLOBAL);
    		/* Filter out unsuppored __PAGE_KERNEL* bits: */
    		pgprot_val(pte_prot) &= __supported_pte_mask;
    		pte = pfn_pte(pfn, pte_prot);
    		set_pte_at(mm, va, ptep, pte);
    		pte_unmap_unlock(ptep, ptl);
    	}
    
    	/* Propagate LDT mapping to the user page-table */
    	map_ldt_struct_to_user(mm);
    
    	ldt->slot = slot;
    	return 0;
    }
    
    static void unmap_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt)
    {
    	unsigned long va;
    	int i, nr_pages;
    
    	if (!ldt)
    		return;
    
    	/* LDT map/unmap is only required for PTI */
    	if (!boot_cpu_has(X86_FEATURE_PTI))
    		return;
    
    	nr_pages = DIV_ROUND_UP(ldt->nr_entries * LDT_ENTRY_SIZE, PAGE_SIZE);
    
    	for (i = 0; i < nr_pages; i++) {
    		unsigned long offset = i << PAGE_SHIFT;
    		spinlock_t *ptl;
    		pte_t *ptep;
    
    		va = (unsigned long)ldt_slot_va(ldt->slot) + offset;
    		ptep = get_locked_pte(mm, va, &ptl);
    		pte_clear(mm, va, ptep);
    		pte_unmap_unlock(ptep, ptl);
    	}
    
    	va = (unsigned long)ldt_slot_va(ldt->slot);
    	flush_tlb_mm_range(mm, va, va + nr_pages * PAGE_SIZE, PAGE_SHIFT, false);
    }
    
    #else /* !CONFIG_PAGE_TABLE_ISOLATION */
    
    static int
    map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot)
    {
    	return 0;
    }
    
    static void unmap_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt)
    {
    }
    #endif /* CONFIG_PAGE_TABLE_ISOLATION */
    
    static void free_ldt_pgtables(struct mm_struct *mm)
    {
    #ifdef CONFIG_PAGE_TABLE_ISOLATION
    	struct mmu_gather tlb;
    	unsigned long start = LDT_BASE_ADDR;
    	unsigned long end = LDT_END_ADDR;
    
    	if (!boot_cpu_has(X86_FEATURE_PTI))
    		return;
    
    	tlb_gather_mmu(&tlb, mm, start, end);
    	free_pgd_range(&tlb, start, end, start, end);
    	tlb_finish_mmu(&tlb, start, end);
    #endif
    }
    
    /* After calling this, the LDT is immutable. */
    static void finalize_ldt_struct(struct ldt_struct *ldt)
    {
    	paravirt_alloc_ldt(ldt->entries, ldt->nr_entries);
    }
    
    static void install_ldt(struct mm_struct *mm, struct ldt_struct *ldt)
    {
    	mutex_lock(&mm->context.lock);
    
    	/* Synchronizes with READ_ONCE in load_mm_ldt. */
    	smp_store_release(&mm->context.ldt, ldt);
    
    	/* Activate the LDT for all CPUs using currents mm. */
    	on_each_cpu_mask(mm_cpumask(mm), flush_ldt, mm, true);
    
    	mutex_unlock(&mm->context.lock);
    }
    
    static void free_ldt_struct(struct ldt_struct *ldt)
    {
    	if (likely(!ldt))
    		return;
    
    	paravirt_free_ldt(ldt->entries, ldt->nr_entries);
    	if (ldt->nr_entries * LDT_ENTRY_SIZE > PAGE_SIZE)
    		vfree_atomic(ldt->entries);
    	else
    		free_page((unsigned long)ldt->entries);
    	kfree(ldt);
    }
    
