Skip to content
Snippets Groups Projects
Select Git revision
  • ee0b31a25a010116f44fca6c96f4516d417793dd
  • add-vdpu381-and-383-to-rkvdec
  • prepare-add-vdpu381-and-383-to-rkvdec
  • add-rkvdec2-driver-vdpu383-hevc
  • add-rkvdec2-driver-vdpu383
  • add-rkvdec2-driver-hevc
  • rkvdec-mov-to-structs
  • av1-fix-postproc-leak
  • add-rkvdec2-driver-iommu-422-10bits
  • patch-queue/jamba/trixie
  • hdmi-fix-1080p-rock4d-6.11
  • upstreaming/rk3576-rock4d-spi-v1
  • upstreaming/rk3576-rock4d-support-v5
  • upstreaming/rk3588-hdmi-audio-6
  • upstreaming/rk3576-rock4d-support-v3
  • upstreaming/rk3576-rock4d-support-v1
  • upstreaming/rk3576-rock4d-support
  • add-rkvdec2-driver-iommu
  • upstream/rk3576-rock-4d
  • rk3588-hdmi-audio-2
  • fix-rk3588-i2s-tdm-clocks
  • v6.3
  • v6.3-rc1
  • v6.2-rc1
  • v6.0-rc1
  • v5.19-rc3
  • v5.19-rc2
  • v5.19-rc1
  • v5.18
  • v5.18-rc7
  • v5.18-rc6
  • v5.18-rc5
  • v5.18-rc4
  • v5.18-rc3
  • v5.18-rc2
  • v5.18-rc1
  • v5.17
  • v5.17-rc8
  • v5.17-rc7
  • v5.17-rc6
  • v5.17-rc5
41 results

trusted.c

Blame
  • Forked from hardware-enablement / Rockchip upstream enablement efforts / linux
    Source project has a limited visibility.
    trusted.c 27.97 KiB
    /*
     * Copyright (C) 2010 IBM Corporation
     *
     * Author:
     * David Safford <safford@us.ibm.com>
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation, version 2 of the License.
     *
     * See Documentation/security/keys-trusted-encrypted.txt
     */
    
    #include <linux/uaccess.h>
    #include <linux/module.h>
    #include <linux/init.h>
    #include <linux/slab.h>
    #include <linux/parser.h>
    #include <linux/string.h>
    #include <linux/err.h>
    #include <keys/user-type.h>
    #include <keys/trusted-type.h>
    #include <linux/key-type.h>
    #include <linux/rcupdate.h>
    #include <linux/crypto.h>
    #include <crypto/hash.h>
    #include <crypto/sha.h>
    #include <linux/capability.h>
    #include <linux/tpm.h>
    #include <linux/tpm_command.h>
    
    #include "trusted.h"
    
    static const char hmac_alg[] = "hmac(sha1)";
    static const char hash_alg[] = "sha1";
    
    struct sdesc {
    	struct shash_desc shash;
    	char ctx[];
    };
    
    static struct crypto_shash *hashalg;
    static struct crypto_shash *hmacalg;
    
    static struct sdesc *init_sdesc(struct crypto_shash *alg)
    {
    	struct sdesc *sdesc;
    	int size;
    
    	size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
    	sdesc = kmalloc(size, GFP_KERNEL);
    	if (!sdesc)
    		return ERR_PTR(-ENOMEM);
    	sdesc->shash.tfm = alg;
    	sdesc->shash.flags = 0x0;
    	return sdesc;
    }
    
    static int TSS_sha1(const unsigned char *data, unsigned int datalen,
    		    unsigned char *digest)
    {
    	struct sdesc *sdesc;
    	int ret;
    
    	sdesc = init_sdesc(hashalg);
    	if (IS_ERR(sdesc)) {
    		pr_info("trusted_key: can't alloc %s\n", hash_alg);
    		return PTR_ERR(sdesc);
    	}
    
    	ret = crypto_shash_digest(&sdesc->shash, data, datalen, digest);
    	kfree(sdesc);
    	return ret;
    }
    
    static int TSS_rawhmac(unsigned char *digest, const unsigned char *key,
    		       unsigned int keylen, ...)
    {
    	struct sdesc *sdesc;
    	va_list argp;
    	unsigned int dlen;
    	unsigned char *data;
    	int ret;
    
    	sdesc = init_sdesc(hmacalg);
    	if (IS_ERR(sdesc)) {
    		pr_info("trusted_key: can't alloc %s\n", hmac_alg);
    		return PTR_ERR(sdesc);
    	}
    
    	ret = crypto_shash_setkey(hmacalg, key, keylen);
    	if (ret < 0)
    		goto out;
    	ret = crypto_shash_init(&sdesc->shash);
    	if (ret < 0)
    		goto out;
    
    	va_start(argp, keylen);
    	for (;;) {
    		dlen = va_arg(argp, unsigned int);
    		if (dlen == 0)
    			break;
    		data = va_arg(argp, unsigned char *);
    		if (data == NULL) {
    			ret = -EINVAL;
    			break;
    		}
    		ret = crypto_shash_update(&sdesc->shash, data, dlen);
    		if (ret < 0)
    			break;
    	}
    	va_end(argp);
    	if (!ret)
    		ret = crypto_shash_final(&sdesc->shash, digest);
    out:
    	kfree(sdesc);
    	return ret;
    }
    
