Skip to content
Snippets Groups Projects
Select Git revision
  • e15bf88a44d1fcb685754b2868b1cd28927af3aa
  • prepare-add-vdpu381-and-383-to-rkvdec
  • add-vdpu381-and-383-to-rkvdec
  • add-rkvdec2-driver-vdpu383-hevc
  • add-rkvdec2-driver-vdpu383
  • add-rkvdec2-driver-hevc
  • rkvdec-mov-to-structs
  • av1-fix-postproc-leak
  • add-rkvdec2-driver-iommu-422-10bits
  • patch-queue/jamba/trixie
  • hdmi-fix-1080p-rock4d-6.11
  • upstreaming/rk3576-rock4d-spi-v1
  • upstreaming/rk3576-rock4d-support-v5
  • upstreaming/rk3588-hdmi-audio-6
  • upstreaming/rk3576-rock4d-support-v3
  • upstreaming/rk3576-rock4d-support-v1
  • upstreaming/rk3576-rock4d-support
  • add-rkvdec2-driver-iommu
  • upstream/rk3576-rock-4d
  • rk3588-hdmi-audio-2
  • fix-rk3588-i2s-tdm-clocks
  • v6.3
  • v6.3-rc1
  • v6.2-rc1
  • v6.0-rc1
  • v5.19-rc3
  • v5.19-rc2
  • v5.19-rc1
  • v5.18
  • v5.18-rc7
  • v5.18-rc6
  • v5.18-rc5
  • v5.18-rc4
  • v5.18-rc3
  • v5.18-rc2
  • v5.18-rc1
  • v5.17
  • v5.17-rc8
  • v5.17-rc7
  • v5.17-rc6
  • v5.17-rc5
41 results

build-id.c

Blame
  • Forked from hardware-enablement / Rockchip upstream enablement efforts / linux
    Source project has a limited visibility.
    posix-timers.c 27.79 KiB
    /*
     * linux/kernel/posix-timers.c
     *
     *
     * 2002-10-15  Posix Clocks & timers
     *                           by George Anzinger george@mvista.com
     *
     *			     Copyright (C) 2002 2003 by MontaVista Software.
     *
     * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
     *			     Copyright (C) 2004 Boris Hu
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation; either version 2 of the License, or (at
     * your option) any later version.
     *
     * This program is distributed in the hope that it will be useful, but
     * WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
     * General Public License for more details.
    
     * You should have received a copy of the GNU General Public License
     * along with this program; if not, write to the Free Software
     * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
     *
     * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
     */
    
    /* These are all the functions necessary to implement
     * POSIX clocks & timers
     */
    #include <linux/mm.h>
    #include <linux/interrupt.h>
    #include <linux/slab.h>
    #include <linux/time.h>
    #include <linux/mutex.h>
    
    #include <asm/uaccess.h>
    #include <linux/list.h>
    #include <linux/init.h>
    #include <linux/compiler.h>
    #include <linux/idr.h>
    #include <linux/posix-timers.h>
    #include <linux/syscalls.h>
    #include <linux/wait.h>
    #include <linux/workqueue.h>
    #include <linux/module.h>
    
    /*
     * Management arrays for POSIX timers.	 Timers are kept in slab memory
     * Timer ids are allocated by an external routine that keeps track of the
     * id and the timer.  The external interface is:
     *
     * void *idr_find(struct idr *idp, int id);           to find timer_id <id>
     * int idr_get_new(struct idr *idp, void *ptr);       to get a new id and
     *                                                    related it to <ptr>
     * void idr_remove(struct idr *idp, int id);          to release <id>
     * void idr_init(struct idr *idp);                    to initialize <idp>
     *                                                    which we supply.
     * The idr_get_new *may* call slab for more memory so it must not be
     * called under a spin lock.  Likewise idr_remore may release memory
     * (but it may be ok to do this under a lock...).
     * idr_find is just a memory look up and is quite fast.  A -1 return
     * indicates that the requested id does not exist.
     */
    