    /*
     * Called on fork from arch_dup_mmap(). Just copy the current LDT state,
     * the new task is not running, so nothing can be installed.
     */
    int ldt_dup_context(struct mm_struct *old_mm, struct mm_struct *mm)
    {
    	struct ldt_struct *new_ldt;
    	int retval = 0;
    
    	if (!old_mm)
    		return 0;
    
    	mutex_lock(&old_mm->context.lock);
    	if (!old_mm->context.ldt)
    		goto out_unlock;
    
    	new_ldt = alloc_ldt_struct(old_mm->context.ldt->nr_entries);
    	if (!new_ldt) {
    		retval = -ENOMEM;
    		goto out_unlock;
    	}
    
    	memcpy(new_ldt->entries, old_mm->context.ldt->entries,
    	       new_ldt->nr_entries * LDT_ENTRY_SIZE);
    	finalize_ldt_struct(new_ldt);
    
    	retval = map_ldt_struct(mm, new_ldt, 0);
    	if (retval) {
    		free_ldt_pgtables(mm);
    		free_ldt_struct(new_ldt);
    		goto out_unlock;
    	}
    	mm->context.ldt = new_ldt;
    
    out_unlock:
    	mutex_unlock(&old_mm->context.lock);
    	return retval;
    }
    
    /*
     * No need to lock the MM as we are the last user
     *
     * 64bit: Don't touch the LDT register - we're already in the next thread.
     */
    void destroy_context_ldt(struct mm_struct *mm)
    {
    	free_ldt_struct(mm->context.ldt);
    	mm->context.ldt = NULL;
    }
    
    void ldt_arch_exit_mmap(struct mm_struct *mm)
    {
    	free_ldt_pgtables(mm);
    }
    
    static int read_ldt(void __user *ptr, unsigned long bytecount)
    {
    	struct mm_struct *mm = current->mm;
    	unsigned long entries_size;
    	int retval;
    
    	down_read(&mm->context.ldt_usr_sem);
    
    	if (!mm->context.ldt) {
    		retval = 0;
    		goto out_unlock;
    	}
    
    	if (bytecount > LDT_ENTRY_SIZE * LDT_ENTRIES)
    		bytecount = LDT_ENTRY_SIZE * LDT_ENTRIES;
    
    	entries_size = mm->context.ldt->nr_entries * LDT_ENTRY_SIZE;
    	if (entries_size > bytecount)
    		entries_size = bytecount;
    
    	if (copy_to_user(ptr, mm->context.ldt->entries, entries_size)) {
    		retval = -EFAULT;
    		goto out_unlock;
    	}
    
    	if (entries_size != bytecount) {
    		/* Zero-fill the rest and pretend we read bytecount bytes. */
    		if (clear_user(ptr + entries_size, bytecount - entries_size)) {
    			retval = -EFAULT;
    			goto out_unlock;
    		}
    	}
    	retval = bytecount;
    
    out_unlock:
    	up_read(&mm->context.ldt_usr_sem);
    	return retval;
    }
    
    static int read_default_ldt(void __user *ptr, unsigned long bytecount)
    {
    	/* CHECKME: Can we use _one_ random number ? */
    #ifdef CONFIG_X86_32
    	unsigned long size = 5 * sizeof(struct desc_struct);
    #else
    	unsigned long size = 128;
    #endif
    	if (bytecount > size)
    		bytecount = size;
    	if (clear_user(ptr, bytecount))
    		return -EFAULT;
    	return bytecount;
    }
    
    static bool allow_16bit_segments(void)
    {
    	if (!IS_ENABLED(CONFIG_X86_16BIT))
    		return false;
    
    #ifdef CONFIG_XEN_PV
    	/*
    	 * Xen PV does not implement ESPFIX64, which means that 16-bit
    	 * segments will not work correctly.  Until either Xen PV implements
    	 * ESPFIX64 and can signal this fact to the guest or unless someone
    	 * provides compelling evidence that allowing broken 16-bit segments
    	 * is worthwhile, disallow 16-bit segments under Xen PV.
    	 */
    	if (xen_pv_domain()) {
    		pr_info_once("Warning: 16-bit segments do not work correctly in a Xen PV guest\n");
    		return false;
    	}
    #endif
    
    	return true;
    }
    
    static int write_ldt(void __user *ptr, unsigned long bytecount, int oldmode)
    {
    	struct mm_struct *mm = current->mm;
    	struct ldt_struct *new_ldt, *old_ldt;
    	unsigned int old_nr_entries, new_nr_entries;
    	struct user_desc ldt_info;
    	struct desc_struct ldt;
    	int error;
    