    /*
     * calculate authorization info fields to send to TPM
     */
    static int TSS_authhmac(unsigned char *digest, const unsigned char *key,
    			unsigned int keylen, unsigned char *h1,
    			unsigned char *h2, unsigned char h3, ...)
    {
    	unsigned char paramdigest[SHA1_DIGEST_SIZE];
    	struct sdesc *sdesc;
    	unsigned int dlen;
    	unsigned char *data;
    	unsigned char c;
    	int ret;
    	va_list argp;
    
    	sdesc = init_sdesc(hashalg);
    	if (IS_ERR(sdesc)) {
    		pr_info("trusted_key: can't alloc %s\n", hash_alg);
    		return PTR_ERR(sdesc);
    	}
    
    	c = h3;
    	ret = crypto_shash_init(&sdesc->shash);
    	if (ret < 0)
    		goto out;
    	va_start(argp, h3);
    	for (;;) {
    		dlen = va_arg(argp, unsigned int);
    		if (dlen == 0)
    			break;
    		data = va_arg(argp, unsigned char *);
    		if (!data) {
    			ret = -EINVAL;
    			break;
    		}
    		ret = crypto_shash_update(&sdesc->shash, data, dlen);
    		if (ret < 0)
    			break;
    	}
    	va_end(argp);
    	if (!ret)
    		ret = crypto_shash_final(&sdesc->shash, paramdigest);
    	if (!ret)
    		ret = TSS_rawhmac(digest, key, keylen, SHA1_DIGEST_SIZE,
    				  paramdigest, TPM_NONCE_SIZE, h1,
    				  TPM_NONCE_SIZE, h2, 1, &c, 0, 0);
    out:
    	kfree(sdesc);
    	return ret;
    }
    
    /*
     * verify the AUTH1_COMMAND (Seal) result from TPM
     */
    static int TSS_checkhmac1(unsigned char *buffer,
    			  const uint32_t command,
    			  const unsigned char *ononce,
    			  const unsigned char *key,
    			  unsigned int keylen, ...)
    {
    	uint32_t bufsize;
    	uint16_t tag;
    	uint32_t ordinal;
    	uint32_t result;
    	unsigned char *enonce;
    	unsigned char *continueflag;
    	unsigned char *authdata;
    	unsigned char testhmac[SHA1_DIGEST_SIZE];
    	unsigned char paramdigest[SHA1_DIGEST_SIZE];
    	struct sdesc *sdesc;
    	unsigned int dlen;
    	unsigned int dpos;
    	va_list argp;
    	int ret;
    
    	bufsize = LOAD32(buffer, TPM_SIZE_OFFSET);
    	tag = LOAD16(buffer, 0);
    	ordinal = command;
    	result = LOAD32N(buffer, TPM_RETURN_OFFSET);
    	if (tag == TPM_TAG_RSP_COMMAND)
    		return 0;
    	if (tag != TPM_TAG_RSP_AUTH1_COMMAND)
    		return -EINVAL;
    	authdata = buffer + bufsize - SHA1_DIGEST_SIZE;
    	continueflag = authdata - 1;
    	enonce = continueflag - TPM_NONCE_SIZE;
    
    	sdesc = init_sdesc(hashalg);
    	if (IS_ERR(sdesc)) {
    		pr_info("trusted_key: can't alloc %s\n", hash_alg);
    		return PTR_ERR(sdesc);
    	}
    	ret = crypto_shash_init(&sdesc->shash);
    	if (ret < 0)
    		goto out;
    	ret = crypto_shash_update(&sdesc->shash, (const u8 *)&result,
    				  sizeof result);
    	if (ret < 0)
    		goto out;
    	ret = crypto_shash_update(&sdesc->shash, (const u8 *)&ordinal,
    				  sizeof ordinal);
    	if (ret < 0)
    		goto out;
    	va_start(argp, keylen);
    	for (;;) {
    		dlen = va_arg(argp, unsigned int);
    		if (dlen == 0)
    			break;
    		dpos = va_arg(argp, unsigned int);
    		ret = crypto_shash_update(&sdesc->shash, buffer + dpos, dlen);
    		if (ret < 0)
    			break;
    	}
    	va_end(argp);
    	if (!ret)
    		ret = crypto_shash_final(&sdesc->shash, paramdigest);
    	if (ret < 0)
    		goto out;
    
    	ret = TSS_rawhmac(testhmac, key, keylen, SHA1_DIGEST_SIZE, paramdigest,
    			  TPM_NONCE_SIZE, enonce, TPM_NONCE_SIZE, ononce,
    			  1, continueflag, 0, 0);
    	if (ret < 0)
    		goto out;
    
    	if (memcmp(testhmac, authdata, SHA1_DIGEST_SIZE))
    		ret = -EINVAL;
    out:
    	kfree(sdesc);
    	return ret;
    }
    
    /*
     * verify the AUTH2_COMMAND (unseal) result from TPM
     */
    static int TSS_checkhmac2(unsigned char *buffer,
    			  const uint32_t command,
    			  const unsigned char *ononce,
    			  const unsigned char *key1,
    			  unsigned int keylen1,
    			  const unsigned char *key2,
    			  unsigned int keylen2, ...)
    {
    	uint32_t bufsize;
    	uint16_t tag;
    	uint32_t ordinal;
    	uint32_t result;
    	unsigned char *enonce1;
    	unsigned char *continueflag1;
    	unsigned char *authdata1;
    	unsigned char *enonce2;
    	unsigned char *continueflag2;
    	unsigned char *authdata2;
    	unsigned char testhmac1[SHA1_DIGEST_SIZE];
    	unsigned char testhmac2[SHA1_DIGEST_SIZE];
    	unsigned char paramdigest[SHA1_DIGEST_SIZE];
    	struct sdesc *sdesc;
    	unsigned int dlen;
    	unsigned int dpos;
    	va_list argp;
    	int ret;
    
