Skip to content
Snippets Groups Projects
Select Git revision
  • a83c2844903c45aa7d32cdd17305f23ce2c56ab9
  • master default
  • virtio-camera
  • venus
  • venus-rebased
  • virgl-blob-fixes
  • staging
  • stable-6.1
  • stable-6.0
  • stable-6.0-staging
  • stable-5.0
  • stable-4.2
  • stable-4.1
  • stable-4.0
  • stable-3.1
  • stable-3.0
  • stable-2.12
  • stable-2.11
  • stable-2.10
  • stable-2.9
  • stable-2.8
  • v7.1.0-rc2
  • v7.1.0-rc1
  • v7.1.0-rc0
  • v7.0.0
  • v7.0.0-rc4
  • v7.0.0-rc3
  • v7.0.0-rc2
  • v7.0.0-rc1
  • v7.0.0-rc0
  • v6.1.1
  • v6.2.0
  • v6.2.0-rc4
  • v6.2.0-rc3
  • v6.2.0-rc2
  • v6.2.0-rc1
  • v6.2.0-rc0
  • v6.0.1
  • v6.1.0
  • v6.1.0-rc4
  • v6.1.0-rc3
41 results

pcihp.h

Blame
  • file.c 36.15 KiB
    /*
     * Copyright (C) 2007 Oracle.  All rights reserved.
     *
     * This program is free software; you can redistribute it and/or
     * modify it under the terms of the GNU General Public
     * License v2 as published by the Free Software Foundation.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * General Public License for more details.
     *
     * You should have received a copy of the GNU General Public
     * License along with this program; if not, write to the
     * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
     * Boston, MA 021110-1307, USA.
     */
    
    #include <linux/fs.h>
    #include <linux/pagemap.h>
    #include <linux/highmem.h>
    #include <linux/time.h>
    #include <linux/init.h>
    #include <linux/string.h>
    #include <linux/smp_lock.h>
    #include <linux/backing-dev.h>
    #include <linux/mpage.h>
    #include <linux/swap.h>
    #include <linux/writeback.h>
    #include <linux/statfs.h>
    #include <linux/compat.h>
    #include "ctree.h"
    #include "disk-io.h"
    #include "transaction.h"
    #include "btrfs_inode.h"
    #include "ioctl.h"
    #include "print-tree.h"
    #include "tree-log.h"
    #include "locking.h"
    #include "compat.h"
    
    
    /* simple helper to fault in pages and copy.  This should go away
     * and be replaced with calls into generic code.
     */
    static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
    					 int write_bytes,
    					 struct page **prepared_pages,
    					 const char __user *buf)
    {
    	long page_fault = 0;
    	int i;
    	int offset = pos & (PAGE_CACHE_SIZE - 1);
    
    	for (i = 0; i < num_pages && write_bytes > 0; i++, offset = 0) {
    		size_t count = min_t(size_t,
    				     PAGE_CACHE_SIZE - offset, write_bytes);
    		struct page *page = prepared_pages[i];
    		fault_in_pages_readable(buf, count);
    
    		/* Copy data from userspace to the current page */
    		kmap(page);
    		page_fault = __copy_from_user(page_address(page) + offset,
    					      buf, count);
    		/* Flush processor's dcache for this page */
    		flush_dcache_page(page);
    		kunmap(page);
    		buf += count;
    		write_bytes -= count;
    
    		if (page_fault)
    			break;
    	}
    	return page_fault ? -EFAULT : 0;
    }
    
    /*
     * unlocks pages after btrfs_file_write is done with them
     */
    static noinline void btrfs_drop_pages(struct page **pages, size_t num_pages)
    {
    	size_t i;
    	for (i = 0; i < num_pages; i++) {
    		if (!pages[i])
    			break;
    		/* page checked is some magic around finding pages that
    		 * have been modified without going through btrfs_set_page_dirty
    		 * clear it here
    		 */
    		ClearPageChecked(pages[i]);
    		unlock_page(pages[i]);
    		mark_page_accessed(pages[i]);
    		page_cache_release(pages[i]);
    	}
    }
    
    /*
     * after copy_from_user, pages need to be dirtied and we need to make
     * sure holes are created between the current EOF and the start of
     * any next extents (if required).
     *
     * this also makes the decision about creating an inline extent vs
     * doing real data extents, marking pages dirty and delalloc as required.
     */
    static noinline int dirty_and_release_pages(struct btrfs_trans_handle *trans,
    				   struct btrfs_root *root,
    				   struct file *file,
    				   struct page **pages,
    				   size_t num_pages,
    				   loff_t pos,
    				   size_t write_bytes)
    {
    	int err = 0;
    	int i;
    	struct inode *inode = fdentry(file)->d_inode;
    	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
    	u64 hint_byte;
    	u64 num_bytes;
    	u64 start_pos;
    	u64 end_of_last_block;
    	u64 end_pos = pos + write_bytes;
    	loff_t isize = i_size_read(inode);
    
    	start_pos = pos & ~((u64)root->sectorsize - 1);
    	num_bytes = (write_bytes + pos - start_pos +
    		    root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
    
    	end_of_last_block = start_pos + num_bytes - 1;
    
    	lock_extent(io_tree, start_pos, end_of_last_block, GFP_NOFS);
    	trans = btrfs_join_transaction(root, 1);
    	if (!trans) {
    		err = -ENOMEM;
    		goto out_unlock;
    	}
    	btrfs_set_trans_block_group(trans, inode);
    	hint_byte = 0;
    
    	set_extent_uptodate(io_tree, start_pos, end_of_last_block, GFP_NOFS);
    
