Skip to content
Snippets Groups Projects
Select Git revision
  • 61b6e67171c602cf6451e4928c9cdcc24c57a485
  • master default
  • virtio-camera
  • venus
  • venus-rebased
  • virgl-blob-fixes
  • staging
  • stable-6.1
  • stable-6.0
  • stable-6.0-staging
  • stable-5.0
  • stable-4.2
  • stable-4.1
  • stable-4.0
  • stable-3.1
  • stable-3.0
  • stable-2.12
  • stable-2.11
  • stable-2.10
  • stable-2.9
  • stable-2.8
  • v7.1.0-rc2
  • v7.1.0-rc1
  • v7.1.0-rc0
  • v7.0.0
  • v7.0.0-rc4
  • v7.0.0-rc3
  • v7.0.0-rc2
  • v7.0.0-rc1
  • v7.0.0-rc0
  • v6.1.1
  • v6.2.0
  • v6.2.0-rc4
  • v6.2.0-rc3
  • v6.2.0-rc2
  • v6.2.0-rc1
  • v6.2.0-rc0
  • v6.0.1
  • v6.1.0
  • v6.1.0-rc4
  • v6.1.0-rc3
41 results

block.c

Blame
  • fs-writeback.c 66.56 KiB
    /*
     * fs/fs-writeback.c
     *
     * Copyright (C) 2002, Linus Torvalds.
     *
     * Contains all the functions related to writing back and waiting
     * upon dirty inodes against superblocks, and writing back dirty
     * pages against inodes.  ie: data writeback.  Writeout of the
     * inode itself is not handled here.
     *
     * 10Apr2002	Andrew Morton
     *		Split out of fs/inode.c
     *		Additions for address_space-based writeback
     */
    
    #include <linux/kernel.h>
    #include <linux/export.h>
    #include <linux/spinlock.h>
    #include <linux/slab.h>
    #include <linux/sched.h>
    #include <linux/fs.h>
    #include <linux/mm.h>
    #include <linux/pagemap.h>
    #include <linux/kthread.h>
    #include <linux/writeback.h>
    #include <linux/blkdev.h>
    #include <linux/backing-dev.h>
    #include <linux/tracepoint.h>
    #include <linux/device.h>
    #include <linux/memcontrol.h>
    #include "internal.h"
    
    /*
     * 4MB minimal write chunk size
     */
    #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_CACHE_SHIFT - 10))
    
    struct wb_completion {
    	atomic_t		cnt;
    };
    
    /*
     * Passed into wb_writeback(), essentially a subset of writeback_control
     */
    struct wb_writeback_work {
    	long nr_pages;
    	struct super_block *sb;
    	unsigned long *older_than_this;
    	enum writeback_sync_modes sync_mode;
    	unsigned int tagged_writepages:1;
    	unsigned int for_kupdate:1;
    	unsigned int range_cyclic:1;
    	unsigned int for_background:1;
    	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
    	unsigned int auto_free:1;	/* free on completion */
    	enum wb_reason reason;		/* why was writeback initiated? */
    
    	struct list_head list;		/* pending work list */
    	struct wb_completion *done;	/* set if the caller waits */
    };
    
    /*
     * If one wants to wait for one or more wb_writeback_works, each work's
     * ->done should be set to a wb_completion defined using the following
     * macro.  Once all work items are issued with wb_queue_work(), the caller
     * can wait for the completion of all using wb_wait_for_completion().  Work
     * items which are waited upon aren't freed automatically on completion.
     */
    #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
    	struct wb_completion cmpl = {					\
    		.cnt		= ATOMIC_INIT(1),			\
    	}
    
    
    /*
     * If an inode is constantly having its pages dirtied, but then the
     * updates stop dirtytime_expire_interval seconds in the past, it's
     * possible for the worst case time between when an inode has its
     * timestamps updated and when they finally get written out to be two
     * dirtytime_expire_intervals.  We set the default to 12 hours (in
     * seconds), which means most of the time inodes will have their
     * timestamps written to disk after 12 hours, but in the worst case a
     * few inodes might not their timestamps updated for 24 hours.
     */
    unsigned int dirtytime_expire_interval = 12 * 60 * 60;
    
    static inline struct inode *wb_inode(struct list_head *head)
    {
    	return list_entry(head, struct inode, i_io_list);
    }
    
    /*
     * Include the creation of the trace points after defining the
     * wb_writeback_work structure and inline functions so that the definition
     * remains local to this file.
     */
    #define CREATE_TRACE_POINTS
    #include <trace/events/writeback.h>
    
    EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
    
    static bool wb_io_lists_populated(struct bdi_writeback *wb)
    {
    	if (wb_has_dirty_io(wb)) {
    		return false;
    	} else {
    		set_bit(WB_has_dirty_io, &wb->state);
    		WARN_ON_ONCE(!wb->avg_write_bandwidth);
    		atomic_long_add(wb->avg_write_bandwidth,
    				&wb->bdi->tot_write_bandwidth);
    		return true;
    	}
    }
    
    static void wb_io_lists_depopulated(struct bdi_writeback *wb)
    {
    	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
    	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
    		clear_bit(WB_has_dirty_io, &wb->state);
    		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
    					&wb->bdi->tot_write_bandwidth) < 0);
    	}
    }
    
    /**
     * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
     * @inode: inode to be moved
     * @wb: target bdi_writeback
     * @head: one of @wb->b_{dirty|io|more_io}
     *
     * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
     * Returns %true if @inode is the first occupant of the !dirty_time IO
     * lists; otherwise, %false.
     */
    static bool inode_io_list_move_locked(struct inode *inode,
    				      struct bdi_writeback *wb,
    				      struct list_head *head)
    {
    	assert_spin_locked(&wb->list_lock);
    
    	list_move(&inode->i_io_list, head);
    
    	/* dirty_time doesn't count as dirty_io until expiration */
    	if (head != &wb->b_dirty_time)
    		return wb_io_lists_populated(wb);
    
    	wb_io_lists_depopulated(wb);
    	return false;
    }
    
    /**
     * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
     * @inode: inode to be removed
     * @wb: bdi_writeback @inode is being removed from
     *
     * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
     * clear %WB_has_dirty_io if all are empty afterwards.
     */
    static void inode_io_list_del_locked(struct inode *inode,
    				     struct bdi_writeback *wb)
    {
    	assert_spin_locked(&wb->list_lock);
    
    	list_del_init(&inode->i_io_list);
    	wb_io_lists_depopulated(wb);
    }
    
    static void wb_wakeup(struct bdi_writeback *wb)
    {
    	spin_lock_bh(&wb->work_lock);
    	if (test_bit(WB_registered, &wb->state))
    		mod_delayed_work(bdi_wq, &wb->dwork, 0);
    	spin_unlock_bh(&wb->work_lock);
    }
    
    static void wb_queue_work(struct bdi_writeback *wb,
    			  struct wb_writeback_work *work)
    {
    	trace_writeback_queue(wb, work);
    
    	spin_lock_bh(&wb->work_lock);
    	if (!test_bit(WB_registered, &wb->state))
    		goto out_unlock;
    	if (work->done)
    		atomic_inc(&work->done->cnt);
    	list_add_tail(&work->list, &wb->work_list);
    	mod_delayed_work(bdi_wq, &wb->dwork, 0);
    out_unlock:
    	spin_unlock_bh(&wb->work_lock);
    }
    
    /**
     * wb_wait_for_completion - wait for completion of bdi_writeback_works
     * @bdi: bdi work items were issued to
     * @done: target wb_completion
     *
     * Wait for one or more work items issued to @bdi with their ->done field
     * set to @done, which should have been defined with
     * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
     * work items are completed.  Work items which are waited upon aren't freed
     * automatically on completion.
     */
    static void wb_wait_for_completion(struct backing_dev_info *bdi,
    				   struct wb_completion *done)
    {
    	atomic_dec(&done->cnt);		/* put down the initial count */
    	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
    }
    
    #ifdef CONFIG_CGROUP_WRITEBACK
    
    /* parameters for foreign inode detection, see wb_detach_inode() */
    #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
    #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
    #define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
    #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
    
    #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
    #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
    					/* each slot's duration is 2s / 16 */
    #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
    					/* if foreign slots >= 8, switch */
    #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
    					/* one round can affect upto 5 slots */
    
    void __inode_attach_wb(struct inode *inode, struct page *page)
    {
    	struct backing_dev_info *bdi = inode_to_bdi(inode);
    	struct bdi_writeback *wb = NULL;
    
    	if (inode_cgwb_enabled(inode)) {
    		struct cgroup_subsys_state *memcg_css;
    
    		if (page) {
    			memcg_css = mem_cgroup_css_from_page(page);
    			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
    		} else {
    			/* must pin memcg_css, see wb_get_create() */
    			memcg_css = task_get_css(current, memory_cgrp_id);
    			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
    			css_put(memcg_css);
    		}
    	}
    
    	if (!wb)
    		wb = &bdi->wb;
    
    	/*
    	 * There may be multiple instances of this function racing to
    	 * update the same inode.  Use cmpxchg() to tell the winner.
    	 */
    	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
    		wb_put(wb);
    }
    