    	error = -EINVAL;
    	if (bytecount != sizeof(ldt_info))
    		goto out;
    	error = -EFAULT;
    	if (copy_from_user(&ldt_info, ptr, sizeof(ldt_info)))
    		goto out;
    
    	error = -EINVAL;
    	if (ldt_info.entry_number >= LDT_ENTRIES)
    		goto out;
    	if (ldt_info.contents == 3) {
    		if (oldmode)
    			goto out;
    		if (ldt_info.seg_not_present == 0)
    			goto out;
    	}
    
    	if ((oldmode && !ldt_info.base_addr && !ldt_info.limit) ||
    	    LDT_empty(&ldt_info)) {
    		/* The user wants to clear the entry. */
    		memset(&ldt, 0, sizeof(ldt));
    	} else {
    		if (!ldt_info.seg_32bit && !allow_16bit_segments()) {
    			error = -EINVAL;
    			goto out;
    		}
    
    		fill_ldt(&ldt, &ldt_info);
    		if (oldmode)
    			ldt.avl = 0;
    	}
    
    	if (down_write_killable(&mm->context.ldt_usr_sem))
    		return -EINTR;
    
    	old_ldt       = mm->context.ldt;
    	old_nr_entries = old_ldt ? old_ldt->nr_entries : 0;
    	new_nr_entries = max(ldt_info.entry_number + 1, old_nr_entries);
    
    	error = -ENOMEM;
    	new_ldt = alloc_ldt_struct(new_nr_entries);
    	if (!new_ldt)
    		goto out_unlock;
    
    	if (old_ldt)
    		memcpy(new_ldt->entries, old_ldt->entries, old_nr_entries * LDT_ENTRY_SIZE);
    
    	new_ldt->entries[ldt_info.entry_number] = ldt;
    	finalize_ldt_struct(new_ldt);
    
    	/*
    	 * If we are using PTI, map the new LDT into the userspace pagetables.
    	 * If there is already an LDT, use the other slot so that other CPUs
    	 * will continue to use the old LDT until install_ldt() switches
    	 * them over to the new LDT.
    	 */
    	error = map_ldt_struct(mm, new_ldt, old_ldt ? !old_ldt->slot : 0);
    	if (error) {
    		/*
    		 * This only can fail for the first LDT setup. If an LDT is
    		 * already installed then the PTE page is already
    		 * populated. Mop up a half populated page table.
    		 */
    		if (!WARN_ON_ONCE(old_ldt))
    			free_ldt_pgtables(mm);
    		free_ldt_struct(new_ldt);
    		goto out_unlock;
    	}
    
    	install_ldt(mm, new_ldt);
    	unmap_ldt_struct(mm, old_ldt);
    	free_ldt_struct(old_ldt);
    	error = 0;
    
    out_unlock:
    	up_write(&mm->context.ldt_usr_sem);
    out:
    	return error;
    }
    
    SYSCALL_DEFINE3(modify_ldt, int , func , void __user * , ptr ,
    		unsigned long , bytecount)
    {
    	int ret = -ENOSYS;
    
    	switch (func) {
    	case 0:
    		ret = read_ldt(ptr, bytecount);
    		break;
    	case 1:
    		ret = write_ldt(ptr, bytecount, 1);
    		break;
    	case 2:
    		ret = read_default_ldt(ptr, bytecount);
    		break;
    	case 0x11:
    		ret = write_ldt(ptr, bytecount, 0);
    		break;
    	}
    	/*
    	 * The SYSCALL_DEFINE() macros give us an 'unsigned long'
    	 * return type, but tht ABI for sys_modify_ldt() expects
    	 * 'int'.  This cast gives us an int-sized value in %rax
    	 * for the return code.  The 'unsigned' is necessary so
    	 * the compiler does not try to sign-extend the negative
    	 * return codes into the high half of the register when
    	 * taking the value from int->long.
    	 */
    	return (unsigned int)ret;
    }