    	/* check for reserved extents on each page, we don't want
    	 * to reset the delalloc bit on things that already have
    	 * extents reserved.
    	 */
    	btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block);
    	for (i = 0; i < num_pages; i++) {
    		struct page *p = pages[i];
    		SetPageUptodate(p);
    		ClearPageChecked(p);
    		set_page_dirty(p);
    	}
    	if (end_pos > isize) {
    		i_size_write(inode, end_pos);
    		btrfs_update_inode(trans, root, inode);
    	}
    	err = btrfs_end_transaction(trans, root);
    out_unlock:
    	unlock_extent(io_tree, start_pos, end_of_last_block, GFP_NOFS);
    	return err;
    }
    
    /*
     * this drops all the extents in the cache that intersect the range
     * [start, end].  Existing extents are split as required.
     */
    int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
    			    int skip_pinned)
    {
    	struct extent_map *em;
    	struct extent_map *split = NULL;
    	struct extent_map *split2 = NULL;
    	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
    	u64 len = end - start + 1;
    	int ret;
    	int testend = 1;
    	unsigned long flags;
    	int compressed = 0;
    
    	WARN_ON(end < start);
    	if (end == (u64)-1) {
    		len = (u64)-1;
    		testend = 0;
    	}
    	while (1) {
    		if (!split)
    			split = alloc_extent_map(GFP_NOFS);
    		if (!split2)
    			split2 = alloc_extent_map(GFP_NOFS);
    
    		spin_lock(&em_tree->lock);
    		em = lookup_extent_mapping(em_tree, start, len);
    		if (!em) {
    			spin_unlock(&em_tree->lock);
    			break;
    		}
    		flags = em->flags;
    		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
    			spin_unlock(&em_tree->lock);
    			if (em->start <= start &&
    			    (!testend || em->start + em->len >= start + len)) {
    				free_extent_map(em);
    				break;
    			}
    			if (start < em->start) {
    				len = em->start - start;
    			} else {
    				len = start + len - (em->start + em->len);
    				start = em->start + em->len;
    			}
    			free_extent_map(em);
    			continue;
    		}
    		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
    		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
    		remove_extent_mapping(em_tree, em);
    
    		if (em->block_start < EXTENT_MAP_LAST_BYTE &&
    		    em->start < start) {
    			split->start = em->start;
    			split->len = start - em->start;
    			split->orig_start = em->orig_start;
    			split->block_start = em->block_start;
    
    			if (compressed)
    				split->block_len = em->block_len;
    			else
    				split->block_len = split->len;
    
    			split->bdev = em->bdev;
    			split->flags = flags;
    			ret = add_extent_mapping(em_tree, split);
    			BUG_ON(ret);
    			free_extent_map(split);
    			split = split2;
    			split2 = NULL;
    		}
    		if (em->block_start < EXTENT_MAP_LAST_BYTE &&
    		    testend && em->start + em->len > start + len) {
    			u64 diff = start + len - em->start;
    
    			split->start = start + len;
    			split->len = em->start + em->len - (start + len);
    			split->bdev = em->bdev;
    			split->flags = flags;
    
    			if (compressed) {
    				split->block_len = em->block_len;
    				split->block_start = em->block_start;
    				split->orig_start = em->orig_start;
    			} else {
    				split->block_len = split->len;
    				split->block_start = em->block_start + diff;
    				split->orig_start = split->start;
    			}
    
    			ret = add_extent_mapping(em_tree, split);
    			BUG_ON(ret);
    			free_extent_map(split);
    			split = NULL;
    		}
    		spin_unlock(&em_tree->lock);
    
    		/* once for us */
    		free_extent_map(em);
    		/* once for the tree*/
    		free_extent_map(em);
    	}
    	if (split)
    		free_extent_map(split);
    	if (split2)
    		free_extent_map(split2);
    	return 0;
    }
    
    int btrfs_check_file(struct btrfs_root *root, struct inode *inode)
    {
    	return 0;
    #if 0
    	struct btrfs_path *path;
    	struct btrfs_key found_key;
    	struct extent_buffer *leaf;
    	struct btrfs_file_extent_item *extent;
    	u64 last_offset = 0;
    	int nritems;
    	int slot;
    	int found_type;
    	int ret;
    	int err = 0;
    	u64 extent_end = 0;
    
    	path = btrfs_alloc_path();
    	ret = btrfs_lookup_file_extent(NULL, root, path, inode->i_ino,
    				       last_offset, 0);
    	while (1) {
    		nritems = btrfs_header_nritems(path->nodes[0]);
    		if (path->slots[0] >= nritems) {
    			ret = btrfs_next_leaf(root, path);
    			if (ret)
    				goto out;
    			nritems = btrfs_header_nritems(path->nodes[0]);
    		}
    		slot = path->slots[0];
    		leaf = path->nodes[0];
    		btrfs_item_key_to_cpu(leaf, &found_key, slot);
    		if (found_key.objectid != inode->i_ino)
    			break;
    		if (found_key.type != BTRFS_EXTENT_DATA_KEY)
    			goto out;
    
    		if (found_key.offset < last_offset) {
    			WARN_ON(1);
    			btrfs_print_leaf(root, leaf);
    			printk(KERN_ERR "inode %lu found offset %llu "
    			       "expected %llu\n", inode->i_ino,
    			       (unsigned long long)found_key.offset,
    			       (unsigned long long)last_offset);
    			err = 1;
    			goto out;
    		}
    		extent = btrfs_item_ptr(leaf, slot,
    					struct btrfs_file_extent_item);
    		found_type = btrfs_file_extent_type(leaf, extent);
    		if (found_type == BTRFS_FILE_EXTENT_REG) {
    			extent_end = found_key.offset +
    			     btrfs_file_extent_num_bytes(leaf, extent);
    		} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
    			struct btrfs_item *item;
    			item = btrfs_item_nr(leaf, slot);
    			extent_end = found_key.offset +
    			     btrfs_file_extent_inline_len(leaf, extent);
    			extent_end = (extent_end + root->sectorsize - 1) &
    				~((u64)root->sectorsize - 1);
    		}
    		last_offset = extent_end;
    		path->slots[0]++;
    	}
    	if (0 && last_offset < inode->i_size) {
    		WARN_ON(1);
    		btrfs_print_leaf(root, leaf);
    		printk(KERN_ERR "inode %lu found offset %llu size %llu\n",
    		       inode->i_ino, (unsigned long long)last_offset,
    		       (unsigned long long)inode->i_size);
    		err = 1;
    