    	bufsize = LOAD32(buffer, TPM_SIZE_OFFSET);
    	tag = LOAD16(buffer, 0);
    	ordinal = command;
    	result = LOAD32N(buffer, TPM_RETURN_OFFSET);
    
    	if (tag == TPM_TAG_RSP_COMMAND)
    		return 0;
    	if (tag != TPM_TAG_RSP_AUTH2_COMMAND)
    		return -EINVAL;
    	authdata1 = buffer + bufsize - (SHA1_DIGEST_SIZE + 1
    			+ SHA1_DIGEST_SIZE + SHA1_DIGEST_SIZE);
    	authdata2 = buffer + bufsize - (SHA1_DIGEST_SIZE);
    	continueflag1 = authdata1 - 1;
    	continueflag2 = authdata2 - 1;
    	enonce1 = continueflag1 - TPM_NONCE_SIZE;
    	enonce2 = continueflag2 - TPM_NONCE_SIZE;
    
    	sdesc = init_sdesc(hashalg);
    	if (IS_ERR(sdesc)) {
    		pr_info("trusted_key: can't alloc %s\n", hash_alg);
    		return PTR_ERR(sdesc);
    	}
    	ret = crypto_shash_init(&sdesc->shash);
    	if (ret < 0)
    		goto out;
    	ret = crypto_shash_update(&sdesc->shash, (const u8 *)&result,
    				  sizeof result);
    	if (ret < 0)
    		goto out;
    	ret = crypto_shash_update(&sdesc->shash, (const u8 *)&ordinal,
    				  sizeof ordinal);
    	if (ret < 0)
    		goto out;
    
    	va_start(argp, keylen2);
    	for (;;) {
    		dlen = va_arg(argp, unsigned int);
    		if (dlen == 0)
    			break;
    		dpos = va_arg(argp, unsigned int);
    		ret = crypto_shash_update(&sdesc->shash, buffer + dpos, dlen);
    		if (ret < 0)
    			break;
    	}
    	va_end(argp);
    	if (!ret)
    		ret = crypto_shash_final(&sdesc->shash, paramdigest);
    	if (ret < 0)
    		goto out;
    
    	ret = TSS_rawhmac(testhmac1, key1, keylen1, SHA1_DIGEST_SIZE,
    			  paramdigest, TPM_NONCE_SIZE, enonce1,
    			  TPM_NONCE_SIZE, ononce, 1, continueflag1, 0, 0);
    	if (ret < 0)
    		goto out;
    	if (memcmp(testhmac1, authdata1, SHA1_DIGEST_SIZE)) {
    		ret = -EINVAL;
    		goto out;
    	}
    	ret = TSS_rawhmac(testhmac2, key2, keylen2, SHA1_DIGEST_SIZE,
    			  paramdigest, TPM_NONCE_SIZE, enonce2,
    			  TPM_NONCE_SIZE, ononce, 1, continueflag2, 0, 0);
    	if (ret < 0)
    		goto out;
    	if (memcmp(testhmac2, authdata2, SHA1_DIGEST_SIZE))
    		ret = -EINVAL;
    out:
    	kfree(sdesc);
    	return ret;
    }
    
    /*
     * For key specific tpm requests, we will generate and send our
     * own TPM command packets using the drivers send function.
     */
    static int trusted_tpm_send(const u32 chip_num, unsigned char *cmd,
    			    size_t buflen)
    {
    	int rc;
    
    	dump_tpm_buf(cmd);
    	rc = tpm_send(chip_num, cmd, buflen);
    	dump_tpm_buf(cmd);
    	if (rc > 0)
    		/* Can't return positive return codes values to keyctl */
    		rc = -EPERM;
    	return rc;
    }
    
    /*
     * get a random value from TPM
     */
    static int tpm_get_random(struct tpm_buf *tb, unsigned char *buf, uint32_t len)
    {
    	int ret;
    
    	INIT_BUF(tb);
    	store16(tb, TPM_TAG_RQU_COMMAND);
    	store32(tb, TPM_GETRANDOM_SIZE);
    	store32(tb, TPM_ORD_GETRANDOM);
    	store32(tb, len);
    	ret = trusted_tpm_send(TPM_ANY_NUM, tb->data, sizeof tb->data);
    	if (!ret)
    		memcpy(buf, tb->data + TPM_GETRANDOM_SIZE, len);
    	return ret;
    }
    
    static int my_get_random(unsigned char *buf, int len)
    {
    	struct tpm_buf *tb;
    	int ret;
    
    	tb = kmalloc(sizeof *tb, GFP_KERNEL);
    	if (!tb)
    		return -ENOMEM;
    	ret = tpm_get_random(tb, buf, len);
    
    	kfree(tb);
    	return ret;
    }
    
    /*
     * Lock a trusted key, by extending a selected PCR.
     *
     * Prevents a trusted key that is sealed to PCRs from being accessed.
     * This uses the tpm driver's extend function.
     */
    static int pcrlock(const int pcrnum)
    {
    	unsigned char hash[SHA1_DIGEST_SIZE];
    	int ret;
    
    	if (!capable(CAP_SYS_ADMIN))
    		return -EPERM;
    	ret = my_get_random(hash, SHA1_DIGEST_SIZE);
    	if (ret < 0)
    		return ret;
    	return tpm_pcr_extend(TPM_ANY_NUM, pcrnum, hash) ? -EINVAL : 0;
    }
    