    /*
     * Lets keep our timers in a slab cache :-)
     */
    static struct kmem_cache *posix_timers_cache;
    static struct idr posix_timers_id;
    static DEFINE_SPINLOCK(idr_lock);
    
    /*
     * we assume that the new SIGEV_THREAD_ID shares no bits with the other
     * SIGEV values.  Here we put out an error if this assumption fails.
     */
    #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
                           ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
    #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
    #endif
    
    
    /*
     * The timer ID is turned into a timer address by idr_find().
     * Verifying a valid ID consists of:
     *
     * a) checking that idr_find() returns other than -1.
     * b) checking that the timer id matches the one in the timer itself.
     * c) that the timer owner is in the callers thread group.
     */
    
    /*
     * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
     *	    to implement others.  This structure defines the various
     *	    clocks and allows the possibility of adding others.	 We
     *	    provide an interface to add clocks to the table and expect
     *	    the "arch" code to add at least one clock that is high
     *	    resolution.	 Here we define the standard CLOCK_REALTIME as a
     *	    1/HZ resolution clock.
     *
     * RESOLUTION: Clock resolution is used to round up timer and interval
     *	    times, NOT to report clock times, which are reported with as
     *	    much resolution as the system can muster.  In some cases this
     *	    resolution may depend on the underlying clock hardware and
     *	    may not be quantifiable until run time, and only then is the
     *	    necessary code is written.	The standard says we should say
     *	    something about this issue in the documentation...
     *
     * FUNCTIONS: The CLOCKs structure defines possible functions to handle
     *	    various clock functions.  For clocks that use the standard
     *	    system timer code these entries should be NULL.  This will
     *	    allow dispatch without the overhead of indirect function
     *	    calls.  CLOCKS that depend on other sources (e.g. WWV or GPS)
     *	    must supply functions here, even if the function just returns
     *	    ENOSYS.  The standard POSIX timer management code assumes the
     *	    following: 1.) The k_itimer struct (sched.h) is used for the
     *	    timer.  2.) The list, it_lock, it_clock, it_id and it_process
     *	    fields are not modified by timer code.
     *
     *          At this time all functions EXCEPT clock_nanosleep can be
     *          redirected by the CLOCKS structure.  Clock_nanosleep is in
     *          there, but the code ignores it.
     *
     * Permissions: It is assumed that the clock_settime() function defined
     *	    for each clock will take care of permission checks.	 Some
     *	    clocks may be set able by any user (i.e. local process
     *	    clocks) others not.	 Currently the only set able clock we
     *	    have is CLOCK_REALTIME and its high res counter part, both of
     *	    which we beg off on and pass to do_sys_settimeofday().
     */
    
    static struct k_clock posix_clocks[MAX_CLOCKS];
    
    /*
     * These ones are defined below.
     */
    static int common_nsleep(const clockid_t, int flags, struct timespec *t,
    			 struct timespec __user *rmtp);
    static void common_timer_get(struct k_itimer *, struct itimerspec *);
    static int common_timer_set(struct k_itimer *, int,
    			    struct itimerspec *, struct itimerspec *);
    static int common_timer_del(struct k_itimer *timer);
    
    static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
    
    static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
    
    static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
    {
    	spin_unlock_irqrestore(&timr->it_lock, flags);
    }
    
    /*
     * Call the k_clock hook function if non-null, or the default function.
     */
    #define CLOCK_DISPATCH(clock, call, arglist) \
     	((clock) < 0 ? posix_cpu_##call arglist : \
     	 (posix_clocks[clock].call != NULL \
     	  ? (*posix_clocks[clock].call) arglist : common_##call arglist))
    
    /*
     * Default clock hook functions when the struct k_clock passed
     * to register_posix_clock leaves a function pointer null.
     *
     * The function common_CALL is the default implementation for
     * the function pointer CALL in struct k_clock.
     */
    
    static inline int common_clock_getres(const clockid_t which_clock,
    				      struct timespec *tp)
    {
    	tp->tv_sec = 0;
    	tp->tv_nsec = posix_clocks[which_clock].res;
    	return 0;
    }
    