    /**
     * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
     * @inode: inode of interest with i_lock held
     *
     * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
     * held on entry and is released on return.  The returned wb is guaranteed
     * to stay @inode's associated wb until its list_lock is released.
     */
    static struct bdi_writeback *
    locked_inode_to_wb_and_lock_list(struct inode *inode)
    	__releases(&inode->i_lock)
    	__acquires(&wb->list_lock)
    {
    	while (true) {
    		struct bdi_writeback *wb = inode_to_wb(inode);
    
    		/*
    		 * inode_to_wb() association is protected by both
    		 * @inode->i_lock and @wb->list_lock but list_lock nests
    		 * outside i_lock.  Drop i_lock and verify that the
    		 * association hasn't changed after acquiring list_lock.
    		 */
    		wb_get(wb);
    		spin_unlock(&inode->i_lock);
    		spin_lock(&wb->list_lock);
    		wb_put(wb);		/* not gonna deref it anymore */
    
    		/* i_wb may have changed inbetween, can't use inode_to_wb() */
    		if (likely(wb == inode->i_wb))
    			return wb;	/* @inode already has ref */
    
    		spin_unlock(&wb->list_lock);
    		cpu_relax();
    		spin_lock(&inode->i_lock);
    	}
    }
    
    /**
     * inode_to_wb_and_lock_list - determine an inode's wb and lock it
     * @inode: inode of interest
     *
     * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
     * on entry.
     */
    static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
    	__acquires(&wb->list_lock)
    {
    	spin_lock(&inode->i_lock);
    	return locked_inode_to_wb_and_lock_list(inode);
    }
    
    struct inode_switch_wbs_context {
    	struct inode		*inode;
    	struct bdi_writeback	*new_wb;
    
    	struct rcu_head		rcu_head;
    	struct work_struct	work;
    };
    
    static void inode_switch_wbs_work_fn(struct work_struct *work)
    {
    	struct inode_switch_wbs_context *isw =
    		container_of(work, struct inode_switch_wbs_context, work);
    	struct inode *inode = isw->inode;
    	struct address_space *mapping = inode->i_mapping;
    	struct bdi_writeback *old_wb = inode->i_wb;
    	struct bdi_writeback *new_wb = isw->new_wb;
    	struct radix_tree_iter iter;
    	bool switched = false;
    	void **slot;
    
    	/*
    	 * By the time control reaches here, RCU grace period has passed
    	 * since I_WB_SWITCH assertion and all wb stat update transactions
    	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
    	 * synchronizing against mapping->tree_lock.
    	 *
    	 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
    	 * gives us exclusion against all wb related operations on @inode
    	 * including IO list manipulations and stat updates.
    	 */
    	if (old_wb < new_wb) {
    		spin_lock(&old_wb->list_lock);
    		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
    	} else {
    		spin_lock(&new_wb->list_lock);
    		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
    	}
    	spin_lock(&inode->i_lock);
    	spin_lock_irq(&mapping->tree_lock);
    
    	/*
    	 * Once I_FREEING is visible under i_lock, the eviction path owns
    	 * the inode and we shouldn't modify ->i_io_list.
    	 */
    	if (unlikely(inode->i_state & I_FREEING))
    		goto skip_switch;
    
    	/*
    	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
    	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
    	 * pages actually under underwriteback.
    	 */
    	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
    				   PAGECACHE_TAG_DIRTY) {
    		struct page *page = radix_tree_deref_slot_protected(slot,
    							&mapping->tree_lock);
    		if (likely(page) && PageDirty(page)) {
    			__dec_wb_stat(old_wb, WB_RECLAIMABLE);
    			__inc_wb_stat(new_wb, WB_RECLAIMABLE);
    		}
    	}
    
    	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
    				   PAGECACHE_TAG_WRITEBACK) {
    		struct page *page = radix_tree_deref_slot_protected(slot,
    							&mapping->tree_lock);
    		if (likely(page)) {
    			WARN_ON_ONCE(!PageWriteback(page));
    			__dec_wb_stat(old_wb, WB_WRITEBACK);
    			__inc_wb_stat(new_wb, WB_WRITEBACK);
    		}
    	}
    
    	wb_get(new_wb);
    
    	/*
    	 * Transfer to @new_wb's IO list if necessary.  The specific list
    	 * @inode was on is ignored and the inode is put on ->b_dirty which
    	 * is always correct including from ->b_dirty_time.  The transfer
    	 * preserves @inode->dirtied_when ordering.
    	 */
    	if (!list_empty(&inode->i_io_list)) {
    		struct inode *pos;
    
    		inode_io_list_del_locked(inode, old_wb);
    		inode->i_wb = new_wb;
    		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
    			if (time_after_eq(inode->dirtied_when,
    					  pos->dirtied_when))
    				break;
    		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
    	} else {
    		inode->i_wb = new_wb;
    	}
    
    	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
    	inode->i_wb_frn_winner = 0;
    	inode->i_wb_frn_avg_time = 0;
    	inode->i_wb_frn_history = 0;
    	switched = true;
    skip_switch:
    	/*
    	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
    	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
    	 */
    	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
    
    	spin_unlock_irq(&mapping->tree_lock);
    	spin_unlock(&inode->i_lock);
    	spin_unlock(&new_wb->list_lock);
    	spin_unlock(&old_wb->list_lock);
    
    	if (switched) {
    		wb_wakeup(new_wb);
    		wb_put(old_wb);
    	}
    	wb_put(new_wb);
    
    	iput(inode);
    	kfree(isw);
    }
    
    static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
    {
    	struct inode_switch_wbs_context *isw = container_of(rcu_head,
    				struct inode_switch_wbs_context, rcu_head);
    
    	/* needs to grab bh-unsafe locks, bounce to work item */
    	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
    	schedule_work(&isw->work);
    }
    
    /**
     * inode_switch_wbs - change the wb association of an inode
     * @inode: target inode
     * @new_wb_id: ID of the new wb
     *
     * Switch @inode's wb association to the wb identified by @new_wb_id.  The
     * switching is performed asynchronously and may fail silently.
     */
    static void inode_switch_wbs(struct inode *inode, int new_wb_id)
    {
    	struct backing_dev_info *bdi = inode_to_bdi(inode);
    	struct cgroup_subsys_state *memcg_css;
    	struct inode_switch_wbs_context *isw;
    
    	/* noop if seems to be already in progress */
    	if (inode->i_state & I_WB_SWITCH)
    		return;
    
    	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
    	if (!isw)
    		return;
    
    	/* find and pin the new wb */
    	rcu_read_lock();
    	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
    	if (memcg_css)
    		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
    	rcu_read_unlock();
    	if (!isw->new_wb)
    		goto out_free;
    
    	/* while holding I_WB_SWITCH, no one else can update the association */
    	spin_lock(&inode->i_lock);
    	if (inode->i_state & (I_WB_SWITCH | I_FREEING) ||
    	    inode_to_wb(inode) == isw->new_wb) {
    		spin_unlock(&inode->i_lock);
    		goto out_free;
    	}
    	inode->i_state |= I_WB_SWITCH;
    	spin_unlock(&inode->i_lock);
    
    	ihold(inode);
    	isw->inode = inode;
    
    	/*
    	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
    	 * the RCU protected stat update paths to grab the mapping's
    	 * tree_lock so that stat transfer can synchronize against them.
    	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
    	 */
    	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
    	return;
    
    out_free:
    	if (isw->new_wb)
    		wb_put(isw->new_wb);
    	kfree(isw);
    }
    
    /**
     * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
     * @wbc: writeback_control of interest
     * @inode: target inode
     *
     * @inode is locked and about to be written back under the control of @wbc.
     * Record @inode's writeback context into @wbc and unlock the i_lock.  On
     * writeback completion, wbc_detach_inode() should be called.  This is used
     * to track the cgroup writeback context.
     */
    void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
    				 struct inode *inode)
    {
    	if (!inode_cgwb_enabled(inode)) {
    		spin_unlock(&inode->i_lock);
    		return;
    	}
    
    	wbc->wb = inode_to_wb(inode);
    	wbc->inode = inode;
    
    	wbc->wb_id = wbc->wb->memcg_css->id;
    	wbc->wb_lcand_id = inode->i_wb_frn_winner;
    	wbc->wb_tcand_id = 0;
    	wbc->wb_bytes = 0;
    	wbc->wb_lcand_bytes = 0;
    	wbc->wb_tcand_bytes = 0;
    
    	wb_get(wbc->wb);
    	spin_unlock(&inode->i_lock);
    
    	/*
    	 * A dying wb indicates that the memcg-blkcg mapping has changed
    	 * and a new wb is already serving the memcg.  Switch immediately.
    	 */
    	if (unlikely(wb_dying(wbc->wb)))
    		inode_switch_wbs(inode, wbc->wb_id);
    }
    