    /*
     * Create an object specific authorisation protocol (OSAP) session
     */
    static int osap(struct tpm_buf *tb, struct osapsess *s,
    		const unsigned char *key, uint16_t type, uint32_t handle)
    {
    	unsigned char enonce[TPM_NONCE_SIZE];
    	unsigned char ononce[TPM_NONCE_SIZE];
    	int ret;
    
    	ret = tpm_get_random(tb, ononce, TPM_NONCE_SIZE);
    	if (ret < 0)
    		return ret;
    
    	INIT_BUF(tb);
    	store16(tb, TPM_TAG_RQU_COMMAND);
    	store32(tb, TPM_OSAP_SIZE);
    	store32(tb, TPM_ORD_OSAP);
    	store16(tb, type);
    	store32(tb, handle);
    	storebytes(tb, ononce, TPM_NONCE_SIZE);
    
    	ret = trusted_tpm_send(TPM_ANY_NUM, tb->data, MAX_BUF_SIZE);
    	if (ret < 0)
    		return ret;
    
    	s->handle = LOAD32(tb->data, TPM_DATA_OFFSET);
    	memcpy(s->enonce, &(tb->data[TPM_DATA_OFFSET + sizeof(uint32_t)]),
    	       TPM_NONCE_SIZE);
    	memcpy(enonce, &(tb->data[TPM_DATA_OFFSET + sizeof(uint32_t) +
    				  TPM_NONCE_SIZE]), TPM_NONCE_SIZE);
    	return TSS_rawhmac(s->secret, key, SHA1_DIGEST_SIZE, TPM_NONCE_SIZE,
    			   enonce, TPM_NONCE_SIZE, ononce, 0, 0);
    }
    
    /*
     * Create an object independent authorisation protocol (oiap) session
     */
    static int oiap(struct tpm_buf *tb, uint32_t *handle, unsigned char *nonce)
    {
    	int ret;
    
    	INIT_BUF(tb);
    	store16(tb, TPM_TAG_RQU_COMMAND);
    	store32(tb, TPM_OIAP_SIZE);
    	store32(tb, TPM_ORD_OIAP);
    	ret = trusted_tpm_send(TPM_ANY_NUM, tb->data, MAX_BUF_SIZE);
    	if (ret < 0)
    		return ret;
    
    	*handle = LOAD32(tb->data, TPM_DATA_OFFSET);
    	memcpy(nonce, &tb->data[TPM_DATA_OFFSET + sizeof(uint32_t)],
    	       TPM_NONCE_SIZE);
    	return 0;
    }
    
    struct tpm_digests {
    	unsigned char encauth[SHA1_DIGEST_SIZE];
    	unsigned char pubauth[SHA1_DIGEST_SIZE];
    	unsigned char xorwork[SHA1_DIGEST_SIZE * 2];
    	unsigned char xorhash[SHA1_DIGEST_SIZE];
    	unsigned char nonceodd[TPM_NONCE_SIZE];
    };
    
    /*
     * Have the TPM seal(encrypt) the trusted key, possibly based on
     * Platform Configuration Registers (PCRs). AUTH1 for sealing key.
     */
    static int tpm_seal(struct tpm_buf *tb, uint16_t keytype,
    		    uint32_t keyhandle, const unsigned char *keyauth,
    		    const unsigned char *data, uint32_t datalen,
    		    unsigned char *blob, uint32_t *bloblen,
    		    const unsigned char *blobauth,
    		    const unsigned char *pcrinfo, uint32_t pcrinfosize)
    {
    	struct osapsess sess;
    	struct tpm_digests *td;
    	unsigned char cont;
    	uint32_t ordinal;
    	uint32_t pcrsize;
    	uint32_t datsize;
    	int sealinfosize;
    	int encdatasize;
    	int storedsize;
    	int ret;
    	int i;
    
    	/* alloc some work space for all the hashes */
    	td = kmalloc(sizeof *td, GFP_KERNEL);
    	if (!td)
    		return -ENOMEM;
    
    	/* get session for sealing key */
    	ret = osap(tb, &sess, keyauth, keytype, keyhandle);
    	if (ret < 0)
    		goto out;
    	dump_sess(&sess);
    
    	/* calculate encrypted authorization value */
    	memcpy(td->xorwork, sess.secret, SHA1_DIGEST_SIZE);
    	memcpy(td->xorwork + SHA1_DIGEST_SIZE, sess.enonce, SHA1_DIGEST_SIZE);
    	ret = TSS_sha1(td->xorwork, SHA1_DIGEST_SIZE * 2, td->xorhash);
    	if (ret < 0)
    		goto out;
    
    	ret = tpm_get_random(tb, td->nonceodd, TPM_NONCE_SIZE);
    	if (ret < 0)
    		goto out;
    	ordinal = htonl(TPM_ORD_SEAL);
    	datsize = htonl(datalen);
    	pcrsize = htonl(pcrinfosize);
    	cont = 0;
    
    	/* encrypt data authorization key */
    	for (i = 0; i < SHA1_DIGEST_SIZE; ++i)
    		td->encauth[i] = td->xorhash[i] ^ blobauth[i];
    
    	/* calculate authorization HMAC value */
    	if (pcrinfosize == 0) {
    		/* no pcr info specified */
    		ret = TSS_authhmac(td->pubauth, sess.secret, SHA1_DIGEST_SIZE,
    				   sess.enonce, td->nonceodd, cont,
    				   sizeof(uint32_t), &ordinal, SHA1_DIGEST_SIZE,
    				   td->encauth, sizeof(uint32_t), &pcrsize,
    				   sizeof(uint32_t), &datsize, datalen, data, 0,
    				   0);
    	} else {
    		/* pcr info specified */
    		ret = TSS_authhmac(td->pubauth, sess.secret, SHA1_DIGEST_SIZE,
    				   sess.enonce, td->nonceodd, cont,
    				   sizeof(uint32_t), &ordinal, SHA1_DIGEST_SIZE,
    				   td->encauth, sizeof(uint32_t), &pcrsize,
    				   pcrinfosize, pcrinfo, sizeof(uint32_t),
    				   &datsize, datalen, data, 0, 0);
    	}
    	if (ret < 0)
    		goto out;
    