    /*
     * Get real time for posix timers
     */
    static int common_clock_get(clockid_t which_clock, struct timespec *tp)
    {
    	ktime_get_real_ts(tp);
    	return 0;
    }
    
    static inline int common_clock_set(const clockid_t which_clock,
    				   struct timespec *tp)
    {
    	return do_sys_settimeofday(tp, NULL);
    }
    
    static int common_timer_create(struct k_itimer *new_timer)
    {
    	hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
    	return 0;
    }
    
    /*
     * Return nonzero if we know a priori this clockid_t value is bogus.
     */
    static inline int invalid_clockid(const clockid_t which_clock)
    {
    	if (which_clock < 0)	/* CPU clock, posix_cpu_* will check it */
    		return 0;
    	if ((unsigned) which_clock >= MAX_CLOCKS)
    		return 1;
    	if (posix_clocks[which_clock].clock_getres != NULL)
    		return 0;
    	if (posix_clocks[which_clock].res != 0)
    		return 0;
    	return 1;
    }
    
    /*
     * Get monotonic time for posix timers
     */
    static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
    {
    	ktime_get_ts(tp);
    	return 0;
    }
    
    /*
     * Initialize everything, well, just everything in Posix clocks/timers ;)
     */
    static __init int init_posix_timers(void)
    {
    	struct k_clock clock_realtime = {
    		.clock_getres = hrtimer_get_res,
    	};
    	struct k_clock clock_monotonic = {
    		.clock_getres = hrtimer_get_res,
    		.clock_get = posix_ktime_get_ts,
    		.clock_set = do_posix_clock_nosettime,
    	};
    
    	register_posix_clock(CLOCK_REALTIME, &clock_realtime);
    	register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
    
    	posix_timers_cache = kmem_cache_create("posix_timers_cache",
    					sizeof (struct k_itimer), 0, SLAB_PANIC,
    					NULL);
    	idr_init(&posix_timers_id);
    	return 0;
    }
    
    __initcall(init_posix_timers);
    
    static void schedule_next_timer(struct k_itimer *timr)
    {
    	struct hrtimer *timer = &timr->it.real.timer;
    
    	if (timr->it.real.interval.tv64 == 0)
    		return;
    
    	timr->it_overrun += (unsigned int) hrtimer_forward(timer,
    						timer->base->get_time(),
    						timr->it.real.interval);
    
    	timr->it_overrun_last = timr->it_overrun;
    	timr->it_overrun = -1;
    	++timr->it_requeue_pending;
    	hrtimer_restart(timer);
    }
    
    /*
     * This function is exported for use by the signal deliver code.  It is
     * called just prior to the info block being released and passes that
     * block to us.  It's function is to update the overrun entry AND to
     * restart the timer.  It should only be called if the timer is to be
     * restarted (i.e. we have flagged this in the sys_private entry of the
     * info block).
     *
     * To protect aginst the timer going away while the interrupt is queued,
     * we require that the it_requeue_pending flag be set.
     */
    void do_schedule_next_timer(struct siginfo *info)
    {
    	struct k_itimer *timr;
    	unsigned long flags;
    
    	timr = lock_timer(info->si_tid, &flags);
    
    	if (timr && timr->it_requeue_pending == info->si_sys_private) {
    		if (timr->it_clock < 0)
    			posix_cpu_timer_schedule(timr);
    		else
    			schedule_next_timer(timr);
    
    		info->si_overrun += timr->it_overrun_last;
    	}
    
    	if (timr)
    		unlock_timer(timr, flags);
    }
    
    int posix_timer_event(struct k_itimer *timr, int si_private)
    {
    	int shared, ret;
    	/*
    	 * FIXME: if ->sigq is queued we can race with
    	 * dequeue_signal()->do_schedule_next_timer().
    	 *
    	 * If dequeue_signal() sees the "right" value of
    	 * si_sys_private it calls do_schedule_next_timer().
    	 * We re-queue ->sigq and drop ->it_lock().
    	 * do_schedule_next_timer() locks the timer
    	 * and re-schedules it while ->sigq is pending.
    	 * Not really bad, but not that we want.
    	 */
    	timr->sigq->info.si_sys_private = si_private;
    
    	shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
    	ret = send_sigqueue(timr->sigq, timr->it_process, shared);
    	/* If we failed to send the signal the timer stops. */
    	return ret > 0;
    }
    EXPORT_SYMBOL_GPL(posix_timer_event);
    
    /*
     * This function gets called when a POSIX.1b interval timer expires.  It
     * is used as a callback from the kernel internal timer.  The
     * run_timer_list code ALWAYS calls with interrupts on.
    
     * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
     */
    static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
    {
    	struct k_itimer *timr;
    	unsigned long flags;
    	int si_private = 0;
    	enum hrtimer_restart ret = HRTIMER_NORESTART;
    
    	timr = container_of(timer, struct k_itimer, it.real.timer);
    	spin_lock_irqsave(&timr->it_lock, flags);
    
    	if (timr->it.real.interval.tv64 != 0)
    		si_private = ++timr->it_requeue_pending;
    
    	if (posix_timer_event(timr, si_private)) {
    		/*
    		 * signal was not sent because of sig_ignor
    		 * we will not get a call back to restart it AND
    		 * it should be restarted.
    		 */
    		if (timr->it.real.interval.tv64 != 0) {
    			ktime_t now = hrtimer_cb_get_time(timer);
    
    			/*
    			 * FIXME: What we really want, is to stop this
    			 * timer completely and restart it in case the
    			 * SIG_IGN is removed. This is a non trivial
    			 * change which involves sighand locking
    			 * (sigh !), which we don't want to do late in
    			 * the release cycle.
    			 *
    			 * For now we just let timers with an interval
    			 * less than a jiffie expire every jiffie to
    			 * avoid softirq starvation in case of SIG_IGN
    			 * and a very small interval, which would put
    			 * the timer right back on the softirq pending
    			 * list. By moving now ahead of time we trick
    			 * hrtimer_forward() to expire the timer
    			 * later, while we still maintain the overrun
    			 * accuracy, but have some inconsistency in
    			 * the timer_gettime() case. This is at least
    			 * better than a starved softirq. A more
    			 * complex fix which solves also another related
    			 * inconsistency is already in the pipeline.
    			 */
    #ifdef CONFIG_HIGH_RES_TIMERS
    			{
    				ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
    
    				if (timr->it.real.interval.tv64 < kj.tv64)
    					now = ktime_add(now, kj);
    			}
    #endif
    			timr->it_overrun += (unsigned int)
    				hrtimer_forward(timer, now,
    						timr->it.real.interval);
    			ret = HRTIMER_RESTART;
    			++timr->it_requeue_pending;
    		}
    	}
    
    	unlock_timer(timr, flags);
    	return ret;
    }
    
    static struct task_struct * good_sigevent(sigevent_t * event)
    {
    	struct task_struct *rtn = current->group_leader;
    
    	if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
    		(!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
    		 !same_thread_group(rtn, current) ||
    		 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
    		return NULL;
    
    	if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
    	    ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
    		return NULL;
    
    	return rtn;
    }
    
    void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
    {
    	if ((unsigned) clock_id >= MAX_CLOCKS) {
    		printk("POSIX clock register failed for clock_id %d\n",
    		       clock_id);
    		return;
    	}
    
    	posix_clocks[clock_id] = *new_clock;
    }
    EXPORT_SYMBOL_GPL(register_posix_clock);
    
    static struct k_itimer * alloc_posix_timer(void)
    {
    	struct k_itimer *tmr;
    	tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
    	if (!tmr)
    		return tmr;
    	if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
    		kmem_cache_free(posix_timers_cache, tmr);
    		tmr = NULL;
    	}
    	memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
    	return tmr;
    }
    
    #define IT_ID_SET	1
    #define IT_ID_NOT_SET	0
    static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
    {
    	if (it_id_set) {
    		unsigned long flags;
    		spin_lock_irqsave(&idr_lock, flags);
    		idr_remove(&posix_timers_id, tmr->it_id);
    		spin_unlock_irqrestore(&idr_lock, flags);
    	}
    	sigqueue_free(tmr->sigq);
    	kmem_cache_free(posix_timers_cache, tmr);
    }
    