    /**
     * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
     * @wbc: writeback_control of the just finished writeback
     *
     * To be called after a writeback attempt of an inode finishes and undoes
     * wbc_attach_and_unlock_inode().  Can be called under any context.
     *
     * As concurrent write sharing of an inode is expected to be very rare and
     * memcg only tracks page ownership on first-use basis severely confining
     * the usefulness of such sharing, cgroup writeback tracks ownership
     * per-inode.  While the support for concurrent write sharing of an inode
     * is deemed unnecessary, an inode being written to by different cgroups at
     * different points in time is a lot more common, and, more importantly,
     * charging only by first-use can too readily lead to grossly incorrect
     * behaviors (single foreign page can lead to gigabytes of writeback to be
     * incorrectly attributed).
     *
     * To resolve this issue, cgroup writeback detects the majority dirtier of
     * an inode and transfers the ownership to it.  To avoid unnnecessary
     * oscillation, the detection mechanism keeps track of history and gives
     * out the switch verdict only if the foreign usage pattern is stable over
     * a certain amount of time and/or writeback attempts.
     *
     * On each writeback attempt, @wbc tries to detect the majority writer
     * using Boyer-Moore majority vote algorithm.  In addition to the byte
     * count from the majority voting, it also counts the bytes written for the
     * current wb and the last round's winner wb (max of last round's current
     * wb, the winner from two rounds ago, and the last round's majority
     * candidate).  Keeping track of the historical winner helps the algorithm
     * to semi-reliably detect the most active writer even when it's not the
     * absolute majority.
     *
     * Once the winner of the round is determined, whether the winner is
     * foreign or not and how much IO time the round consumed is recorded in
     * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
     * over a certain threshold, the switch verdict is given.
     */
    void wbc_detach_inode(struct writeback_control *wbc)
    {
    	struct bdi_writeback *wb = wbc->wb;
    	struct inode *inode = wbc->inode;
    	unsigned long avg_time, max_bytes, max_time;
    	u16 history;
    	int max_id;
    
    	if (!wb)
    		return;
    
    	history = inode->i_wb_frn_history;
    	avg_time = inode->i_wb_frn_avg_time;
    
    	/* pick the winner of this round */
    	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
    	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
    		max_id = wbc->wb_id;
    		max_bytes = wbc->wb_bytes;
    	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
    		max_id = wbc->wb_lcand_id;
    		max_bytes = wbc->wb_lcand_bytes;
    	} else {
    		max_id = wbc->wb_tcand_id;
    		max_bytes = wbc->wb_tcand_bytes;
    	}
    
    	/*
    	 * Calculate the amount of IO time the winner consumed and fold it
    	 * into the running average kept per inode.  If the consumed IO
    	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
    	 * deciding whether to switch or not.  This is to prevent one-off
    	 * small dirtiers from skewing the verdict.
    	 */
    	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
    				wb->avg_write_bandwidth);
    	if (avg_time)
    		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
    			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
    	else
    		avg_time = max_time;	/* immediate catch up on first run */
    
    	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
    		int slots;
    
    		/*
    		 * The switch verdict is reached if foreign wb's consume
    		 * more than a certain proportion of IO time in a
    		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
    		 * history mask where each bit represents one sixteenth of
    		 * the period.  Determine the number of slots to shift into
    		 * history from @max_time.
    		 */
    		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
    			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
    		history <<= slots;
    		if (wbc->wb_id != max_id)
    			history |= (1U << slots) - 1;
    
    		/*
    		 * Switch if the current wb isn't the consistent winner.
    		 * If there are multiple closely competing dirtiers, the
    		 * inode may switch across them repeatedly over time, which
    		 * is okay.  The main goal is avoiding keeping an inode on
    		 * the wrong wb for an extended period of time.
    		 */
    		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
    			inode_switch_wbs(inode, max_id);
    	}
    
    	/*
    	 * Multiple instances of this function may race to update the
    	 * following fields but we don't mind occassional inaccuracies.
    	 */
    	inode->i_wb_frn_winner = max_id;
    	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
    	inode->i_wb_frn_history = history;
    
    	wb_put(wbc->wb);
    	wbc->wb = NULL;
    }
    
    /**
     * wbc_account_io - account IO issued during writeback
     * @wbc: writeback_control of the writeback in progress
     * @page: page being written out
     * @bytes: number of bytes being written out
     *
     * @bytes from @page are about to written out during the writeback
     * controlled by @wbc.  Keep the book for foreign inode detection.  See
     * wbc_detach_inode().
     */
    void wbc_account_io(struct writeback_control *wbc, struct page *page,
    		    size_t bytes)
    {
    	int id;
    
    	/*
    	 * pageout() path doesn't attach @wbc to the inode being written
    	 * out.  This is intentional as we don't want the function to block
    	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
    	 * regular writeback instead of writing things out itself.
    	 */
    	if (!wbc->wb)
    		return;
    
    	rcu_read_lock();
    	id = mem_cgroup_css_from_page(page)->id;
    	rcu_read_unlock();
    
    	if (id == wbc->wb_id) {
    		wbc->wb_bytes += bytes;
    		return;
    	}
    
    	if (id == wbc->wb_lcand_id)
    		wbc->wb_lcand_bytes += bytes;
    
    	/* Boyer-Moore majority vote algorithm */
    	if (!wbc->wb_tcand_bytes)
    		wbc->wb_tcand_id = id;
    	if (id == wbc->wb_tcand_id)
    		wbc->wb_tcand_bytes += bytes;
    	else
    		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
    }
    EXPORT_SYMBOL_GPL(wbc_account_io);
    
    /**
     * inode_congested - test whether an inode is congested
     * @inode: inode to test for congestion (may be NULL)
     * @cong_bits: mask of WB_[a]sync_congested bits to test
     *
     * Tests whether @inode is congested.  @cong_bits is the mask of congestion
     * bits to test and the return value is the mask of set bits.
     *
     * If cgroup writeback is enabled for @inode, the congestion state is
     * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
     * associated with @inode is congested; otherwise, the root wb's congestion
     * state is used.
     *
     * @inode is allowed to be NULL as this function is often called on
     * mapping->host which is NULL for the swapper space.
     */
    int inode_congested(struct inode *inode, int cong_bits)
    {
    	/*
    	 * Once set, ->i_wb never becomes NULL while the inode is alive.
    	 * Start transaction iff ->i_wb is visible.
    	 */
    	if (inode && inode_to_wb_is_valid(inode)) {
    		struct bdi_writeback *wb;
    		bool locked, congested;
    
    		wb = unlocked_inode_to_wb_begin(inode, &locked);
    		congested = wb_congested(wb, cong_bits);
    		unlocked_inode_to_wb_end(inode, locked);
    		return congested;
    	}
    
    	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
    }
    EXPORT_SYMBOL_GPL(inode_congested);
    
    /**
     * wb_split_bdi_pages - split nr_pages to write according to bandwidth
     * @wb: target bdi_writeback to split @nr_pages to
     * @nr_pages: number of pages to write for the whole bdi
     *
     * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
     * relation to the total write bandwidth of all wb's w/ dirty inodes on
     * @wb->bdi.
     */
    static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
    {
    	unsigned long this_bw = wb->avg_write_bandwidth;
    	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
    
    	if (nr_pages == LONG_MAX)
    		return LONG_MAX;
    
    	/*
    	 * This may be called on clean wb's and proportional distribution
    	 * may not make sense, just use the original @nr_pages in those
    	 * cases.  In general, we wanna err on the side of writing more.
    	 */
    	if (!tot_bw || this_bw >= tot_bw)
    		return nr_pages;
    	else
    		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
    }
    
    /**
     * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
     * @bdi: target backing_dev_info
     * @base_work: wb_writeback_work to issue
     * @skip_if_busy: skip wb's which already have writeback in progress
     *
     * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
     * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
     * distributed to the busy wbs according to each wb's proportion in the
     * total active write bandwidth of @bdi.
     */
    static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
    				  struct wb_writeback_work *base_work,
    				  bool skip_if_busy)
    {
    	int next_memcg_id = 0;
    	struct bdi_writeback *wb;
    	struct wb_iter iter;
    
    	might_sleep();
    restart:
    	rcu_read_lock();
    	bdi_for_each_wb(wb, bdi, &iter, next_memcg_id) {
    		DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
    		struct wb_writeback_work fallback_work;
    		struct wb_writeback_work *work;
    		long nr_pages;
    
    		/* SYNC_ALL writes out I_DIRTY_TIME too */
    		if (!wb_has_dirty_io(wb) &&
    		    (base_work->sync_mode == WB_SYNC_NONE ||
    		     list_empty(&wb->b_dirty_time)))
    			continue;
    		if (skip_if_busy && writeback_in_progress(wb))
    			continue;
    
    		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
    
    		work = kmalloc(sizeof(*work), GFP_ATOMIC);
    		if (work) {
    			*work = *base_work;
    			work->nr_pages = nr_pages;
    			work->auto_free = 1;
    			wb_queue_work(wb, work);
    			continue;
    		}
    
    		/* alloc failed, execute synchronously using on-stack fallback */
    		work = &fallback_work;
    		*work = *base_work;
    		work->nr_pages = nr_pages;
    		work->auto_free = 0;
    		work->done = &fallback_work_done;
    
    		wb_queue_work(wb, work);
    
    		next_memcg_id = wb->memcg_css->id + 1;
    		rcu_read_unlock();
    		wb_wait_for_completion(bdi, &fallback_work_done);
    		goto restart;
    	}
    	rcu_read_unlock();
    }
    