    	/* build and send the TPM request packet */
    	INIT_BUF(tb);
    	store16(tb, TPM_TAG_RQU_AUTH1_COMMAND);
    	store32(tb, TPM_SEAL_SIZE + pcrinfosize + datalen);
    	store32(tb, TPM_ORD_SEAL);
    	store32(tb, keyhandle);
    	storebytes(tb, td->encauth, SHA1_DIGEST_SIZE);
    	store32(tb, pcrinfosize);
    	storebytes(tb, pcrinfo, pcrinfosize);
    	store32(tb, datalen);
    	storebytes(tb, data, datalen);
    	store32(tb, sess.handle);
    	storebytes(tb, td->nonceodd, TPM_NONCE_SIZE);
    	store8(tb, cont);
    	storebytes(tb, td->pubauth, SHA1_DIGEST_SIZE);
    
    	ret = trusted_tpm_send(TPM_ANY_NUM, tb->data, MAX_BUF_SIZE);
    	if (ret < 0)
    		goto out;
    
    	/* calculate the size of the returned Blob */
    	sealinfosize = LOAD32(tb->data, TPM_DATA_OFFSET + sizeof(uint32_t));
    	encdatasize = LOAD32(tb->data, TPM_DATA_OFFSET + sizeof(uint32_t) +
    			     sizeof(uint32_t) + sealinfosize);
    	storedsize = sizeof(uint32_t) + sizeof(uint32_t) + sealinfosize +
    	    sizeof(uint32_t) + encdatasize;
    
    	/* check the HMAC in the response */
    	ret = TSS_checkhmac1(tb->data, ordinal, td->nonceodd, sess.secret,
    			     SHA1_DIGEST_SIZE, storedsize, TPM_DATA_OFFSET, 0,
    			     0);
    
    	/* copy the returned blob to caller */
    	if (!ret) {
    		memcpy(blob, tb->data + TPM_DATA_OFFSET, storedsize);
    		*bloblen = storedsize;
    	}
    out:
    	kfree(td);
    	return ret;
    }
    
    /*
     * use the AUTH2_COMMAND form of unseal, to authorize both key and blob
     */
    static int tpm_unseal(struct tpm_buf *tb,
    		      uint32_t keyhandle, const unsigned char *keyauth,
    		      const unsigned char *blob, int bloblen,
    		      const unsigned char *blobauth,
    		      unsigned char *data, unsigned int *datalen)
    {
    	unsigned char nonceodd[TPM_NONCE_SIZE];
    	unsigned char enonce1[TPM_NONCE_SIZE];
    	unsigned char enonce2[TPM_NONCE_SIZE];
    	unsigned char authdata1[SHA1_DIGEST_SIZE];
    	unsigned char authdata2[SHA1_DIGEST_SIZE];
    	uint32_t authhandle1 = 0;
    	uint32_t authhandle2 = 0;
    	unsigned char cont = 0;
    	uint32_t ordinal;
    	uint32_t keyhndl;
    	int ret;
    
    	/* sessions for unsealing key and data */
    	ret = oiap(tb, &authhandle1, enonce1);
    	if (ret < 0) {
    		pr_info("trusted_key: oiap failed (%d)\n", ret);
    		return ret;
    	}
    	ret = oiap(tb, &authhandle2, enonce2);
    	if (ret < 0) {
    		pr_info("trusted_key: oiap failed (%d)\n", ret);
    		return ret;
    	}
    
    	ordinal = htonl(TPM_ORD_UNSEAL);
    	keyhndl = htonl(SRKHANDLE);
    	ret = tpm_get_random(tb, nonceodd, TPM_NONCE_SIZE);
    	if (ret < 0) {
    		pr_info("trusted_key: tpm_get_random failed (%d)\n", ret);
    		return ret;
    	}
    	ret = TSS_authhmac(authdata1, keyauth, TPM_NONCE_SIZE,
    			   enonce1, nonceodd, cont, sizeof(uint32_t),
    			   &ordinal, bloblen, blob, 0, 0);
    	if (ret < 0)
    		return ret;
    	ret = TSS_authhmac(authdata2, blobauth, TPM_NONCE_SIZE,
    			   enonce2, nonceodd, cont, sizeof(uint32_t),
    			   &ordinal, bloblen, blob, 0, 0);
    	if (ret < 0)
    		return ret;
    
    	/* build and send TPM request packet */
    	INIT_BUF(tb);
    	store16(tb, TPM_TAG_RQU_AUTH2_COMMAND);
    	store32(tb, TPM_UNSEAL_SIZE + bloblen);
    	store32(tb, TPM_ORD_UNSEAL);
    	store32(tb, keyhandle);
    	storebytes(tb, blob, bloblen);
    	store32(tb, authhandle1);
    	storebytes(tb, nonceodd, TPM_NONCE_SIZE);
    	store8(tb, cont);
    	storebytes(tb, authdata1, SHA1_DIGEST_SIZE);
    	store32(tb, authhandle2);
    	storebytes(tb, nonceodd, TPM_NONCE_SIZE);
    	store8(tb, cont);
    	storebytes(tb, authdata2, SHA1_DIGEST_SIZE);
    
    	ret = trusted_tpm_send(TPM_ANY_NUM, tb->data, MAX_BUF_SIZE);
    	if (ret < 0) {
    		pr_info("trusted_key: authhmac failed (%d)\n", ret);
    		return ret;
    	}
    