    /* Create a POSIX.1b interval timer. */
    
    asmlinkage long
    sys_timer_create(const clockid_t which_clock,
    		 struct sigevent __user *timer_event_spec,
    		 timer_t __user * created_timer_id)
    {
    	struct k_itimer *new_timer;
    	int error, new_timer_id;
    	struct task_struct *process;
    	sigevent_t event;
    	int it_id_set = IT_ID_NOT_SET;
    
    	if (invalid_clockid(which_clock))
    		return -EINVAL;
    
    	new_timer = alloc_posix_timer();
    	if (unlikely(!new_timer))
    		return -EAGAIN;
    
    	spin_lock_init(&new_timer->it_lock);
     retry:
    	if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
    		error = -EAGAIN;
    		goto out;
    	}
    	spin_lock_irq(&idr_lock);
    	error = idr_get_new(&posix_timers_id, (void *) new_timer,
    			    &new_timer_id);
    	spin_unlock_irq(&idr_lock);
    	if (error) {
    		if (error == -EAGAIN)
    			goto retry;
    		/*
    		 * Weird looking, but we return EAGAIN if the IDR is
    		 * full (proper POSIX return value for this)
    		 */
    		error = -EAGAIN;
    		goto out;
    	}
    
    	it_id_set = IT_ID_SET;
    	new_timer->it_id = (timer_t) new_timer_id;
    	new_timer->it_clock = which_clock;
    	new_timer->it_overrun = -1;
    	error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
    	if (error)
    		goto out;
    
    	/*
    	 * return the timer_id now.  The next step is hard to
    	 * back out if there is an error.
    	 */
    	if (copy_to_user(created_timer_id,
    			 &new_timer_id, sizeof (new_timer_id))) {
    		error = -EFAULT;
    		goto out;
    	}
    	if (timer_event_spec) {
    		if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
    			error = -EFAULT;
    			goto out;
    		}
    		rcu_read_lock();
    		process = good_sigevent(&event);
    		if (process)
    			get_task_struct(process);
    		rcu_read_unlock();
    		if (!process) {
    			error = -EINVAL;
    			goto out;
    		}
    	} else {
    		event.sigev_notify = SIGEV_SIGNAL;
    		event.sigev_signo = SIGALRM;
    		event.sigev_value.sival_int = new_timer->it_id;
    		process = current->group_leader;
    		get_task_struct(process);
    	}
    
    	new_timer->it_sigev_notify     = event.sigev_notify;
    	new_timer->sigq->info.si_signo = event.sigev_signo;
    	new_timer->sigq->info.si_value = event.sigev_value;
    	new_timer->sigq->info.si_tid   = new_timer->it_id;
    	new_timer->sigq->info.si_code  = SI_TIMER;
    
    	spin_lock_irq(&current->sighand->siglock);
    	new_timer->it_process = process;
    	list_add(&new_timer->list, &current->signal->posix_timers);
    	spin_unlock_irq(&current->sighand->siglock);
    
    	return 0;
     	/*
    	 * In the case of the timer belonging to another task, after
    	 * the task is unlocked, the timer is owned by the other task
    	 * and may cease to exist at any time.  Don't use or modify
    	 * new_timer after the unlock call.
    	 */
    out:
    	release_posix_timer(new_timer, it_id_set);
    	return error;
    }
    