    #else	/* CONFIG_CGROUP_WRITEBACK */
    
    static struct bdi_writeback *
    locked_inode_to_wb_and_lock_list(struct inode *inode)
    	__releases(&inode->i_lock)
    	__acquires(&wb->list_lock)
    {
    	struct bdi_writeback *wb = inode_to_wb(inode);
    
    	spin_unlock(&inode->i_lock);
    	spin_lock(&wb->list_lock);
    	return wb;
    }
    
    static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
    	__acquires(&wb->list_lock)
    {
    	struct bdi_writeback *wb = inode_to_wb(inode);
    
    	spin_lock(&wb->list_lock);
    	return wb;
    }
    
    static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
    {
    	return nr_pages;
    }
    
    static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
    				  struct wb_writeback_work *base_work,
    				  bool skip_if_busy)
    {
    	might_sleep();
    
    	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
    		base_work->auto_free = 0;
    		wb_queue_work(&bdi->wb, base_work);
    	}
    }
    
    #endif	/* CONFIG_CGROUP_WRITEBACK */
    
    void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
    			bool range_cyclic, enum wb_reason reason)
    {
    	struct wb_writeback_work *work;
    
    	if (!wb_has_dirty_io(wb))
    		return;
    
    	/*
    	 * This is WB_SYNC_NONE writeback, so if allocation fails just
    	 * wakeup the thread for old dirty data writeback
    	 */
    	work = kzalloc(sizeof(*work), GFP_ATOMIC);
    	if (!work) {
    		trace_writeback_nowork(wb);
    		wb_wakeup(wb);
    		return;
    	}
    
    	work->sync_mode	= WB_SYNC_NONE;
    	work->nr_pages	= nr_pages;
    	work->range_cyclic = range_cyclic;
    	work->reason	= reason;
    	work->auto_free	= 1;
    
    	wb_queue_work(wb, work);
    }
    
    /**
     * wb_start_background_writeback - start background writeback
     * @wb: bdi_writback to write from
     *
     * Description:
     *   This makes sure WB_SYNC_NONE background writeback happens. When
     *   this function returns, it is only guaranteed that for given wb
     *   some IO is happening if we are over background dirty threshold.
     *   Caller need not hold sb s_umount semaphore.
     */
    void wb_start_background_writeback(struct bdi_writeback *wb)
    {
    	/*
    	 * We just wake up the flusher thread. It will perform background
    	 * writeback as soon as there is no other work to do.
    	 */
    	trace_writeback_wake_background(wb);
    	wb_wakeup(wb);
    }
    
    /*
     * Remove the inode from the writeback list it is on.
     */
    void inode_io_list_del(struct inode *inode)
    {
    	struct bdi_writeback *wb;
    
    	wb = inode_to_wb_and_lock_list(inode);
    	inode_io_list_del_locked(inode, wb);
    	spin_unlock(&wb->list_lock);
    }
    
    /*
     * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
     * furthest end of its superblock's dirty-inode list.
     *
     * Before stamping the inode's ->dirtied_when, we check to see whether it is
     * already the most-recently-dirtied inode on the b_dirty list.  If that is
     * the case then the inode must have been redirtied while it was being written
     * out and we don't reset its dirtied_when.
     */
    static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
    {
    	if (!list_empty(&wb->b_dirty)) {
    		struct inode *tail;
    
    		tail = wb_inode(wb->b_dirty.next);
    		if (time_before(inode->dirtied_when, tail->dirtied_when))
    			inode->dirtied_when = jiffies;
    	}
    	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
    }
    
    /*
     * requeue inode for re-scanning after bdi->b_io list is exhausted.
     */
    static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
    {
    	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
    }
    
    static void inode_sync_complete(struct inode *inode)
    {
    	inode->i_state &= ~I_SYNC;
    	/* If inode is clean an unused, put it into LRU now... */
    	inode_add_lru(inode);
    	/* Waiters must see I_SYNC cleared before being woken up */
    	smp_mb();
    	wake_up_bit(&inode->i_state, __I_SYNC);
    }
    
    static bool inode_dirtied_after(struct inode *inode, unsigned long t)
    {
    	bool ret = time_after(inode->dirtied_when, t);
    #ifndef CONFIG_64BIT
    	/*
    	 * For inodes being constantly redirtied, dirtied_when can get stuck.
    	 * It _appears_ to be in the future, but is actually in distant past.
    	 * This test is necessary to prevent such wrapped-around relative times
    	 * from permanently stopping the whole bdi writeback.
    	 */
    	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
    #endif
    	return ret;
    }
    
    #define EXPIRE_DIRTY_ATIME 0x0001
    
    /*
     * Move expired (dirtied before work->older_than_this) dirty inodes from
     * @delaying_queue to @dispatch_queue.
     */
    static int move_expired_inodes(struct list_head *delaying_queue,
    			       struct list_head *dispatch_queue,
    			       int flags,
    			       struct wb_writeback_work *work)
    {
    	unsigned long *older_than_this = NULL;
    	unsigned long expire_time;
    	LIST_HEAD(tmp);
    	struct list_head *pos, *node;
    	struct super_block *sb = NULL;
    	struct inode *inode;
    	int do_sb_sort = 0;
    	int moved = 0;
    
    	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
    		older_than_this = work->older_than_this;
    	else if (!work->for_sync) {
    		expire_time = jiffies - (dirtytime_expire_interval * HZ);
    		older_than_this = &expire_time;
    	}
    	while (!list_empty(delaying_queue)) {
    		inode = wb_inode(delaying_queue->prev);
    		if (older_than_this &&
    		    inode_dirtied_after(inode, *older_than_this))
    			break;
    		list_move(&inode->i_io_list, &tmp);
    		moved++;
    		if (flags & EXPIRE_DIRTY_ATIME)
    			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
    		if (sb_is_blkdev_sb(inode->i_sb))
    			continue;
    		if (sb && sb != inode->i_sb)
    			do_sb_sort = 1;
    		sb = inode->i_sb;
    	}
    
    	/* just one sb in list, splice to dispatch_queue and we're done */
    	if (!do_sb_sort) {
    		list_splice(&tmp, dispatch_queue);
    		goto out;
    	}
    
    	/* Move inodes from one superblock together */
    	while (!list_empty(&tmp)) {
    		sb = wb_inode(tmp.prev)->i_sb;
    		list_for_each_prev_safe(pos, node, &tmp) {
    			inode = wb_inode(pos);
    			if (inode->i_sb == sb)
    				list_move(&inode->i_io_list, dispatch_queue);
    		}
    	}
    out:
    	return moved;
    }
    
    /*
     * Queue all expired dirty inodes for io, eldest first.
     * Before
     *         newly dirtied     b_dirty    b_io    b_more_io
     *         =============>    gf         edc     BA
     * After
     *         newly dirtied     b_dirty    b_io    b_more_io
     *         =============>    g          fBAedc
     *                                           |
     *                                           +--> dequeue for IO
     */
    static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
    {
    	int moved;
    
    	assert_spin_locked(&wb->list_lock);
    	list_splice_init(&wb->b_more_io, &wb->b_io);
    	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
    	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
    				     EXPIRE_DIRTY_ATIME, work);
    	if (moved)
    		wb_io_lists_populated(wb);
    	trace_writeback_queue_io(wb, work, moved);
    }
    
    static int write_inode(struct inode *inode, struct writeback_control *wbc)
    {
    	int ret;
    
    	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
    		trace_writeback_write_inode_start(inode, wbc);
    		ret = inode->i_sb->s_op->write_inode(inode, wbc);
    		trace_writeback_write_inode(inode, wbc);
    		return ret;
    	}
    	return 0;
    }
    
    /*
     * Wait for writeback on an inode to complete. Called with i_lock held.
     * Caller must make sure inode cannot go away when we drop i_lock.
     */
    static void __inode_wait_for_writeback(struct inode *inode)
    	__releases(inode->i_lock)
    	__acquires(inode->i_lock)
    {
    	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
    	wait_queue_head_t *wqh;
    
    	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
    	while (inode->i_state & I_SYNC) {
    		spin_unlock(&inode->i_lock);
    		__wait_on_bit(wqh, &wq, bit_wait,
    			      TASK_UNINTERRUPTIBLE);
    		spin_lock(&inode->i_lock);
    	}
    }
    
    /*
     * Wait for writeback on an inode to complete. Caller must have inode pinned.
     */
    void inode_wait_for_writeback(struct inode *inode)
    {
    	spin_lock(&inode->i_lock);
    	__inode_wait_for_writeback(inode);
    	spin_unlock(&inode->i_lock);
    }
    
    /*
     * Sleep until I_SYNC is cleared. This function must be called with i_lock
     * held and drops it. It is aimed for callers not holding any inode reference
     * so once i_lock is dropped, inode can go away.
     */
    static void inode_sleep_on_writeback(struct inode *inode)
    	__releases(inode->i_lock)
    {
    	DEFINE_WAIT(wait);
    	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
    	int sleep;
    
    	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
    	sleep = inode->i_state & I_SYNC;
    	spin_unlock(&inode->i_lock);
    	if (sleep)
    		schedule();
    	finish_wait(wqh, &wait);
    }
    
    /*
     * Find proper writeback list for the inode depending on its current state and
     * possibly also change of its state while we were doing writeback.  Here we
     * handle things such as livelock prevention or fairness of writeback among
     * inodes. This function can be called only by flusher thread - noone else
     * processes all inodes in writeback lists and requeueing inodes behind flusher
     * thread's back can have unexpected consequences.
     */
    static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
    			  struct writeback_control *wbc)
    {
    	if (inode->i_state & I_FREEING)
    		return;
    
