Newer
Older
return rc;
}
/**
* ecryptfs_set_default_crypt_stat_vals
* @crypt_stat: The inode's cryptographic context
* @mount_crypt_stat: The mount point's cryptographic context
*
* Default values in the event that policy does not override them.
*/
static void ecryptfs_set_default_crypt_stat_vals(
struct ecryptfs_crypt_stat *crypt_stat,
struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
mount_crypt_stat);
ecryptfs_set_default_sizes(crypt_stat);
strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
crypt_stat->mount_crypt_stat = mount_crypt_stat;
}
/**
* ecryptfs_new_file_context
* @ecryptfs_dentry: The eCryptfs dentry
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
*
* If the crypto context for the file has not yet been established,
* this is where we do that. Establishing a new crypto context
* involves the following decisions:
* - What cipher to use?
* - What set of authentication tokens to use?
* Here we just worry about getting enough information into the
* authentication tokens so that we know that they are available.
* We associate the available authentication tokens with the new file
* via the set of signatures in the crypt_stat struct. Later, when
* the headers are actually written out, we may again defer to
* userspace to perform the encryption of the session key; for the
* foreseeable future, this will be the case with public key packets.
*
* Returns zero on success; non-zero otherwise
*/
int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
{
struct ecryptfs_crypt_stat *crypt_stat =
&ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
&ecryptfs_superblock_to_private(
ecryptfs_dentry->d_sb)->mount_crypt_stat;
int cipher_name_len;
ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
mount_crypt_stat);
rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
mount_crypt_stat);
if (rc) {
printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
"to the inode key sigs; rc = [%d]\n", rc);
goto out;
}
cipher_name_len =
strlen(mount_crypt_stat->global_default_cipher_name);
memcpy(crypt_stat->cipher,
mount_crypt_stat->global_default_cipher_name,
cipher_name_len);
crypt_stat->cipher[cipher_name_len] = '\0';
crypt_stat->key_size =
mount_crypt_stat->global_default_cipher_key_size;
ecryptfs_generate_new_key(crypt_stat);
rc = ecryptfs_init_crypt_ctx(crypt_stat);
if (rc)
ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
"context for cipher [%s]: rc = [%d]\n",
crypt_stat->cipher, rc);
return rc;
}
/**
* contains_ecryptfs_marker - check for the ecryptfs marker
* @data: The data block in which to check
*
* Returns one if marker found; zero if not found
*/
static int contains_ecryptfs_marker(char *data)
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
{
u32 m_1, m_2;
memcpy(&m_1, data, 4);
m_1 = be32_to_cpu(m_1);
memcpy(&m_2, (data + 4), 4);
m_2 = be32_to_cpu(m_2);
if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
return 1;
ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
MAGIC_ECRYPTFS_MARKER);
ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
return 0;
}
struct ecryptfs_flag_map_elem {
u32 file_flag;
u32 local_flag;
};
/* Add support for additional flags by adding elements here. */
static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
{0x00000001, ECRYPTFS_ENABLE_HMAC},
{0x00000002, ECRYPTFS_ENCRYPTED},
{0x00000004, ECRYPTFS_METADATA_IN_XATTR}
};
/**
* ecryptfs_process_flags
* @crypt_stat: The cryptographic context
* @page_virt: Source data to be parsed
* @bytes_read: Updated with the number of bytes read
*
* Returns zero on success; non-zero if the flag set is invalid
*/
static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
char *page_virt, int *bytes_read)
{
int rc = 0;
int i;
u32 flags;
memcpy(&flags, page_virt, 4);
flags = be32_to_cpu(flags);
for (i = 0; i < ((sizeof(ecryptfs_flag_map)
/ sizeof(struct ecryptfs_flag_map_elem))); i++)
if (flags & ecryptfs_flag_map[i].file_flag) {
crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
/* Version is in top 8 bits of the 32-bit flag vector */
crypt_stat->file_version = ((flags >> 24) & 0xFF);
(*bytes_read) = 4;
return rc;
}
/**
* write_ecryptfs_marker
* @page_virt: The pointer to in a page to begin writing the marker
* @written: Number of bytes written
*
* Marker = 0x3c81b7f5
*/
static void write_ecryptfs_marker(char *page_virt, size_t *written)
{
u32 m_1, m_2;