    	*datalen = LOAD32(tb->data, TPM_DATA_OFFSET);
    	ret = TSS_checkhmac2(tb->data, ordinal, nonceodd,
    			     keyauth, SHA1_DIGEST_SIZE,
    			     blobauth, SHA1_DIGEST_SIZE,
    			     sizeof(uint32_t), TPM_DATA_OFFSET,
    			     *datalen, TPM_DATA_OFFSET + sizeof(uint32_t), 0,
    			     0);
    	if (ret < 0) {
    		pr_info("trusted_key: TSS_checkhmac2 failed (%d)\n", ret);
    		return ret;
    	}
    	memcpy(data, tb->data + TPM_DATA_OFFSET + sizeof(uint32_t), *datalen);
    	return 0;
    }
    
    /*
     * Have the TPM seal(encrypt) the symmetric key
     */
    static int key_seal(struct trusted_key_payload *p,
    		    struct trusted_key_options *o)
    {
    	struct tpm_buf *tb;
    	int ret;
    
    	tb = kzalloc(sizeof *tb, GFP_KERNEL);
    	if (!tb)
    		return -ENOMEM;
    
    	/* include migratable flag at end of sealed key */
    	p->key[p->key_len] = p->migratable;
    
    	ret = tpm_seal(tb, o->keytype, o->keyhandle, o->keyauth,
    		       p->key, p->key_len + 1, p->blob, &p->blob_len,
    		       o->blobauth, o->pcrinfo, o->pcrinfo_len);
    	if (ret < 0)
    		pr_info("trusted_key: srkseal failed (%d)\n", ret);
    
    	kfree(tb);
    	return ret;
    }
    
    /*
     * Have the TPM unseal(decrypt) the symmetric key
     */
    static int key_unseal(struct trusted_key_payload *p,
    		      struct trusted_key_options *o)
    {
    	struct tpm_buf *tb;
    	int ret;
    
    	tb = kzalloc(sizeof *tb, GFP_KERNEL);
    	if (!tb)
    		return -ENOMEM;
    
    	ret = tpm_unseal(tb, o->keyhandle, o->keyauth, p->blob, p->blob_len,
    			 o->blobauth, p->key, &p->key_len);
    	if (ret < 0)
    		pr_info("trusted_key: srkunseal failed (%d)\n", ret);
    	else
    		/* pull migratable flag out of sealed key */
    		p->migratable = p->key[--p->key_len];
    
    	kfree(tb);
    	return ret;
    }
    
    enum {
    	Opt_err = -1,
    	Opt_new, Opt_load, Opt_update,
    	Opt_keyhandle, Opt_keyauth, Opt_blobauth,
    	Opt_pcrinfo, Opt_pcrlock, Opt_migratable
    };
    
    static const match_table_t key_tokens = {
    	{Opt_new, "new"},
    	{Opt_load, "load"},
    	{Opt_update, "update"},
    	{Opt_keyhandle, "keyhandle=%s"},
    	{Opt_keyauth, "keyauth=%s"},
    	{Opt_blobauth, "blobauth=%s"},
    	{Opt_pcrinfo, "pcrinfo=%s"},
    	{Opt_pcrlock, "pcrlock=%s"},
    	{Opt_migratable, "migratable=%s"},
    	{Opt_err, NULL}
    };
    
    /* can have zero or more token= options */
    static int getoptions(char *c, struct trusted_key_payload *pay,
    		      struct trusted_key_options *opt)
    {
    	substring_t args[MAX_OPT_ARGS];
    	char *p = c;
    	int token;
    	int res;
    	unsigned long handle;
    	unsigned long lock;
    
    	while ((p = strsep(&c, " \t"))) {
    		if (*p == '\0' || *p == ' ' || *p == '\t')
    			continue;
    		token = match_token(p, key_tokens, args);
    
    		switch (token) {
    		case Opt_pcrinfo:
    			opt->pcrinfo_len = strlen(args[0].from) / 2;
    			if (opt->pcrinfo_len > MAX_PCRINFO_SIZE)
    				return -EINVAL;
    			res = hex2bin(opt->pcrinfo, args[0].from,
    				      opt->pcrinfo_len);
    			if (res < 0)
    				return -EINVAL;
    			break;
    		case Opt_keyhandle:
    			res = strict_strtoul(args[0].from, 16, &handle);
    			if (res < 0)
    				return -EINVAL;
    			opt->keytype = SEAL_keytype;
    			opt->keyhandle = handle;
    			break;
    		case Opt_keyauth:
    			if (strlen(args[0].from) != 2 * SHA1_DIGEST_SIZE)
    				return -EINVAL;
    			res = hex2bin(opt->keyauth, args[0].from,
    				      SHA1_DIGEST_SIZE);
    			if (res < 0)
    				return -EINVAL;
    			break;
    		case Opt_blobauth:
    			if (strlen(args[0].from) != 2 * SHA1_DIGEST_SIZE)
    				return -EINVAL;
    			res = hex2bin(opt->blobauth, args[0].from,
    				      SHA1_DIGEST_SIZE);
    			if (res < 0)
    				return -EINVAL;
    			break;
    		case Opt_migratable:
    			if (*args[0].from == '0')
    				pay->migratable = 0;
    			else
    				return -EINVAL;
    			break;
    		case Opt_pcrlock:
    			res = strict_strtoul(args[0].from, 10, &lock);
    			if (res < 0)
    				return -EINVAL;
    			opt->pcrlock = lock;
    			break;
    		default:
    			return -EINVAL;
    		}
    	}
    	return 0;
    }
    