    /*
     * Locking issues: We need to protect the result of the id look up until
     * we get the timer locked down so it is not deleted under us.  The
     * removal is done under the idr spinlock so we use that here to bridge
     * the find to the timer lock.  To avoid a dead lock, the timer id MUST
     * be release with out holding the timer lock.
     */
    static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags)
    {
    	struct k_itimer *timr;
    	/*
    	 * Watch out here.  We do a irqsave on the idr_lock and pass the
    	 * flags part over to the timer lock.  Must not let interrupts in
    	 * while we are moving the lock.
    	 */
    
    	spin_lock_irqsave(&idr_lock, *flags);
    	timr = (struct k_itimer *) idr_find(&posix_timers_id, (int) timer_id);
    	if (timr) {
    		spin_lock(&timr->it_lock);
    
    		if ((timr->it_id != timer_id) || !(timr->it_process) ||
    				!same_thread_group(timr->it_process, current)) {
    			spin_unlock(&timr->it_lock);
    			spin_unlock_irqrestore(&idr_lock, *flags);
    			timr = NULL;
    		} else
    			spin_unlock(&idr_lock);
    	} else
    		spin_unlock_irqrestore(&idr_lock, *flags);
    
    	return timr;
    }
    
    /*
     * Get the time remaining on a POSIX.1b interval timer.  This function
     * is ALWAYS called with spin_lock_irq on the timer, thus it must not
     * mess with irq.
     *
     * We have a couple of messes to clean up here.  First there is the case
     * of a timer that has a requeue pending.  These timers should appear to
     * be in the timer list with an expiry as if we were to requeue them
     * now.
     *
     * The second issue is the SIGEV_NONE timer which may be active but is
     * not really ever put in the timer list (to save system resources).
     * This timer may be expired, and if so, we will do it here.  Otherwise
     * it is the same as a requeue pending timer WRT to what we should
     * report.
     */
    static void
    common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
    {
    	ktime_t now, remaining, iv;
    	struct hrtimer *timer = &timr->it.real.timer;
    
    	memset(cur_setting, 0, sizeof(struct itimerspec));
    
    	iv = timr->it.real.interval;
    
    	/* interval timer ? */
    	if (iv.tv64)
    		cur_setting->it_interval = ktime_to_timespec(iv);
    	else if (!hrtimer_active(timer) &&
    		 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
    		return;
    
    	now = timer->base->get_time();
    
    	/*
    	 * When a requeue is pending or this is a SIGEV_NONE
    	 * timer move the expiry time forward by intervals, so
    	 * expiry is > now.
    	 */
    	if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
    	    (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
    		timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
    
    	remaining = ktime_sub(timer->expires, now);
    	/* Return 0 only, when the timer is expired and not pending */
    	if (remaining.tv64 <= 0) {
    		/*
    		 * A single shot SIGEV_NONE timer must return 0, when
    		 * it is expired !
    		 */
    		if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
    			cur_setting->it_value.tv_nsec = 1;
    	} else
    		cur_setting->it_value = ktime_to_timespec(remaining);
    }
    
    /* Get the time remaining on a POSIX.1b interval timer. */
    asmlinkage long
    sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
    {
    	struct k_itimer *timr;
    	struct itimerspec cur_setting;
    	unsigned long flags;
    
    	timr = lock_timer(timer_id, &flags);
    	if (!timr)
    		return -EINVAL;
    
    	CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
    
    	unlock_timer(timr, flags);
    
    	if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
    		return -EFAULT;
    
    	return 0;
    }
    
    /*
     * Get the number of overruns of a POSIX.1b interval timer.  This is to
     * be the overrun of the timer last delivered.  At the same time we are
     * accumulating overruns on the next timer.  The overrun is frozen when
     * the signal is delivered, either at the notify time (if the info block
     * is not queued) or at the actual delivery time (as we are informed by
     * the call back to do_schedule_next_timer().  So all we need to do is
     * to pick up the frozen overrun.
     */
    asmlinkage long
    sys_timer_getoverrun(timer_t timer_id)
    {
    	struct k_itimer *timr;
    	int overrun;
    	unsigned long flags;
    
    	timr = lock_timer(timer_id, &flags);
    	if (!timr)
    		return -EINVAL;
    
    	overrun = timr->it_overrun_last;
    	unlock_timer(timr, flags);
    
    	return overrun;
    }
    
    /* Set a POSIX.1b interval timer. */
    /* timr->it_lock is taken. */
    static int
    common_timer_set(struct k_itimer *timr, int flags,
    		 struct itimerspec *new_setting, struct itimerspec *old_setting)
    {
    	struct hrtimer *timer = &timr->it.real.timer;
    	enum hrtimer_mode mode;
    
    	if (old_setting)
    		common_timer_get(timr, old_setting);
    