    	/*
    	 * Sync livelock prevention. Each inode is tagged and synced in one
    	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
    	 * the dirty time to prevent enqueue and sync it again.
    	 */
    	if ((inode->i_state & I_DIRTY) &&
    	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
    		inode->dirtied_when = jiffies;
    
    	if (wbc->pages_skipped) {
    		/*
    		 * writeback is not making progress due to locked
    		 * buffers. Skip this inode for now.
    		 */
    		redirty_tail(inode, wb);
    		return;
    	}
    
    	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
    		/*
    		 * We didn't write back all the pages.  nfs_writepages()
    		 * sometimes bales out without doing anything.
    		 */
    		if (wbc->nr_to_write <= 0) {
    			/* Slice used up. Queue for next turn. */
    			requeue_io(inode, wb);
    		} else {
    			/*
    			 * Writeback blocked by something other than
    			 * congestion. Delay the inode for some time to
    			 * avoid spinning on the CPU (100% iowait)
    			 * retrying writeback of the dirty page/inode
    			 * that cannot be performed immediately.
    			 */
    			redirty_tail(inode, wb);
    		}
    	} else if (inode->i_state & I_DIRTY) {
    		/*
    		 * Filesystems can dirty the inode during writeback operations,
    		 * such as delayed allocation during submission or metadata
    		 * updates after data IO completion.
    		 */
    		redirty_tail(inode, wb);
    	} else if (inode->i_state & I_DIRTY_TIME) {
    		inode->dirtied_when = jiffies;
    		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
    	} else {
    		/* The inode is clean. Remove from writeback lists. */
    		inode_io_list_del_locked(inode, wb);
    	}
    }
    
    /*
     * Write out an inode and its dirty pages. Do not update the writeback list
     * linkage. That is left to the caller. The caller is also responsible for
     * setting I_SYNC flag and calling inode_sync_complete() to clear it.
     */
    static int
    __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
    {
    	struct address_space *mapping = inode->i_mapping;
    	long nr_to_write = wbc->nr_to_write;
    	unsigned dirty;
    	int ret;
    
    	WARN_ON(!(inode->i_state & I_SYNC));
    
    	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
    
    	ret = do_writepages(mapping, wbc);
    
    	/*
    	 * Make sure to wait on the data before writing out the metadata.
    	 * This is important for filesystems that modify metadata on data
    	 * I/O completion. We don't do it for sync(2) writeback because it has a
    	 * separate, external IO completion path and ->sync_fs for guaranteeing
    	 * inode metadata is written back correctly.
    	 */
    	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
    		int err = filemap_fdatawait(mapping);
    		if (ret == 0)
    			ret = err;
    	}
    
    	/*
    	 * Some filesystems may redirty the inode during the writeback
    	 * due to delalloc, clear dirty metadata flags right before
    	 * write_inode()
    	 */
    	spin_lock(&inode->i_lock);
    
    	dirty = inode->i_state & I_DIRTY;
    	if (inode->i_state & I_DIRTY_TIME) {
    		if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
    		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
    		    unlikely(time_after(jiffies,
    					(inode->dirtied_time_when +
    					 dirtytime_expire_interval * HZ)))) {
    			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
    			trace_writeback_lazytime(inode);
    		}
    	} else
    		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
    	inode->i_state &= ~dirty;
    
    	/*
    	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
    	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
    	 * either they see the I_DIRTY bits cleared or we see the dirtied
    	 * inode.
    	 *
    	 * I_DIRTY_PAGES is always cleared together above even if @mapping
    	 * still has dirty pages.  The flag is reinstated after smp_mb() if
    	 * necessary.  This guarantees that either __mark_inode_dirty()
    	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
    	 */
    	smp_mb();
    
    	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
    		inode->i_state |= I_DIRTY_PAGES;
    
    	spin_unlock(&inode->i_lock);
    
    	if (dirty & I_DIRTY_TIME)
    		mark_inode_dirty_sync(inode);
    	/* Don't write the inode if only I_DIRTY_PAGES was set */
    	if (dirty & ~I_DIRTY_PAGES) {
    		int err = write_inode(inode, wbc);
    		if (ret == 0)
    			ret = err;
    	}
    	trace_writeback_single_inode(inode, wbc, nr_to_write);
    	return ret;
    }
    
    /*
     * Write out an inode's dirty pages. Either the caller has an active reference
     * on the inode or the inode has I_WILL_FREE set.
     *
     * This function is designed to be called for writing back one inode which
     * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
     * and does more profound writeback list handling in writeback_sb_inodes().
     */
    static int
    writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
    		       struct writeback_control *wbc)
    {
    	int ret = 0;
    
    	spin_lock(&inode->i_lock);
    	if (!atomic_read(&inode->i_count))
    		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
    	else
    		WARN_ON(inode->i_state & I_WILL_FREE);
    
    	if (inode->i_state & I_SYNC) {
    		if (wbc->sync_mode != WB_SYNC_ALL)
    			goto out;
    		/*
    		 * It's a data-integrity sync. We must wait. Since callers hold
    		 * inode reference or inode has I_WILL_FREE set, it cannot go
    		 * away under us.
    		 */
    		__inode_wait_for_writeback(inode);
    	}
    	WARN_ON(inode->i_state & I_SYNC);
    	/*
    	 * Skip inode if it is clean and we have no outstanding writeback in
    	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
    	 * function since flusher thread may be doing for example sync in
    	 * parallel and if we move the inode, it could get skipped. So here we
    	 * make sure inode is on some writeback list and leave it there unless
    	 * we have completely cleaned the inode.
    	 */
    	if (!(inode->i_state & I_DIRTY_ALL) &&
    	    (wbc->sync_mode != WB_SYNC_ALL ||
    	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
    		goto out;
    	inode->i_state |= I_SYNC;
    	wbc_attach_and_unlock_inode(wbc, inode);
    
    	ret = __writeback_single_inode(inode, wbc);
    
    	wbc_detach_inode(wbc);
    	spin_lock(&wb->list_lock);
    	spin_lock(&inode->i_lock);
    	/*
    	 * If inode is clean, remove it from writeback lists. Otherwise don't
    	 * touch it. See comment above for explanation.
    	 */
    	if (!(inode->i_state & I_DIRTY_ALL))
    		inode_io_list_del_locked(inode, wb);
    	spin_unlock(&wb->list_lock);
    	inode_sync_complete(inode);
    out:
    	spin_unlock(&inode->i_lock);
    	return ret;
    }
    
    static long writeback_chunk_size(struct bdi_writeback *wb,
    				 struct wb_writeback_work *work)
    {
    	long pages;
    
    	/*
    	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
    	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
    	 * here avoids calling into writeback_inodes_wb() more than once.
    	 *
    	 * The intended call sequence for WB_SYNC_ALL writeback is:
    	 *
    	 *      wb_writeback()
    	 *          writeback_sb_inodes()       <== called only once
    	 *              write_cache_pages()     <== called once for each inode
    	 *                   (quickly) tag currently dirty pages
    	 *                   (maybe slowly) sync all tagged pages
    	 */
    	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
    		pages = LONG_MAX;
    	else {
    		pages = min(wb->avg_write_bandwidth / 2,
    			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
    		pages = min(pages, work->nr_pages);
    		pages = round_down(pages + MIN_WRITEBACK_PAGES,
    				   MIN_WRITEBACK_PAGES);
    	}
    
    	return pages;
    }
    
    /*
     * Write a portion of b_io inodes which belong to @sb.
     *
     * Return the number of pages and/or inodes written.
     *
     * NOTE! This is called with wb->list_lock held, and will
     * unlock and relock that for each inode it ends up doing
     * IO for.
     */
    static long writeback_sb_inodes(struct super_block *sb,
    				struct bdi_writeback *wb,
    				struct wb_writeback_work *work)
    {
    	struct writeback_control wbc = {
    		.sync_mode		= work->sync_mode,
    		.tagged_writepages	= work->tagged_writepages,
    		.for_kupdate		= work->for_kupdate,
    		.for_background		= work->for_background,
    		.for_sync		= work->for_sync,
    		.range_cyclic		= work->range_cyclic,
    		.range_start		= 0,
    		.range_end		= LLONG_MAX,
    	};
    	unsigned long start_time = jiffies;
    	long write_chunk;
    	long wrote = 0;  /* count both pages and inodes */
    
    	while (!list_empty(&wb->b_io)) {
    		struct inode *inode = wb_inode(wb->b_io.prev);
    
    		if (inode->i_sb != sb) {
    			if (work->sb) {
    				/*
    				 * We only want to write back data for this
    				 * superblock, move all inodes not belonging
    				 * to it back onto the dirty list.
    				 */
    				redirty_tail(inode, wb);
    				continue;
    			}
    
    			/*
    			 * The inode belongs to a different superblock.
    			 * Bounce back to the caller to unpin this and
    			 * pin the next superblock.
    			 */
    			break;
    		}
    