    /*
     * datablob_parse - parse the keyctl data and fill in the
     * 		    payload and options structures
     *
     * On success returns 0, otherwise -EINVAL.
     */
    static int datablob_parse(char *datablob, struct trusted_key_payload *p,
    			  struct trusted_key_options *o)
    {
    	substring_t args[MAX_OPT_ARGS];
    	long keylen;
    	int ret = -EINVAL;
    	int key_cmd;
    	char *c;
    
    	/* main command */
    	c = strsep(&datablob, " \t");
    	if (!c)
    		return -EINVAL;
    	key_cmd = match_token(c, key_tokens, args);
    	switch (key_cmd) {
    	case Opt_new:
    		/* first argument is key size */
    		c = strsep(&datablob, " \t");
    		if (!c)
    			return -EINVAL;
    		ret = strict_strtol(c, 10, &keylen);
    		if (ret < 0 || keylen < MIN_KEY_SIZE || keylen > MAX_KEY_SIZE)
    			return -EINVAL;
    		p->key_len = keylen;
    		ret = getoptions(datablob, p, o);
    		if (ret < 0)
    			return ret;
    		ret = Opt_new;
    		break;
    	case Opt_load:
    		/* first argument is sealed blob */
    		c = strsep(&datablob, " \t");
    		if (!c)
    			return -EINVAL;
    		p->blob_len = strlen(c) / 2;
    		if (p->blob_len > MAX_BLOB_SIZE)
    			return -EINVAL;
    		ret = hex2bin(p->blob, c, p->blob_len);
    		if (ret < 0)
    			return -EINVAL;
    		ret = getoptions(datablob, p, o);
    		if (ret < 0)
    			return ret;
    		ret = Opt_load;
    		break;
    	case Opt_update:
    		/* all arguments are options */
    		ret = getoptions(datablob, p, o);
    		if (ret < 0)
    			return ret;
    		ret = Opt_update;
    		break;
    	case Opt_err:
    		return -EINVAL;
    		break;
    	}
    	return ret;
    }
    
    static struct trusted_key_options *trusted_options_alloc(void)
    {
    	struct trusted_key_options *options;
    
    	options = kzalloc(sizeof *options, GFP_KERNEL);
    	if (options) {
    		/* set any non-zero defaults */
    		options->keytype = SRK_keytype;
    		options->keyhandle = SRKHANDLE;
    	}
    	return options;
    }
    
    static struct trusted_key_payload *trusted_payload_alloc(struct key *key)
    {
    	struct trusted_key_payload *p = NULL;
    	int ret;
    
    	ret = key_payload_reserve(key, sizeof *p);
    	if (ret < 0)
    		return p;
    	p = kzalloc(sizeof *p, GFP_KERNEL);
    	if (p)
    		p->migratable = 1; /* migratable by default */
    	return p;
    }
    
    /*
     * trusted_instantiate - create a new trusted key
     *
     * Unseal an existing trusted blob or, for a new key, get a
     * random key, then seal and create a trusted key-type key,
     * adding it to the specified keyring.
     *
     * On success, return 0. Otherwise return errno.
     */
    static int trusted_instantiate(struct key *key, const void *data,
    			       size_t datalen)
    {
    	struct trusted_key_payload *payload = NULL;
    	struct trusted_key_options *options = NULL;
    	char *datablob;
    	int ret = 0;
    	int key_cmd;
    
    	if (datalen <= 0 || datalen > 32767 || !data)
    		return -EINVAL;
    
    	datablob = kmalloc(datalen + 1, GFP_KERNEL);
    	if (!datablob)
    		return -ENOMEM;
    	memcpy(datablob, data, datalen);
    	datablob[datalen] = '\0';
    
    	options = trusted_options_alloc();
    	if (!options) {
    		ret = -ENOMEM;
    		goto out;
    	}
    	payload = trusted_payload_alloc(key);
    	if (!payload) {
    		ret = -ENOMEM;
    		goto out;
    	}
    
    	key_cmd = datablob_parse(datablob, payload, options);
    	if (key_cmd < 0) {
    		ret = key_cmd;
    		goto out;
    	}
    
    	dump_payload(payload);
    	dump_options(options);
    
    	switch (key_cmd) {
    	case Opt_load:
    		ret = key_unseal(payload, options);
    		dump_payload(payload);
    		dump_options(options);
    		if (ret < 0)
    			pr_info("trusted_key: key_unseal failed (%d)\n", ret);
    		break;
    	case Opt_new:
    		ret = my_get_random(payload->key, payload->key_len);
    		if (ret < 0) {
    			pr_info("trusted_key: key_create failed (%d)\n", ret);
    			goto out;
    		}
    		ret = key_seal(payload, options);
    		if (ret < 0)
    			pr_info("trusted_key: key_seal failed (%d)\n", ret);
    		break;
    	default:
    		ret = -EINVAL;
    		goto out;
    	}
    	if (!ret && options->pcrlock)
    		ret = pcrlock(options->pcrlock);
    out:
    	kfree(datablob);
    	kfree(options);
    	if (!ret)
    		rcu_assign_keypointer(key, payload);
    	else
    		kfree(payload);
    	return ret;
    }
    
    static void trusted_rcu_free(struct rcu_head *rcu)
    {
    	struct trusted_key_payload *p;
    
    	p = container_of(rcu, struct trusted_key_payload, rcu);
    	memset(p->key, 0, p->key_len);
    	kfree(p);
    }
    