    	/* disable the timer */
    	timr->it.real.interval.tv64 = 0;
    	/*
    	 * careful here.  If smp we could be in the "fire" routine which will
    	 * be spinning as we hold the lock.  But this is ONLY an SMP issue.
    	 */
    	if (hrtimer_try_to_cancel(timer) < 0)
    		return TIMER_RETRY;
    
    	timr->it_requeue_pending = (timr->it_requeue_pending + 2) & 
    		~REQUEUE_PENDING;
    	timr->it_overrun_last = 0;
    
    	/* switch off the timer when it_value is zero */
    	if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
    		return 0;
    
    	mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
    	hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
    	timr->it.real.timer.function = posix_timer_fn;
    
    	timer->expires = timespec_to_ktime(new_setting->it_value);
    
    	/* Convert interval */
    	timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
    
    	/* SIGEV_NONE timers are not queued ! See common_timer_get */
    	if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
    		/* Setup correct expiry time for relative timers */
    		if (mode == HRTIMER_MODE_REL) {
    			timer->expires =
    				ktime_add_safe(timer->expires,
    					       timer->base->get_time());
    		}
    		return 0;
    	}
    
    	hrtimer_start(timer, timer->expires, mode);
    	return 0;
    }
    
    /* Set a POSIX.1b interval timer */
    asmlinkage long
    sys_timer_settime(timer_t timer_id, int flags,
    		  const struct itimerspec __user *new_setting,
    		  struct itimerspec __user *old_setting)
    {
    	struct k_itimer *timr;
    	struct itimerspec new_spec, old_spec;
    	int error = 0;
    	unsigned long flag;
    	struct itimerspec *rtn = old_setting ? &old_spec : NULL;
    
    	if (!new_setting)
    		return -EINVAL;
    
    	if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
    		return -EFAULT;
    
    	if (!timespec_valid(&new_spec.it_interval) ||
    	    !timespec_valid(&new_spec.it_value))
    		return -EINVAL;
    retry:
    	timr = lock_timer(timer_id, &flag);
    	if (!timr)
    		return -EINVAL;
    
    	error = CLOCK_DISPATCH(timr->it_clock, timer_set,
    			       (timr, flags, &new_spec, rtn));
    
    	unlock_timer(timr, flag);
    	if (error == TIMER_RETRY) {
    		rtn = NULL;	// We already got the old time...
    		goto retry;
    	}
    
    	if (old_setting && !error &&
    	    copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
    		error = -EFAULT;
    
    	return error;
    }
    
    static inline int common_timer_del(struct k_itimer *timer)
    {
    	timer->it.real.interval.tv64 = 0;
    
    	if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
    		return TIMER_RETRY;
    	return 0;
    }
    
    static inline int timer_delete_hook(struct k_itimer *timer)
    {
    	return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
    }
    
    /* Delete a POSIX.1b interval timer. */
    asmlinkage long
    sys_timer_delete(timer_t timer_id)
    {
    	struct k_itimer *timer;
    	unsigned long flags;
    
    retry_delete:
    	timer = lock_timer(timer_id, &flags);
    	if (!timer)
    		return -EINVAL;
    
    	if (timer_delete_hook(timer) == TIMER_RETRY) {
    		unlock_timer(timer, flags);
    		goto retry_delete;
    	}
    
    	spin_lock(&current->sighand->siglock);
    	list_del(&timer->list);
    	spin_unlock(&current->sighand->siglock);
    	/*
    	 * This keeps any tasks waiting on the spin lock from thinking
    	 * they got something (see the lock code above).
    	 */
    	put_task_struct(timer->it_process);
    	timer->it_process = NULL;
    
    	unlock_timer(timer, flags);
    	release_posix_timer(timer, IT_ID_SET);
    	return 0;
    }
    