    		/*
    		 * Don't bother with new inodes or inodes being freed, first
    		 * kind does not need periodic writeout yet, and for the latter
    		 * kind writeout is handled by the freer.
    		 */
    		spin_lock(&inode->i_lock);
    		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
    			spin_unlock(&inode->i_lock);
    			redirty_tail(inode, wb);
    			continue;
    		}
    		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
    			/*
    			 * If this inode is locked for writeback and we are not
    			 * doing writeback-for-data-integrity, move it to
    			 * b_more_io so that writeback can proceed with the
    			 * other inodes on s_io.
    			 *
    			 * We'll have another go at writing back this inode
    			 * when we completed a full scan of b_io.
    			 */
    			spin_unlock(&inode->i_lock);
    			requeue_io(inode, wb);
    			trace_writeback_sb_inodes_requeue(inode);
    			continue;
    		}
    		spin_unlock(&wb->list_lock);
    
    		/*
    		 * We already requeued the inode if it had I_SYNC set and we
    		 * are doing WB_SYNC_NONE writeback. So this catches only the
    		 * WB_SYNC_ALL case.
    		 */
    		if (inode->i_state & I_SYNC) {
    			/* Wait for I_SYNC. This function drops i_lock... */
    			inode_sleep_on_writeback(inode);
    			/* Inode may be gone, start again */
    			spin_lock(&wb->list_lock);
    			continue;
    		}
    		inode->i_state |= I_SYNC;
    		wbc_attach_and_unlock_inode(&wbc, inode);
    
    		write_chunk = writeback_chunk_size(wb, work);
    		wbc.nr_to_write = write_chunk;
    		wbc.pages_skipped = 0;
    
    		/*
    		 * We use I_SYNC to pin the inode in memory. While it is set
    		 * evict_inode() will wait so the inode cannot be freed.
    		 */
    		__writeback_single_inode(inode, &wbc);
    
    		wbc_detach_inode(&wbc);
    		work->nr_pages -= write_chunk - wbc.nr_to_write;
    		wrote += write_chunk - wbc.nr_to_write;
    		spin_lock(&wb->list_lock);
    		spin_lock(&inode->i_lock);
    		if (!(inode->i_state & I_DIRTY_ALL))
    			wrote++;
    		requeue_inode(inode, wb, &wbc);
    		inode_sync_complete(inode);
    		spin_unlock(&inode->i_lock);
    		cond_resched_lock(&wb->list_lock);
    		/*
    		 * bail out to wb_writeback() often enough to check
    		 * background threshold and other termination conditions.
    		 */
    		if (wrote) {
    			if (time_is_before_jiffies(start_time + HZ / 10UL))
    				break;
    			if (work->nr_pages <= 0)
    				break;
    		}
    	}
    	return wrote;
    }
    
    static long __writeback_inodes_wb(struct bdi_writeback *wb,
    				  struct wb_writeback_work *work)
    {
    	unsigned long start_time = jiffies;
    	long wrote = 0;
    
    	while (!list_empty(&wb->b_io)) {
    		struct inode *inode = wb_inode(wb->b_io.prev);
    		struct super_block *sb = inode->i_sb;
    
    		if (!trylock_super(sb)) {
    			/*
    			 * trylock_super() may fail consistently due to
    			 * s_umount being grabbed by someone else. Don't use
    			 * requeue_io() to avoid busy retrying the inode/sb.
    			 */
    			redirty_tail(inode, wb);
    			continue;
    		}
    		wrote += writeback_sb_inodes(sb, wb, work);
    		up_read(&sb->s_umount);
    
    		/* refer to the same tests at the end of writeback_sb_inodes */
    		if (wrote) {
    			if (time_is_before_jiffies(start_time + HZ / 10UL))
    				break;
    			if (work->nr_pages <= 0)
    				break;
    		}
    	}
    	/* Leave any unwritten inodes on b_io */
    	return wrote;
    }
    
    static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
    				enum wb_reason reason)
    {
    	struct wb_writeback_work work = {
    		.nr_pages	= nr_pages,
    		.sync_mode	= WB_SYNC_NONE,
    		.range_cyclic	= 1,
    		.reason		= reason,
    	};
    	struct blk_plug plug;
    
    	blk_start_plug(&plug);
    	spin_lock(&wb->list_lock);
    	if (list_empty(&wb->b_io))
    		queue_io(wb, &work);
    	__writeback_inodes_wb(wb, &work);
    	spin_unlock(&wb->list_lock);
    	blk_finish_plug(&plug);
    
    	return nr_pages - work.nr_pages;
    }
    
    /*
     * Explicit flushing or periodic writeback of "old" data.
     *
     * Define "old": the first time one of an inode's pages is dirtied, we mark the
     * dirtying-time in the inode's address_space.  So this periodic writeback code
     * just walks the superblock inode list, writing back any inodes which are
     * older than a specific point in time.
     *
     * Try to run once per dirty_writeback_interval.  But if a writeback event
     * takes longer than a dirty_writeback_interval interval, then leave a
     * one-second gap.
     *
     * older_than_this takes precedence over nr_to_write.  So we'll only write back
     * all dirty pages if they are all attached to "old" mappings.
     */
    static long wb_writeback(struct bdi_writeback *wb,
    			 struct wb_writeback_work *work)
    {
    	unsigned long wb_start = jiffies;
    	long nr_pages = work->nr_pages;
    	unsigned long oldest_jif;
    	struct inode *inode;
    	long progress;
    	struct blk_plug plug;
    
    	oldest_jif = jiffies;
    	work->older_than_this = &oldest_jif;
    
    	blk_start_plug(&plug);
    	spin_lock(&wb->list_lock);
    	for (;;) {
    		/*
    		 * Stop writeback when nr_pages has been consumed
    		 */
    		if (work->nr_pages <= 0)
    			break;
    
    		/*
    		 * Background writeout and kupdate-style writeback may
    		 * run forever. Stop them if there is other work to do
    		 * so that e.g. sync can proceed. They'll be restarted
    		 * after the other works are all done.
    		 */
    		if ((work->for_background || work->for_kupdate) &&
    		    !list_empty(&wb->work_list))
    			break;
    
    		/*
    		 * For background writeout, stop when we are below the
    		 * background dirty threshold
    		 */
    		if (work->for_background && !wb_over_bg_thresh(wb))
    			break;
    
    		/*
    		 * Kupdate and background works are special and we want to
    		 * include all inodes that need writing. Livelock avoidance is
    		 * handled by these works yielding to any other work so we are
    		 * safe.
    		 */
    		if (work->for_kupdate) {
    			oldest_jif = jiffies -
    				msecs_to_jiffies(dirty_expire_interval * 10);
    		} else if (work->for_background)
    			oldest_jif = jiffies;
    
    		trace_writeback_start(wb, work);
    		if (list_empty(&wb->b_io))
    			queue_io(wb, work);
    		if (work->sb)
    			progress = writeback_sb_inodes(work->sb, wb, work);
    		else
    			progress = __writeback_inodes_wb(wb, work);
    		trace_writeback_written(wb, work);
    
    		wb_update_bandwidth(wb, wb_start);
    
    		/*
    		 * Did we write something? Try for more
    		 *
    		 * Dirty inodes are moved to b_io for writeback in batches.
    		 * The completion of the current batch does not necessarily
    		 * mean the overall work is done. So we keep looping as long
    		 * as made some progress on cleaning pages or inodes.
    		 */
    		if (progress)
    			continue;
    		/*
    		 * No more inodes for IO, bail
    		 */
    		if (list_empty(&wb->b_more_io))
    			break;
    		/*
    		 * Nothing written. Wait for some inode to
    		 * become available for writeback. Otherwise
    		 * we'll just busyloop.
    		 */
    		if (!list_empty(&wb->b_more_io))  {
    			trace_writeback_wait(wb, work);
    			inode = wb_inode(wb->b_more_io.prev);
    			spin_lock(&inode->i_lock);
    			spin_unlock(&wb->list_lock);
    			/* This function drops i_lock... */
    			inode_sleep_on_writeback(inode);
    			spin_lock(&wb->list_lock);
    		}
    	}
    	spin_unlock(&wb->list_lock);
    	blk_finish_plug(&plug);
    
    	return nr_pages - work->nr_pages;
    }
    
    /*
     * Return the next wb_writeback_work struct that hasn't been processed yet.
     */
    static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
    {
    	struct wb_writeback_work *work = NULL;
    
    	spin_lock_bh(&wb->work_lock);
    	if (!list_empty(&wb->work_list)) {
    		work = list_entry(wb->work_list.next,
    				  struct wb_writeback_work, list);
    		list_del_init(&work->list);
    	}
    	spin_unlock_bh(&wb->work_lock);
    	return work;
    }
    
    /*
     * Add in the number of potentially dirty inodes, because each inode
     * write can dirty pagecache in the underlying blockdev.
     */
    static unsigned long get_nr_dirty_pages(void)
    {
    	return global_page_state(NR_FILE_DIRTY) +
    		global_page_state(NR_UNSTABLE_NFS) +
    		get_nr_dirty_inodes();
    }
    
    static long wb_check_background_flush(struct bdi_writeback *wb)
    {
    	if (wb_over_bg_thresh(wb)) {
    
    		struct wb_writeback_work work = {
    			.nr_pages	= LONG_MAX,
    			.sync_mode	= WB_SYNC_NONE,
    			.for_background	= 1,
    			.range_cyclic	= 1,
    			.reason		= WB_REASON_BACKGROUND,
    		};
    
    		return wb_writeback(wb, &work);
    	}
    
    	return 0;
    }
    
    static long wb_check_old_data_flush(struct bdi_writeback *wb)
    {
    	unsigned long expired;
    	long nr_pages;
    