    	}
    out:
    	btrfs_free_path(path);
    	return err;
    #endif
    }
    
    /*
     * this is very complex, but the basic idea is to drop all extents
     * in the range start - end.  hint_block is filled in with a block number
     * that would be a good hint to the block allocator for this file.
     *
     * If an extent intersects the range but is not entirely inside the range
     * it is either truncated or split.  Anything entirely inside the range
     * is deleted from the tree.
     *
     * inline_limit is used to tell this code which offsets in the file to keep
     * if they contain inline extents.
     */
    noinline int btrfs_drop_extents(struct btrfs_trans_handle *trans,
    		       struct btrfs_root *root, struct inode *inode,
    		       u64 start, u64 end, u64 inline_limit, u64 *hint_byte)
    {
    	u64 extent_end = 0;
    	u64 locked_end = end;
    	u64 search_start = start;
    	u64 leaf_start;
    	u64 ram_bytes = 0;
    	u64 orig_parent = 0;
    	u64 disk_bytenr = 0;
    	u8 compression;
    	u8 encryption;
    	u16 other_encoding = 0;
    	u64 root_gen;
    	u64 root_owner;
    	struct extent_buffer *leaf;
    	struct btrfs_file_extent_item *extent;
    	struct btrfs_path *path;
    	struct btrfs_key key;
    	struct btrfs_file_extent_item old;
    	int keep;
    	int slot;
    	int bookend;
    	int found_type = 0;
    	int found_extent;
    	int found_inline;
    	int recow;
    	int ret;
    
    	inline_limit = 0;
    	btrfs_drop_extent_cache(inode, start, end - 1, 0);
    
    	path = btrfs_alloc_path();
    	if (!path)
    		return -ENOMEM;
    	while (1) {
    		recow = 0;
    		btrfs_release_path(root, path);
    		ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
    					       search_start, -1);
    		if (ret < 0)
    			goto out;
    		if (ret > 0) {
    			if (path->slots[0] == 0) {
    				ret = 0;
    				goto out;
    			}
    			path->slots[0]--;
    		}
    next_slot:
    		keep = 0;
    		bookend = 0;
    		found_extent = 0;
    		found_inline = 0;
    		leaf_start = 0;
    		root_gen = 0;
    		root_owner = 0;
    		compression = 0;
    		encryption = 0;
    		extent = NULL;
    		leaf = path->nodes[0];
    		slot = path->slots[0];
    		ret = 0;
    		btrfs_item_key_to_cpu(leaf, &key, slot);
    		if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY &&
    		    key.offset >= end) {
    			goto out;
    		}
    		if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
    		    key.objectid != inode->i_ino) {
    			goto out;
    		}
    		if (recow) {
    			search_start = max(key.offset, start);
    			continue;
    		}
    		if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
    			extent = btrfs_item_ptr(leaf, slot,
    						struct btrfs_file_extent_item);
    			found_type = btrfs_file_extent_type(leaf, extent);
    			compression = btrfs_file_extent_compression(leaf,
    								    extent);
    			encryption = btrfs_file_extent_encryption(leaf,
    								  extent);
    			other_encoding = btrfs_file_extent_other_encoding(leaf,
    								  extent);
    			if (found_type == BTRFS_FILE_EXTENT_REG ||
    			    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
    				extent_end =
    				     btrfs_file_extent_disk_bytenr(leaf,
    								   extent);
    				if (extent_end)
    					*hint_byte = extent_end;
    
    				extent_end = key.offset +
    				     btrfs_file_extent_num_bytes(leaf, extent);
    				ram_bytes = btrfs_file_extent_ram_bytes(leaf,
    								extent);
    				found_extent = 1;
    			} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
    				found_inline = 1;
    				extent_end = key.offset +
    				     btrfs_file_extent_inline_len(leaf, extent);
    			}
    		} else {
    			extent_end = search_start;
    		}
    
    		/* we found nothing we can drop */
    		if ((!found_extent && !found_inline) ||
    		    search_start >= extent_end) {
    			int nextret;
    			u32 nritems;
    			nritems = btrfs_header_nritems(leaf);
    			if (slot >= nritems - 1) {
    				nextret = btrfs_next_leaf(root, path);
    				if (nextret)
    					goto out;
    				recow = 1;
    			} else {
    				path->slots[0]++;
    			}
    			goto next_slot;
    		}
    
    		if (end <= extent_end && start >= key.offset && found_inline)
    			*hint_byte = EXTENT_MAP_INLINE;
    
    		if (found_extent) {
    			read_extent_buffer(leaf, &old, (unsigned long)extent,
    					   sizeof(old));
    			root_gen = btrfs_header_generation(leaf);
    			root_owner = btrfs_header_owner(leaf);
    			leaf_start = leaf->start;
    		}
    
    		if (end < extent_end && end >= key.offset) {
    			bookend = 1;
    			if (found_inline && start <= key.offset)
    				keep = 1;
    		}
    
    		if (bookend && found_extent) {
    			if (locked_end < extent_end) {
    				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
    						locked_end, extent_end - 1,
    						GFP_NOFS);
    				if (!ret) {
    					btrfs_release_path(root, path);
    					lock_extent(&BTRFS_I(inode)->io_tree,
    						locked_end, extent_end - 1,
    						GFP_NOFS);
    					locked_end = extent_end;
    					continue;
    				}
    				locked_end = extent_end;
    			}
    			orig_parent = path->nodes[0]->start;
    			disk_bytenr = le64_to_cpu(old.disk_bytenr);
    			if (disk_bytenr != 0) {
    				ret = btrfs_inc_extent_ref(trans, root,
    					   disk_bytenr,
    					   le64_to_cpu(old.disk_num_bytes),
    					   orig_parent, root->root_key.objectid,
    					   trans->transid, inode->i_ino);
    				BUG_ON(ret);
    			}
    		}
    
    		if (found_inline) {
    			u64 mask = root->sectorsize - 1;
    			search_start = (extent_end + mask) & ~mask;
    		} else
    			search_start = extent_end;
    