    /*
     * return timer owned by the process, used by exit_itimers
     */
    static void itimer_delete(struct k_itimer *timer)
    {
    	unsigned long flags;
    
    retry_delete:
    	spin_lock_irqsave(&timer->it_lock, flags);
    
    	if (timer_delete_hook(timer) == TIMER_RETRY) {
    		unlock_timer(timer, flags);
    		goto retry_delete;
    	}
    	list_del(&timer->list);
    	/*
    	 * This keeps any tasks waiting on the spin lock from thinking
    	 * they got something (see the lock code above).
    	 */
    	put_task_struct(timer->it_process);
    	timer->it_process = NULL;
    
    	unlock_timer(timer, flags);
    	release_posix_timer(timer, IT_ID_SET);
    }
    
    /*
     * This is called by do_exit or de_thread, only when there are no more
     * references to the shared signal_struct.
     */
    void exit_itimers(struct signal_struct *sig)
    {
    	struct k_itimer *tmr;
    
    	while (!list_empty(&sig->posix_timers)) {
    		tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
    		itimer_delete(tmr);
    	}
    }
    
    /* Not available / possible... functions */
    int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
    {
    	return -EINVAL;
    }
    EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
    
    int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
    			       struct timespec *t, struct timespec __user *r)
    {
    #ifndef ENOTSUP
    	return -EOPNOTSUPP;	/* aka ENOTSUP in userland for POSIX */
    #else  /*  parisc does define it separately.  */
    	return -ENOTSUP;
    #endif
    }
    EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
    
    asmlinkage long sys_clock_settime(const clockid_t which_clock,
    				  const struct timespec __user *tp)
    {
    	struct timespec new_tp;
    
    	if (invalid_clockid(which_clock))
    		return -EINVAL;
    	if (copy_from_user(&new_tp, tp, sizeof (*tp)))
    		return -EFAULT;
    
    	return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
    }
    
    asmlinkage long
    sys_clock_gettime(const clockid_t which_clock, struct timespec __user *tp)
    {
    	struct timespec kernel_tp;
    	int error;
    
    	if (invalid_clockid(which_clock))
    		return -EINVAL;
    	error = CLOCK_DISPATCH(which_clock, clock_get,
    			       (which_clock, &kernel_tp));
    	if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
    		error = -EFAULT;
    
    	return error;
    
    }
    
    asmlinkage long
    sys_clock_getres(const clockid_t which_clock, struct timespec __user *tp)
    {
    	struct timespec rtn_tp;
    	int error;
    
    	if (invalid_clockid(which_clock))
    		return -EINVAL;
    
    	error = CLOCK_DISPATCH(which_clock, clock_getres,
    			       (which_clock, &rtn_tp));
    
    	if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
    		error = -EFAULT;
    	}
    
    	return error;
    }
    
    /*
     * nanosleep for monotonic and realtime clocks
     */
    static int common_nsleep(const clockid_t which_clock, int flags,
    			 struct timespec *tsave, struct timespec __user *rmtp)
    {
    	return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
    				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
    				 which_clock);
    }
    
    asmlinkage long
    sys_clock_nanosleep(const clockid_t which_clock, int flags,
    		    const struct timespec __user *rqtp,
    		    struct timespec __user *rmtp)
    {
    	struct timespec t;
    
    	if (invalid_clockid(which_clock))
    		return -EINVAL;
    
    	if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
    		return -EFAULT;
    
    	if (!timespec_valid(&t))
    		return -EINVAL;
    
    	return CLOCK_DISPATCH(which_clock, nsleep,
    			      (which_clock, flags, &t, rmtp));
    }
    
    /*
     * nanosleep_restart for monotonic and realtime clocks
     */
    static int common_nsleep_restart(struct restart_block *restart_block)
    {
    	return hrtimer_nanosleep_restart(restart_block);
    }
    
    /*
     * This will restart clock_nanosleep. This is required only by
     * compat_clock_nanosleep_restart for now.
     */
    long
    clock_nanosleep_restart(struct restart_block *restart_block)
    {
    	clockid_t which_clock = restart_block->arg0;
    
    	return CLOCK_DISPATCH(which_clock, nsleep_restart,
    			      (restart_block));
    }