    	/*
    	 * When set to zero, disable periodic writeback
    	 */
    	if (!dirty_writeback_interval)
    		return 0;
    
    	expired = wb->last_old_flush +
    			msecs_to_jiffies(dirty_writeback_interval * 10);
    	if (time_before(jiffies, expired))
    		return 0;
    
    	wb->last_old_flush = jiffies;
    	nr_pages = get_nr_dirty_pages();
    
    	if (nr_pages) {
    		struct wb_writeback_work work = {
    			.nr_pages	= nr_pages,
    			.sync_mode	= WB_SYNC_NONE,
    			.for_kupdate	= 1,
    			.range_cyclic	= 1,
    			.reason		= WB_REASON_PERIODIC,
    		};
    
    		return wb_writeback(wb, &work);
    	}
    
    	return 0;
    }
    
    /*
     * Retrieve work items and do the writeback they describe
     */
    static long wb_do_writeback(struct bdi_writeback *wb)
    {
    	struct wb_writeback_work *work;
    	long wrote = 0;
    
    	set_bit(WB_writeback_running, &wb->state);
    	while ((work = get_next_work_item(wb)) != NULL) {
    		struct wb_completion *done = work->done;
    
    		trace_writeback_exec(wb, work);
    
    		wrote += wb_writeback(wb, work);
    
    		if (work->auto_free)
    			kfree(work);
    		if (done && atomic_dec_and_test(&done->cnt))
    			wake_up_all(&wb->bdi->wb_waitq);
    	}
    
    	/*
    	 * Check for periodic writeback, kupdated() style
    	 */
    	wrote += wb_check_old_data_flush(wb);
    	wrote += wb_check_background_flush(wb);
    	clear_bit(WB_writeback_running, &wb->state);
    
    	return wrote;
    }
    
    /*
     * Handle writeback of dirty data for the device backed by this bdi. Also
     * reschedules periodically and does kupdated style flushing.
     */
    void wb_workfn(struct work_struct *work)
    {
    	struct bdi_writeback *wb = container_of(to_delayed_work(work),
    						struct bdi_writeback, dwork);
    	long pages_written;
    
    	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
    	current->flags |= PF_SWAPWRITE;
    
    	if (likely(!current_is_workqueue_rescuer() ||
    		   !test_bit(WB_registered, &wb->state))) {
    		/*
    		 * The normal path.  Keep writing back @wb until its
    		 * work_list is empty.  Note that this path is also taken
    		 * if @wb is shutting down even when we're running off the
    		 * rescuer as work_list needs to be drained.
    		 */
    		do {
    			pages_written = wb_do_writeback(wb);
    			trace_writeback_pages_written(pages_written);
    		} while (!list_empty(&wb->work_list));
    	} else {
    		/*
    		 * bdi_wq can't get enough workers and we're running off
    		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
    		 * enough for efficient IO.
    		 */
    		pages_written = writeback_inodes_wb(wb, 1024,
    						    WB_REASON_FORKER_THREAD);
    		trace_writeback_pages_written(pages_written);
    	}
    
    	if (!list_empty(&wb->work_list))
    		mod_delayed_work(bdi_wq, &wb->dwork, 0);
    	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
    		wb_wakeup_delayed(wb);
    
    	current->flags &= ~PF_SWAPWRITE;
    }
    
    /*
     * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
     * the whole world.
     */
    void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
    {
    	struct backing_dev_info *bdi;
    
    	if (!nr_pages)
    		nr_pages = get_nr_dirty_pages();
    
    	rcu_read_lock();
    	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
    		struct bdi_writeback *wb;
    		struct wb_iter iter;
    
    		if (!bdi_has_dirty_io(bdi))
    			continue;
    
    		bdi_for_each_wb(wb, bdi, &iter, 0)
    			wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
    					   false, reason);
    	}
    	rcu_read_unlock();
    }
    
    /*
     * Wake up bdi's periodically to make sure dirtytime inodes gets
     * written back periodically.  We deliberately do *not* check the
     * b_dirtytime list in wb_has_dirty_io(), since this would cause the
     * kernel to be constantly waking up once there are any dirtytime
     * inodes on the system.  So instead we define a separate delayed work
     * function which gets called much more rarely.  (By default, only
     * once every 12 hours.)
     *
     * If there is any other write activity going on in the file system,
     * this function won't be necessary.  But if the only thing that has
     * happened on the file system is a dirtytime inode caused by an atime
     * update, we need this infrastructure below to make sure that inode
     * eventually gets pushed out to disk.
     */
    static void wakeup_dirtytime_writeback(struct work_struct *w);
    static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
    
    static void wakeup_dirtytime_writeback(struct work_struct *w)
    {
    	struct backing_dev_info *bdi;
    
    	rcu_read_lock();
    	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
    		struct bdi_writeback *wb;
    		struct wb_iter iter;
    
    		bdi_for_each_wb(wb, bdi, &iter, 0)
    			if (!list_empty(&bdi->wb.b_dirty_time))
    				wb_wakeup(&bdi->wb);
    	}
    	rcu_read_unlock();
    	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
    }
    
    static int __init start_dirtytime_writeback(void)
    {
    	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
    	return 0;
    }
    __initcall(start_dirtytime_writeback);
    
    int dirtytime_interval_handler(struct ctl_table *table, int write,
    			       void __user *buffer, size_t *lenp, loff_t *ppos)
    {
    	int ret;
    
    	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
    	if (ret == 0 && write)
    		mod_delayed_work(system_wq, &dirtytime_work, 0);
    	return ret;
    }
    
    static noinline void block_dump___mark_inode_dirty(struct inode *inode)
    {
    	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
    		struct dentry *dentry;
    		const char *name = "?";
    
    		dentry = d_find_alias(inode);
    		if (dentry) {
    			spin_lock(&dentry->d_lock);
    			name = (const char *) dentry->d_name.name;
    		}
    		printk(KERN_DEBUG
    		       "%s(%d): dirtied inode %lu (%s) on %s\n",
    		       current->comm, task_pid_nr(current), inode->i_ino,
    		       name, inode->i_sb->s_id);
    		if (dentry) {
    			spin_unlock(&dentry->d_lock);
    			dput(dentry);
    		}
    	}
    }
    
    /**
     *	__mark_inode_dirty -	internal function
     *	@inode: inode to mark
     *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
     *	Mark an inode as dirty. Callers should use mark_inode_dirty or
     *  	mark_inode_dirty_sync.
     *
     * Put the inode on the super block's dirty list.
     *
     * CAREFUL! We mark it dirty unconditionally, but move it onto the
     * dirty list only if it is hashed or if it refers to a blockdev.
     * If it was not hashed, it will never be added to the dirty list
     * even if it is later hashed, as it will have been marked dirty already.
     *
     * In short, make sure you hash any inodes _before_ you start marking
     * them dirty.
     *
     * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
     * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
     * the kernel-internal blockdev inode represents the dirtying time of the
     * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
     * page->mapping->host, so the page-dirtying time is recorded in the internal
     * blockdev inode.
     */
    #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
    void __mark_inode_dirty(struct inode *inode, int flags)
    {
    	struct super_block *sb = inode->i_sb;
    	int dirtytime;
    
    	trace_writeback_mark_inode_dirty(inode, flags);
    
    	/*
    	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
    	 * dirty the inode itself
    	 */
    	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
    		trace_writeback_dirty_inode_start(inode, flags);
    
    		if (sb->s_op->dirty_inode)
    			sb->s_op->dirty_inode(inode, flags);
    
    		trace_writeback_dirty_inode(inode, flags);
    	}
    	if (flags & I_DIRTY_INODE)
    		flags &= ~I_DIRTY_TIME;
    	dirtytime = flags & I_DIRTY_TIME;
    
    	/*
    	 * Paired with smp_mb() in __writeback_single_inode() for the
    	 * following lockless i_state test.  See there for details.
    	 */
    	smp_mb();
    
    	if (((inode->i_state & flags) == flags) ||
    	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
    		return;
    
    	if (unlikely(block_dump))
    		block_dump___mark_inode_dirty(inode);
    
    	spin_lock(&inode->i_lock);
    	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
    		goto out_unlock_inode;
    	if ((inode->i_state & flags) != flags) {
    		const int was_dirty = inode->i_state & I_DIRTY;
    
    		inode_attach_wb(inode, NULL);
    
    		if (flags & I_DIRTY_INODE)
    			inode->i_state &= ~I_DIRTY_TIME;
    		inode->i_state |= flags;
    
    		/*
    		 * If the inode is being synced, just update its dirty state.
    		 * The unlocker will place the inode on the appropriate
    		 * superblock list, based upon its state.
    		 */
    		if (inode->i_state & I_SYNC)
    			goto out_unlock_inode;
    
    		/*
    		 * Only add valid (hashed) inodes to the superblock's
    		 * dirty list.  Add blockdev inodes as well.
    		 */
    		if (!S_ISBLK(inode->i_mode)) {
    			if (inode_unhashed(inode))
    				goto out_unlock_inode;
    		}
    		if (inode->i_state & I_FREEING)
    			goto out_unlock_inode;
    