    		/* truncate existing extent */
    		if (start > key.offset) {
    			u64 new_num;
    			u64 old_num;
    			keep = 1;
    			WARN_ON(start & (root->sectorsize - 1));
    			if (found_extent) {
    				new_num = start - key.offset;
    				old_num = btrfs_file_extent_num_bytes(leaf,
    								      extent);
    				*hint_byte =
    					btrfs_file_extent_disk_bytenr(leaf,
    								      extent);
    				if (btrfs_file_extent_disk_bytenr(leaf,
    								  extent)) {
    					inode_sub_bytes(inode, old_num -
    							new_num);
    				}
    				btrfs_set_file_extent_num_bytes(leaf,
    							extent, new_num);
    				btrfs_mark_buffer_dirty(leaf);
    			} else if (key.offset < inline_limit &&
    				   (end > extent_end) &&
    				   (inline_limit < extent_end)) {
    				u32 new_size;
    				new_size = btrfs_file_extent_calc_inline_size(
    						   inline_limit - key.offset);
    				inode_sub_bytes(inode, extent_end -
    						inline_limit);
    				btrfs_set_file_extent_ram_bytes(leaf, extent,
    							new_size);
    				if (!compression && !encryption) {
    					btrfs_truncate_item(trans, root, path,
    							    new_size, 1);
    				}
    			}
    		}
    		/* delete the entire extent */
    		if (!keep) {
    			if (found_inline)
    				inode_sub_bytes(inode, extent_end -
    						key.offset);
    			ret = btrfs_del_item(trans, root, path);
    			/* TODO update progress marker and return */
    			BUG_ON(ret);
    			extent = NULL;
    			btrfs_release_path(root, path);
    			/* the extent will be freed later */
    		}
    		if (bookend && found_inline && start <= key.offset) {
    			u32 new_size;
    			new_size = btrfs_file_extent_calc_inline_size(
    						   extent_end - end);
    			inode_sub_bytes(inode, end - key.offset);
    			btrfs_set_file_extent_ram_bytes(leaf, extent,
    							new_size);
    			if (!compression && !encryption)
    				ret = btrfs_truncate_item(trans, root, path,
    							  new_size, 0);
    			BUG_ON(ret);
    		}
    		/* create bookend, splitting the extent in two */
    		if (bookend && found_extent) {
    			struct btrfs_key ins;
    			ins.objectid = inode->i_ino;
    			ins.offset = end;
    			btrfs_set_key_type(&ins, BTRFS_EXTENT_DATA_KEY);
    
    			btrfs_release_path(root, path);
    			path->leave_spinning = 1;
    			ret = btrfs_insert_empty_item(trans, root, path, &ins,
    						      sizeof(*extent));
    			BUG_ON(ret);
    
    			leaf = path->nodes[0];
    			extent = btrfs_item_ptr(leaf, path->slots[0],
    						struct btrfs_file_extent_item);
    			write_extent_buffer(leaf, &old,
    					    (unsigned long)extent, sizeof(old));
    
    			btrfs_set_file_extent_compression(leaf, extent,
    							  compression);
    			btrfs_set_file_extent_encryption(leaf, extent,
    							 encryption);
    			btrfs_set_file_extent_other_encoding(leaf, extent,
    							     other_encoding);
    			btrfs_set_file_extent_offset(leaf, extent,
    				    le64_to_cpu(old.offset) + end - key.offset);
    			WARN_ON(le64_to_cpu(old.num_bytes) <
    				(extent_end - end));
    			btrfs_set_file_extent_num_bytes(leaf, extent,
    							extent_end - end);
    
    			/*
    			 * set the ram bytes to the size of the full extent
    			 * before splitting.  This is a worst case flag,
    			 * but its the best we can do because we don't know
    			 * how splitting affects compression
    			 */
    			btrfs_set_file_extent_ram_bytes(leaf, extent,
    							ram_bytes);
    			btrfs_set_file_extent_type(leaf, extent, found_type);
    
    			btrfs_unlock_up_safe(path, 1);
    			btrfs_mark_buffer_dirty(path->nodes[0]);
    			btrfs_set_lock_blocking(path->nodes[0]);
    
    			if (disk_bytenr != 0) {
    				ret = btrfs_update_extent_ref(trans, root,
    						disk_bytenr,
    						le64_to_cpu(old.disk_num_bytes),
    						orig_parent,
    						leaf->start,
    						root->root_key.objectid,
    						trans->transid, ins.objectid);
    