    /*
     * trusted_update - reseal an existing key with new PCR values
     */
    static int trusted_update(struct key *key, const void *data, size_t datalen)
    {
    	struct trusted_key_payload *p = key->payload.data;
    	struct trusted_key_payload *new_p;
    	struct trusted_key_options *new_o;
    	char *datablob;
    	int ret = 0;
    
    	if (!p->migratable)
    		return -EPERM;
    	if (datalen <= 0 || datalen > 32767 || !data)
    		return -EINVAL;
    
    	datablob = kmalloc(datalen + 1, GFP_KERNEL);
    	if (!datablob)
    		return -ENOMEM;
    	new_o = trusted_options_alloc();
    	if (!new_o) {
    		ret = -ENOMEM;
    		goto out;
    	}
    	new_p = trusted_payload_alloc(key);
    	if (!new_p) {
    		ret = -ENOMEM;
    		goto out;
    	}
    
    	memcpy(datablob, data, datalen);
    	datablob[datalen] = '\0';
    	ret = datablob_parse(datablob, new_p, new_o);
    	if (ret != Opt_update) {
    		ret = -EINVAL;
    		kfree(new_p);
    		goto out;
    	}
    	/* copy old key values, and reseal with new pcrs */
    	new_p->migratable = p->migratable;
    	new_p->key_len = p->key_len;
    	memcpy(new_p->key, p->key, p->key_len);
    	dump_payload(p);
    	dump_payload(new_p);
    
    	ret = key_seal(new_p, new_o);
    	if (ret < 0) {
    		pr_info("trusted_key: key_seal failed (%d)\n", ret);
    		kfree(new_p);
    		goto out;
    	}
    	if (new_o->pcrlock) {
    		ret = pcrlock(new_o->pcrlock);
    		if (ret < 0) {
    			pr_info("trusted_key: pcrlock failed (%d)\n", ret);
    			kfree(new_p);
    			goto out;
    		}
    	}
    	rcu_assign_keypointer(key, new_p);
    	call_rcu(&p->rcu, trusted_rcu_free);
    out:
    	kfree(datablob);
    	kfree(new_o);
    	return ret;
    }
    
    /*
     * trusted_read - copy the sealed blob data to userspace in hex.
     * On success, return to userspace the trusted key datablob size.
     */
    static long trusted_read(const struct key *key, char __user *buffer,
    			 size_t buflen)
    {
    	struct trusted_key_payload *p;
    	char *ascii_buf;
    	char *bufp;
    	int i;
    
    	p = rcu_dereference_key(key);
    	if (!p)
    		return -EINVAL;
    	if (!buffer || buflen <= 0)
    		return 2 * p->blob_len;
    	ascii_buf = kmalloc(2 * p->blob_len, GFP_KERNEL);
    	if (!ascii_buf)
    		return -ENOMEM;
    
    	bufp = ascii_buf;
    	for (i = 0; i < p->blob_len; i++)
    		bufp = hex_byte_pack(bufp, p->blob[i]);
    	if ((copy_to_user(buffer, ascii_buf, 2 * p->blob_len)) != 0) {
    		kfree(ascii_buf);
    		return -EFAULT;
    	}
    	kfree(ascii_buf);
    	return 2 * p->blob_len;
    }
    
    /*
     * trusted_destroy - before freeing the key, clear the decrypted data
     */
    static void trusted_destroy(struct key *key)
    {
    	struct trusted_key_payload *p = key->payload.data;
    
    	if (!p)
    		return;
    	memset(p->key, 0, p->key_len);
    	kfree(key->payload.data);
    }
    
    struct key_type key_type_trusted = {
    	.name = "trusted",
    	.instantiate = trusted_instantiate,
    	.update = trusted_update,
    	.match = user_match,
    	.destroy = trusted_destroy,
    	.describe = user_describe,
    	.read = trusted_read,
    };
    
    EXPORT_SYMBOL_GPL(key_type_trusted);
    
    static void trusted_shash_release(void)
    {
    	if (hashalg)
    		crypto_free_shash(hashalg);
    	if (hmacalg)
    		crypto_free_shash(hmacalg);
    }
    
    static int __init trusted_shash_alloc(void)
    {
    	int ret;
    
    	hmacalg = crypto_alloc_shash(hmac_alg, 0, CRYPTO_ALG_ASYNC);
    	if (IS_ERR(hmacalg)) {
    		pr_info("trusted_key: could not allocate crypto %s\n",
    			hmac_alg);
    		return PTR_ERR(hmacalg);
    	}
    
    	hashalg = crypto_alloc_shash(hash_alg, 0, CRYPTO_ALG_ASYNC);
    	if (IS_ERR(hashalg)) {
    		pr_info("trusted_key: could not allocate crypto %s\n",
    			hash_alg);
    		ret = PTR_ERR(hashalg);
    		goto hashalg_fail;
    	}
    
    	return 0;
    
    hashalg_fail:
    	crypto_free_shash(hmacalg);
    	return ret;
    }
    
    static int __init init_trusted(void)
    {
    	int ret;
    
    	ret = trusted_shash_alloc();
    	if (ret < 0)
    		return ret;
    	ret = register_key_type(&key_type_trusted);
    	if (ret < 0)
    		trusted_shash_release();
    	return ret;
    }
    
    static void __exit cleanup_trusted(void)
    {
    	trusted_shash_release();
    	unregister_key_type(&key_type_trusted);
    }
    
    late_initcall(init_trusted);
    module_exit(cleanup_trusted);
    
    MODULE_LICENSE("GPL");