    		/*
    		 * If the inode was already on b_dirty/b_io/b_more_io, don't
    		 * reposition it (that would break b_dirty time-ordering).
    		 */
    		if (!was_dirty) {
    			struct bdi_writeback *wb;
    			struct list_head *dirty_list;
    			bool wakeup_bdi = false;
    
    			wb = locked_inode_to_wb_and_lock_list(inode);
    
    			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
    			     !test_bit(WB_registered, &wb->state),
    			     "bdi-%s not registered\n", wb->bdi->name);
    
    			inode->dirtied_when = jiffies;
    			if (dirtytime)
    				inode->dirtied_time_when = jiffies;
    
    			if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
    				dirty_list = &wb->b_dirty;
    			else
    				dirty_list = &wb->b_dirty_time;
    
    			wakeup_bdi = inode_io_list_move_locked(inode, wb,
    							       dirty_list);
    
    			spin_unlock(&wb->list_lock);
    			trace_writeback_dirty_inode_enqueue(inode);
    
    			/*
    			 * If this is the first dirty inode for this bdi,
    			 * we have to wake-up the corresponding bdi thread
    			 * to make sure background write-back happens
    			 * later.
    			 */
    			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
    				wb_wakeup_delayed(wb);
    			return;
    		}
    	}
    out_unlock_inode:
    	spin_unlock(&inode->i_lock);
    
    }
    EXPORT_SYMBOL(__mark_inode_dirty);
    
    /*
     * The @s_sync_lock is used to serialise concurrent sync operations
     * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
     * Concurrent callers will block on the s_sync_lock rather than doing contending
     * walks. The queueing maintains sync(2) required behaviour as all the IO that
     * has been issued up to the time this function is enter is guaranteed to be
     * completed by the time we have gained the lock and waited for all IO that is
     * in progress regardless of the order callers are granted the lock.
     */
    static void wait_sb_inodes(struct super_block *sb)
    {
    	struct inode *inode, *old_inode = NULL;
    
    	/*
    	 * We need to be protected against the filesystem going from
    	 * r/o to r/w or vice versa.
    	 */
    	WARN_ON(!rwsem_is_locked(&sb->s_umount));
    
    	mutex_lock(&sb->s_sync_lock);
    	spin_lock(&sb->s_inode_list_lock);
    
    	/*
    	 * Data integrity sync. Must wait for all pages under writeback,
    	 * because there may have been pages dirtied before our sync
    	 * call, but which had writeout started before we write it out.
    	 * In which case, the inode may not be on the dirty list, but
    	 * we still have to wait for that writeout.
    	 */
    	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
    		struct address_space *mapping = inode->i_mapping;
    
    		spin_lock(&inode->i_lock);
    		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
    		    (mapping->nrpages == 0)) {
    			spin_unlock(&inode->i_lock);
    			continue;
    		}
    		__iget(inode);
    		spin_unlock(&inode->i_lock);
    		spin_unlock(&sb->s_inode_list_lock);
    
    		/*
    		 * We hold a reference to 'inode' so it couldn't have been
    		 * removed from s_inodes list while we dropped the
    		 * s_inode_list_lock.  We cannot iput the inode now as we can
    		 * be holding the last reference and we cannot iput it under
    		 * s_inode_list_lock. So we keep the reference and iput it
    		 * later.
    		 */
    		iput(old_inode);
    		old_inode = inode;
    
    		filemap_fdatawait(mapping);
    
    		cond_resched();
    
    		spin_lock(&sb->s_inode_list_lock);
    	}
    	spin_unlock(&sb->s_inode_list_lock);
    	iput(old_inode);
    	mutex_unlock(&sb->s_sync_lock);
    }
    
    static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
    				     enum wb_reason reason, bool skip_if_busy)
    {
    	DEFINE_WB_COMPLETION_ONSTACK(done);
    	struct wb_writeback_work work = {
    		.sb			= sb,
    		.sync_mode		= WB_SYNC_NONE,
    		.tagged_writepages	= 1,
    		.done			= &done,
    		.nr_pages		= nr,
    		.reason			= reason,
    	};
    	struct backing_dev_info *bdi = sb->s_bdi;
    
    	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
    		return;
    	WARN_ON(!rwsem_is_locked(&sb->s_umount));
    
    	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
    	wb_wait_for_completion(bdi, &done);
    }
    
    /**
     * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
     * @sb: the superblock
     * @nr: the number of pages to write
     * @reason: reason why some writeback work initiated
     *
     * Start writeback on some inodes on this super_block. No guarantees are made
     * on how many (if any) will be written, and this function does not wait
     * for IO completion of submitted IO.
     */
    void writeback_inodes_sb_nr(struct super_block *sb,
    			    unsigned long nr,
    			    enum wb_reason reason)
    {
    	__writeback_inodes_sb_nr(sb, nr, reason, false);
    }
    EXPORT_SYMBOL(writeback_inodes_sb_nr);
    
    /**
     * writeback_inodes_sb	-	writeback dirty inodes from given super_block
     * @sb: the superblock
     * @reason: reason why some writeback work was initiated
     *
     * Start writeback on some inodes on this super_block. No guarantees are made
     * on how many (if any) will be written, and this function does not wait
     * for IO completion of submitted IO.
     */
    void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
    {
    	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
    }
    EXPORT_SYMBOL(writeback_inodes_sb);
    
    /**
     * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
     * @sb: the superblock
     * @nr: the number of pages to write
     * @reason: the reason of writeback
     *
     * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
     * Returns 1 if writeback was started, 0 if not.
     */
    bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
    				   enum wb_reason reason)
    {
    	if (!down_read_trylock(&sb->s_umount))
    		return false;
    
    	__writeback_inodes_sb_nr(sb, nr, reason, true);
    	up_read(&sb->s_umount);
    	return true;
    }
    EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
    
    /**
     * try_to_writeback_inodes_sb - try to start writeback if none underway
     * @sb: the superblock
     * @reason: reason why some writeback work was initiated
     *
     * Implement by try_to_writeback_inodes_sb_nr()
     * Returns 1 if writeback was started, 0 if not.
     */
    bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
    {
    	return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
    }
    EXPORT_SYMBOL(try_to_writeback_inodes_sb);
    
    /**
     * sync_inodes_sb	-	sync sb inode pages
     * @sb: the superblock
     *
     * This function writes and waits on any dirty inode belonging to this
     * super_block.
     */
    void sync_inodes_sb(struct super_block *sb)
    {
    	DEFINE_WB_COMPLETION_ONSTACK(done);
    	struct wb_writeback_work work = {
    		.sb		= sb,
    		.sync_mode	= WB_SYNC_ALL,
    		.nr_pages	= LONG_MAX,
    		.range_cyclic	= 0,
    		.done		= &done,
    		.reason		= WB_REASON_SYNC,
    		.for_sync	= 1,
    	};
    	struct backing_dev_info *bdi = sb->s_bdi;
    
    	/*
    	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
    	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
    	 * bdi_has_dirty() need to be written out too.
    	 */
    	if (bdi == &noop_backing_dev_info)
    		return;
    	WARN_ON(!rwsem_is_locked(&sb->s_umount));
    
    	bdi_split_work_to_wbs(bdi, &work, false);
    	wb_wait_for_completion(bdi, &done);
    
    	wait_sb_inodes(sb);
    }
    EXPORT_SYMBOL(sync_inodes_sb);
    
    /**
     * write_inode_now	-	write an inode to disk
     * @inode: inode to write to disk
     * @sync: whether the write should be synchronous or not
     *
     * This function commits an inode to disk immediately if it is dirty. This is
     * primarily needed by knfsd.
     *
     * The caller must either have a ref on the inode or must have set I_WILL_FREE.
     */
    int write_inode_now(struct inode *inode, int sync)
    {
    	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
    	struct writeback_control wbc = {
    		.nr_to_write = LONG_MAX,
    		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
    		.range_start = 0,
    		.range_end = LLONG_MAX,
    	};
    
    	if (!mapping_cap_writeback_dirty(inode->i_mapping))
    		wbc.nr_to_write = 0;
    
    	might_sleep();
    	return writeback_single_inode(inode, wb, &wbc);
    }
    EXPORT_SYMBOL(write_inode_now);
    
    /**
     * sync_inode - write an inode and its pages to disk.
     * @inode: the inode to sync
     * @wbc: controls the writeback mode
     *
     * sync_inode() will write an inode and its pages to disk.  It will also
     * correctly update the inode on its superblock's dirty inode lists and will
     * update inode->i_state.
     *
     * The caller must have a ref on the inode.
     */
    int sync_inode(struct inode *inode, struct writeback_control *wbc)
    {
    	return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
    }
    EXPORT_SYMBOL(sync_inode);
    
    /**
     * sync_inode_metadata - write an inode to disk
     * @inode: the inode to sync
     * @wait: wait for I/O to complete.
     *
     * Write an inode to disk and adjust its dirty state after completion.
     *
     * Note: only writes the actual inode, no associated data or other metadata.
     */
    int sync_inode_metadata(struct inode *inode, int wait)
    {
    	struct writeback_control wbc = {
    		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
    		.nr_to_write = 0, /* metadata-only */
    	};
    
    	return sync_inode(inode, &wbc);
    }
    EXPORT_SYMBOL(sync_inode_metadata);