    				BUG_ON(ret);
    			}
    			path->leave_spinning = 0;
    			btrfs_release_path(root, path);
    			if (disk_bytenr != 0)
    				inode_add_bytes(inode, extent_end - end);
    		}
    
    		if (found_extent && !keep) {
    			u64 old_disk_bytenr = le64_to_cpu(old.disk_bytenr);
    
    			if (old_disk_bytenr != 0) {
    				inode_sub_bytes(inode,
    						le64_to_cpu(old.num_bytes));
    				ret = btrfs_free_extent(trans, root,
    						old_disk_bytenr,
    						le64_to_cpu(old.disk_num_bytes),
    						leaf_start, root_owner,
    						root_gen, key.objectid, 0);
    				BUG_ON(ret);
    				*hint_byte = old_disk_bytenr;
    			}
    		}
    
    		if (search_start >= end) {
    			ret = 0;
    			goto out;
    		}
    	}
    out:
    	btrfs_free_path(path);
    	if (locked_end > end) {
    		unlock_extent(&BTRFS_I(inode)->io_tree, end, locked_end - 1,
    			      GFP_NOFS);
    	}
    	btrfs_check_file(root, inode);
    	return ret;
    }
    
    static int extent_mergeable(struct extent_buffer *leaf, int slot,
    			    u64 objectid, u64 bytenr, u64 *start, u64 *end)
    {
    	struct btrfs_file_extent_item *fi;
    	struct btrfs_key key;
    	u64 extent_end;
    
    	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
    		return 0;
    
    	btrfs_item_key_to_cpu(leaf, &key, slot);
    	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
    		return 0;
    
    	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
    	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
    	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
    	    btrfs_file_extent_compression(leaf, fi) ||
    	    btrfs_file_extent_encryption(leaf, fi) ||
    	    btrfs_file_extent_other_encoding(leaf, fi))
    		return 0;
    
    	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
    	if ((*start && *start != key.offset) || (*end && *end != extent_end))
    		return 0;
    
    	*start = key.offset;
    	*end = extent_end;
    	return 1;
    }
    
    /*
     * Mark extent in the range start - end as written.
     *
     * This changes extent type from 'pre-allocated' to 'regular'. If only
     * part of extent is marked as written, the extent will be split into
     * two or three.
     */
    int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
    			      struct btrfs_root *root,
    			      struct inode *inode, u64 start, u64 end)
    {
    	struct extent_buffer *leaf;
    	struct btrfs_path *path;
    	struct btrfs_file_extent_item *fi;
    	struct btrfs_key key;
    	u64 bytenr;
    	u64 num_bytes;
    	u64 extent_end;
    	u64 extent_offset;
    	u64 other_start;
    	u64 other_end;
    	u64 split = start;
    	u64 locked_end = end;
    	u64 orig_parent;
    	int extent_type;
    	int split_end = 1;
    	int ret;
    
    	btrfs_drop_extent_cache(inode, start, end - 1, 0);
    
    	path = btrfs_alloc_path();
    	BUG_ON(!path);
    again:
    	key.objectid = inode->i_ino;
    	key.type = BTRFS_EXTENT_DATA_KEY;
    	if (split == start)
    		key.offset = split;
    	else
    		key.offset = split - 1;
    
    	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
    	if (ret > 0 && path->slots[0] > 0)
    		path->slots[0]--;
    
    	leaf = path->nodes[0];
    	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
    	BUG_ON(key.objectid != inode->i_ino ||
    	       key.type != BTRFS_EXTENT_DATA_KEY);
    	fi = btrfs_item_ptr(leaf, path->slots[0],
    			    struct btrfs_file_extent_item);
    	extent_type = btrfs_file_extent_type(leaf, fi);
    	BUG_ON(extent_type != BTRFS_FILE_EXTENT_PREALLOC);
    	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
    	BUG_ON(key.offset > start || extent_end < end);
    
    	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
    	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
    	extent_offset = btrfs_file_extent_offset(leaf, fi);
    
    	if (key.offset == start)
    		split = end;
    
    	if (key.offset == start && extent_end == end) {
    		int del_nr = 0;
    		int del_slot = 0;
    		u64 leaf_owner = btrfs_header_owner(leaf);
    		u64 leaf_gen = btrfs_header_generation(leaf);
    		other_start = end;
    		other_end = 0;
    		if (extent_mergeable(leaf, path->slots[0] + 1, inode->i_ino,
    				     bytenr, &other_start, &other_end)) {
    			extent_end = other_end;
    			del_slot = path->slots[0] + 1;
    			del_nr++;
    			ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
    						leaf->start, leaf_owner,
    						leaf_gen, inode->i_ino, 0);
    			BUG_ON(ret);
    		}
    		other_start = 0;
    		other_end = start;
    		if (extent_mergeable(leaf, path->slots[0] - 1, inode->i_ino,
    				     bytenr, &other_start, &other_end)) {
    			key.offset = other_start;
    			del_slot = path->slots[0];
    			del_nr++;
    			ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
    						leaf->start, leaf_owner,
    						leaf_gen, inode->i_ino, 0);
    			BUG_ON(ret);
    		}
    		split_end = 0;
    		if (del_nr == 0) {
    			btrfs_set_file_extent_type(leaf, fi,
    						   BTRFS_FILE_EXTENT_REG);
    			goto done;
    		}
    
    		fi = btrfs_item_ptr(leaf, del_slot - 1,
    				    struct btrfs_file_extent_item);
    		btrfs_set_file_extent_type(leaf, fi, BTRFS_FILE_EXTENT_REG);
    		btrfs_set_file_extent_num_bytes(leaf, fi,
    						extent_end - key.offset);
    		btrfs_mark_buffer_dirty(leaf);
    
    		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
    		BUG_ON(ret);
    		goto done;
    	} else if (split == start) {
    		if (locked_end < extent_end) {
    			ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
    					locked_end, extent_end - 1, GFP_NOFS);
    			if (!ret) {
    				btrfs_release_path(root, path);
    				lock_extent(&BTRFS_I(inode)->io_tree,
    					locked_end, extent_end - 1, GFP_NOFS);
    				locked_end = extent_end;
    				goto again;
    			}
    			locked_end = extent_end;
    		}
    		btrfs_set_file_extent_num_bytes(leaf, fi, split - key.offset);
    		extent_offset += split - key.offset;
    	} else  {
    		BUG_ON(key.offset != start);
    		btrfs_set_file_extent_offset(leaf, fi, extent_offset +
    					     split - key.offset);
    		btrfs_set_file_extent_num_bytes(leaf, fi, extent_end - split);
    		key.offset = split;
    		btrfs_set_item_key_safe(trans, root, path, &key);
    		extent_end = split;
    	}
    
    	if (extent_end == end) {
    		split_end = 0;
    		extent_type = BTRFS_FILE_EXTENT_REG;
    	}
    	if (extent_end == end && split == start) {
    		other_start = end;
    		other_end = 0;
    		if (extent_mergeable(leaf, path->slots[0] + 1, inode->i_ino,
    				     bytenr, &other_start, &other_end)) {
    			path->slots[0]++;
    			fi = btrfs_item_ptr(leaf, path->slots[0],
    					    struct btrfs_file_extent_item);
    			key.offset = split;
    			btrfs_set_item_key_safe(trans, root, path, &key);
    			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
    			btrfs_set_file_extent_num_bytes(leaf, fi,
    							other_end - split);
    			goto done;
    		}
    	}
    	if (extent_end == end && split == end) {
    		other_start = 0;
    		other_end = start;
    		if (extent_mergeable(leaf, path->slots[0] - 1 , inode->i_ino,
    				     bytenr, &other_start, &other_end)) {
    			path->slots[0]--;
    			fi = btrfs_item_ptr(leaf, path->slots[0],
    					    struct btrfs_file_extent_item);
    			btrfs_set_file_extent_num_bytes(leaf, fi, extent_end -
    							other_start);
    			goto done;
    		}
    	}
    
    	btrfs_mark_buffer_dirty(leaf);
    
    	orig_parent = leaf->start;
    	ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes,
    				   orig_parent, root->root_key.objectid,
    				   trans->transid, inode->i_ino);
    	BUG_ON(ret);
    	btrfs_release_path(root, path);
    
    	key.offset = start;
    	ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*fi));
    	BUG_ON(ret);
    
    	leaf = path->nodes[0];
    	fi = btrfs_item_ptr(leaf, path->slots[0],
    			    struct btrfs_file_extent_item);
    	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
    	btrfs_set_file_extent_type(leaf, fi, extent_type);
    	btrfs_set_file_extent_disk_bytenr(leaf, fi, bytenr);
    	btrfs_set_file_extent_disk_num_bytes(leaf, fi, num_bytes);
    	btrfs_set_file_extent_offset(leaf, fi, extent_offset);
    	btrfs_set_file_extent_num_bytes(leaf, fi, extent_end - key.offset);
    	btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
    	btrfs_set_file_extent_compression(leaf, fi, 0);
    	btrfs_set_file_extent_encryption(leaf, fi, 0);
    	btrfs_set_file_extent_other_encoding(leaf, fi, 0);
    
    	if (orig_parent != leaf->start) {
    		ret = btrfs_update_extent_ref(trans, root, bytenr, num_bytes,
    					      orig_parent, leaf->start,
    					      root->root_key.objectid,
    					      trans->transid, inode->i_ino);
    		BUG_ON(ret);
    	}
    done:
    	btrfs_mark_buffer_dirty(leaf);
    	btrfs_release_path(root, path);
    	if (split_end && split == start) {
    		split = end;
    		goto again;
    	}
    	if (locked_end > end) {
    		unlock_extent(&BTRFS_I(inode)->io_tree, end, locked_end - 1,
    			      GFP_NOFS);
    	}
    	btrfs_free_path(path);
    	return 0;
    }
    
    /*
     * this gets pages into the page cache and locks them down, it also properly
     * waits for data=ordered extents to finish before allowing the pages to be
     * modified.
     */
    static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
    			 struct page **pages, size_t num_pages,
    			 loff_t pos, unsigned long first_index,
    			 unsigned long last_index, size_t write_bytes)
    {
    	int i;
    	unsigned long index = pos >> PAGE_CACHE_SHIFT;
    	struct inode *inode = fdentry(file)->d_inode;
    	int err = 0;
    	u64 start_pos;
    	u64 last_pos;
    
    	start_pos = pos & ~((u64)root->sectorsize - 1);
    	last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
    
    	if (start_pos > inode->i_size) {
    		err = btrfs_cont_expand(inode, start_pos);
    		if (err)
    			return err;
    	}
    
    	memset(pages, 0, num_pages * sizeof(struct page *));
    again:
    	for (i = 0; i < num_pages; i++) {
    		pages[i] = grab_cache_page(inode->i_mapping, index + i);
    		if (!pages[i]) {
    			err = -ENOMEM;
    			BUG_ON(1);
    		}
    		wait_on_page_writeback(pages[i]);
    	}
    	if (start_pos < inode->i_size) {
    		struct btrfs_ordered_extent *ordered;
    		lock_extent(&BTRFS_I(inode)->io_tree,
    			    start_pos, last_pos - 1, GFP_NOFS);
    		ordered = btrfs_lookup_first_ordered_extent(inode,
    							    last_pos - 1);
    		if (ordered &&
    		    ordered->file_offset + ordered->len > start_pos &&
    		    ordered->file_offset < last_pos) {
    			btrfs_put_ordered_extent(ordered);
    			unlock_extent(&BTRFS_I(inode)->io_tree,
    				      start_pos, last_pos - 1, GFP_NOFS);
    			for (i = 0; i < num_pages; i++) {
    				unlock_page(pages[i]);
    				page_cache_release(pages[i]);
    			}
    			btrfs_wait_ordered_range(inode, start_pos,
    						 last_pos - start_pos);
    			goto again;
    		}
    		if (ordered)
    			btrfs_put_ordered_extent(ordered);
    
    		clear_extent_bits(&BTRFS_I(inode)->io_tree, start_pos,
    				  last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC,
    				  GFP_NOFS);
    		unlock_extent(&BTRFS_I(inode)->io_tree,
    			      start_pos, last_pos - 1, GFP_NOFS);
    	}
    	for (i = 0; i < num_pages; i++) {
    		clear_page_dirty_for_io(pages[i]);
    		set_page_extent_mapped(pages[i]);
    		WARN_ON(!PageLocked(pages[i]));
    	}
    	return 0;
    }
    
    static ssize_t btrfs_file_write(struct file *file, const char __user *buf,
    				size_t count, loff_t *ppos)
    {
    	loff_t pos;
    	loff_t start_pos;
    	ssize_t num_written = 0;
    	ssize_t err = 0;
    	int ret = 0;
    	struct inode *inode = fdentry(file)->d_inode;
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct page **pages = NULL;
    	int nrptrs;
    	struct page *pinned[2];
    	unsigned long first_index;
    	unsigned long last_index;
    	int will_write;
    
    	will_write = ((file->f_flags & O_SYNC) || IS_SYNC(inode) ||
    		      (file->f_flags & O_DIRECT));
    
    	nrptrs = min((count + PAGE_CACHE_SIZE - 1) / PAGE_CACHE_SIZE,
    		     PAGE_CACHE_SIZE / (sizeof(struct page *)));
    	pinned[0] = NULL;
    	pinned[1] = NULL;
    
    	pos = *ppos;
    	start_pos = pos;
    
    	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
    	current->backing_dev_info = inode->i_mapping->backing_dev_info;
    	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
    	if (err)
    		goto out_nolock;
    	if (count == 0)
    		goto out_nolock;
    
    	err = file_remove_suid(file);
    	if (err)
    		goto out_nolock;
    	file_update_time(file);
    
    	pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
    
    	mutex_lock(&inode->i_mutex);
    	BTRFS_I(inode)->sequence++;
    	first_index = pos >> PAGE_CACHE_SHIFT;
    	last_index = (pos + count) >> PAGE_CACHE_SHIFT;
    
    	/*
    	 * there are lots of better ways to do this, but this code
    	 * makes sure the first and last page in the file range are
    	 * up to date and ready for cow
    	 */
    	if ((pos & (PAGE_CACHE_SIZE - 1))) {
    		pinned[0] = grab_cache_page(inode->i_mapping, first_index);
    		if (!PageUptodate(pinned[0])) {
    			ret = btrfs_readpage(NULL, pinned[0]);
    			BUG_ON(ret);
    			wait_on_page_locked(pinned[0]);
    		} else {
    			unlock_page(pinned[0]);
    		}
    	}
    	if ((pos + count) & (PAGE_CACHE_SIZE - 1)) {
    		pinned[1] = grab_cache_page(inode->i_mapping, last_index);
    		if (!PageUptodate(pinned[1])) {
    			ret = btrfs_readpage(NULL, pinned[1]);
    			BUG_ON(ret);
    			wait_on_page_locked(pinned[1]);
    		} else {
    			unlock_page(pinned[1]);
    		}
    	}
    
    	while (count > 0) {
    		size_t offset = pos & (PAGE_CACHE_SIZE - 1);
    		size_t write_bytes = min(count, nrptrs *
    					(size_t)PAGE_CACHE_SIZE -
    					 offset);
    		size_t num_pages = (write_bytes + PAGE_CACHE_SIZE - 1) >>
    					PAGE_CACHE_SHIFT;
    
    		WARN_ON(num_pages > nrptrs);
    		memset(pages, 0, sizeof(struct page *) * nrptrs);
    
    		ret = btrfs_check_data_free_space(root, inode, write_bytes);
    		if (ret)
    			goto out;
    
    		ret = prepare_pages(root, file, pages, num_pages,
    				    pos, first_index, last_index,
    				    write_bytes);
    		if (ret) {
    			btrfs_free_reserved_data_space(root, inode,
    						       write_bytes);
    			goto out;
    		}
    
    		ret = btrfs_copy_from_user(pos, num_pages,
    					   write_bytes, pages, buf);
    		if (ret) {
    			btrfs_free_reserved_data_space(root, inode,
    						       write_bytes);
    			btrfs_drop_pages(pages, num_pages);
    			goto out;
    		}
    
    		ret = dirty_and_release_pages(NULL, root, file, pages,
    					      num_pages, pos, write_bytes);
    		btrfs_drop_pages(pages, num_pages);
    		if (ret) {
    			btrfs_free_reserved_data_space(root, inode,
    						       write_bytes);
    			goto out;
    		}
    
    		if (will_write) {
    			btrfs_fdatawrite_range(inode->i_mapping, pos,
    					       pos + write_bytes - 1,
    					       WB_SYNC_ALL);
    		} else {
    			balance_dirty_pages_ratelimited_nr(inode->i_mapping,
    							   num_pages);
    			if (num_pages <
    			    (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
    				btrfs_btree_balance_dirty(root, 1);
    			btrfs_throttle(root);
    		}
    
    		buf += write_bytes;
    		count -= write_bytes;
    		pos += write_bytes;
    		num_written += write_bytes;
    
    		cond_resched();
    	}
    out:
    	mutex_unlock(&inode->i_mutex);
    	if (ret)
    		err = ret;
    
    out_nolock:
    	kfree(pages);
    	if (pinned[0])
    		page_cache_release(pinned[0]);
    	if (pinned[1])
    		page_cache_release(pinned[1]);
    	*ppos = pos;
    
    	/*
    	 * we want to make sure fsync finds this change
    	 * but we haven't joined a transaction running right now.
    	 *
    	 * Later on, someone is sure to update the inode and get the
    	 * real transid recorded.
    	 *
    	 * We set last_trans now to the fs_info generation + 1,
    	 * this will either be one more than the running transaction
    	 * or the generation used for the next transaction if there isn't
    	 * one running right now.
    	 */
    	BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
    
    	if (num_written > 0 && will_write) {
    		struct btrfs_trans_handle *trans;
    
    		err = btrfs_wait_ordered_range(inode, start_pos, num_written);
    		if (err)
    			num_written = err;
    
    		if ((file->f_flags & O_SYNC) || IS_SYNC(inode)) {
    			trans = btrfs_start_transaction(root, 1);
    			ret = btrfs_log_dentry_safe(trans, root,
    						    file->f_dentry);
    			if (ret == 0) {
    				ret = btrfs_sync_log(trans, root);
    				if (ret == 0)
    					btrfs_end_transaction(trans, root);
    				else
    					btrfs_commit_transaction(trans, root);
    			} else {
    				btrfs_commit_transaction(trans, root);
    			}
    		}
    		if (file->f_flags & O_DIRECT) {
    			invalidate_mapping_pages(inode->i_mapping,
    			      start_pos >> PAGE_CACHE_SHIFT,
    			     (start_pos + num_written - 1) >> PAGE_CACHE_SHIFT);
    		}
    	}
    	current->backing_dev_info = NULL;
    	return num_written ? num_written : err;
    }
    
    int btrfs_release_file(struct inode *inode, struct file *filp)
    {
    	/*
    	 * ordered_data_close is set by settattr when we are about to truncate
    	 * a file from a non-zero size to a zero size.  This tries to
    	 * flush down new bytes that may have been written if the
    	 * application were using truncate to replace a file in place.
    	 */
    	if (BTRFS_I(inode)->ordered_data_close) {
    		BTRFS_I(inode)->ordered_data_close = 0;
    		btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode);
    		if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
    			filemap_flush(inode->i_mapping);
    	}
    	if (filp->private_data)
    		btrfs_ioctl_trans_end(filp);
    	return 0;
    }
    
    /*
     * fsync call for both files and directories.  This logs the inode into
     * the tree log instead of forcing full commits whenever possible.
     *
     * It needs to call filemap_fdatawait so that all ordered extent updates are
     * in the metadata btree are up to date for copying to the log.
     *
     * It drops the inode mutex before doing the tree log commit.  This is an
     * important optimization for directories because holding the mutex prevents
     * new operations on the dir while we write to disk.
     */
    int btrfs_sync_file(struct file *file, struct dentry *dentry, int datasync)
    {
    	struct inode *inode = dentry->d_inode;
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	int ret = 0;
    	struct btrfs_trans_handle *trans;
    
    	/*
    	 * check the transaction that last modified this inode
    	 * and see if its already been committed
    	 */
    	if (!BTRFS_I(inode)->last_trans)
    		goto out;
    
    	mutex_lock(&root->fs_info->trans_mutex);
    	if (BTRFS_I(inode)->last_trans <=
    	    root->fs_info->last_trans_committed) {
    		BTRFS_I(inode)->last_trans = 0;
    		mutex_unlock(&root->fs_info->trans_mutex);
    		goto out;
    	}
    	mutex_unlock(&root->fs_info->trans_mutex);
    
    	root->log_batch++;
    	filemap_fdatawrite(inode->i_mapping);
    	btrfs_wait_ordered_range(inode, 0, (u64)-1);
    	root->log_batch++;
    
    	/*
    	 * ok we haven't committed the transaction yet, lets do a commit
    	 */
    	if (file && file->private_data)
    		btrfs_ioctl_trans_end(file);
    
    	trans = btrfs_start_transaction(root, 1);
    	if (!trans) {
    		ret = -ENOMEM;
    		goto out;
    	}
    
    	ret = btrfs_log_dentry_safe(trans, root, dentry);
    	if (ret < 0)
    		goto out;
    
    	/* we've logged all the items and now have a consistent
    	 * version of the file in the log.  It is possible that
    	 * someone will come in and modify the file, but that's
    	 * fine because the log is consistent on disk, and we
    	 * have references to all of the file's extents
    	 *
    	 * It is possible that someone will come in and log the
    	 * file again, but that will end up using the synchronization
    	 * inside btrfs_sync_log to keep things safe.
    	 */
    	mutex_unlock(&dentry->d_inode->i_mutex);
    
    	if (ret > 0) {
    		ret = btrfs_commit_transaction(trans, root);
    	} else {
    		ret = btrfs_sync_log(trans, root);
    		if (ret == 0)
    			ret = btrfs_end_transaction(trans, root);
    		else
    			ret = btrfs_commit_transaction(trans, root);
    	}
    	mutex_lock(&dentry->d_inode->i_mutex);
    out:
    	return ret > 0 ? EIO : ret;
    }
    
    static struct vm_operations_struct btrfs_file_vm_ops = {
    	.fault		= filemap_fault,
    	.page_mkwrite	= btrfs_page_mkwrite,
    };
    
    static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
    {
    	vma->vm_ops = &btrfs_file_vm_ops;
    	file_accessed(filp);
    	return 0;
    }
    
    struct file_operations btrfs_file_operations = {
    	.llseek		= generic_file_llseek,
    	.read		= do_sync_read,
    	.aio_read       = generic_file_aio_read,
    	.splice_read	= generic_file_splice_read,
    	.write		= btrfs_file_write,
    	.mmap		= btrfs_file_mmap,
    	.open		= generic_file_open,
    	.release	= btrfs_release_file,
    	.fsync		= btrfs_sync_file,
    	.unlocked_ioctl	= btrfs_ioctl,
    #ifdef CONFIG_COMPAT
    	.compat_ioctl	= btrfs_ioctl,
    #endif
    };