get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
m_1 = cpu_to_be32(m_1);
memcpy(page_virt, &m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
m_2 = cpu_to_be32(m_2);
memcpy(page_virt + (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2), &m_2,
(MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
}
static void
write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat,
size_t *written)
{
u32 flags = 0;
int i;
for (i = 0; i < ((sizeof(ecryptfs_flag_map)
/ sizeof(struct ecryptfs_flag_map_elem))); i++)
if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
flags |= ecryptfs_flag_map[i].file_flag;
/* Version is in top 8 bits of the 32-bit flag vector */
flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
flags = cpu_to_be32(flags);
memcpy(page_virt, &flags, 4);
(*written) = 4;
}
struct ecryptfs_cipher_code_str_map_elem {
char cipher_str[16];
u16 cipher_code;
};
/* Add support for additional ciphers by adding elements here. The
* cipher_code is whatever OpenPGP applicatoins use to identify the
* ciphers. List in order of probability. */
static struct ecryptfs_cipher_code_str_map_elem
ecryptfs_cipher_code_str_map[] = {
{"aes",RFC2440_CIPHER_AES_128 },
{"blowfish", RFC2440_CIPHER_BLOWFISH},
{"des3_ede", RFC2440_CIPHER_DES3_EDE},
{"cast5", RFC2440_CIPHER_CAST_5},
{"twofish", RFC2440_CIPHER_TWOFISH},
{"cast6", RFC2440_CIPHER_CAST_6},
{"aes", RFC2440_CIPHER_AES_192},
{"aes", RFC2440_CIPHER_AES_256}
};
/**
* ecryptfs_code_for_cipher_string
* @crypt_stat: The cryptographic context
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
*
* Returns zero on no match, or the cipher code on match
*/
u16 ecryptfs_code_for_cipher_string(struct ecryptfs_crypt_stat *crypt_stat)
{
int i;
u16 code = 0;
struct ecryptfs_cipher_code_str_map_elem *map =
ecryptfs_cipher_code_str_map;
if (strcmp(crypt_stat->cipher, "aes") == 0) {
switch (crypt_stat->key_size) {
case 16:
code = RFC2440_CIPHER_AES_128;
break;
case 24:
code = RFC2440_CIPHER_AES_192;
break;
case 32:
code = RFC2440_CIPHER_AES_256;
}
} else {
for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
if (strcmp(crypt_stat->cipher, map[i].cipher_str) == 0){
code = map[i].cipher_code;
break;
}
}
return code;
}
/**
* ecryptfs_cipher_code_to_string
* @str: Destination to write out the cipher name
* @cipher_code: The code to convert to cipher name string
*
* Returns zero on success
*/
int ecryptfs_cipher_code_to_string(char *str, u16 cipher_code)
{
int rc = 0;
int i;
str[0] = '\0';
for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
if (str[0] == '\0') {
ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
"[%d]\n", cipher_code);
rc = -EINVAL;
}
return rc;
}
/**
* ecryptfs_read_header_region
* @data: The virtual address to write header region data into
* @dentry: The lower dentry
* @mnt: The lower VFS mount
*
* Returns zero on success; non-zero otherwise
*/
static int ecryptfs_read_header_region(char *data, struct dentry *dentry,
struct vfsmount *mnt)
struct file *lower_file;
mm_segment_t oldfs;
int rc;
rc = ecryptfs_open_lower_file(&lower_file, dentry, mnt, O_RDONLY);
if (rc) {
printk(KERN_ERR
"Error opening lower_file to read header region\n");
lower_file->f_pos = 0;
oldfs = get_fs();
set_fs(get_ds());
rc = lower_file->f_op->read(lower_file, (char __user *)data,
ECRYPTFS_DEFAULT_EXTENT_SIZE, &lower_file->f_pos);
rc = ecryptfs_close_lower_file(lower_file);
if (rc) {
printk(KERN_ERR "Error closing lower_file\n");
goto out;
}
rc = 0;
out:
return rc;
}
int ecryptfs_read_and_validate_header_region(char *data, struct dentry *dentry,
struct vfsmount *mnt)
{
int rc;
rc = ecryptfs_read_header_region(data, dentry, mnt);
if (rc)
goto out;
if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES))
rc = -EINVAL;
out:
return rc;
}
void
ecryptfs_write_header_metadata(char *virt,
struct ecryptfs_crypt_stat *crypt_stat,
size_t *written)
{
u32 header_extent_size;
u16 num_header_extents_at_front;
header_extent_size = (u32)crypt_stat->extent_size;
num_header_extents_at_front =
(u16)crypt_stat->num_header_extents_at_front;
header_extent_size = cpu_to_be32(header_extent_size);
memcpy(virt, &header_extent_size, 4);
virt += 4;
num_header_extents_at_front = cpu_to_be16(num_header_extents_at_front);
memcpy(virt, &num_header_extents_at_front, 2);
(*written) = 6;
}
struct kmem_cache *ecryptfs_header_cache_0;
struct kmem_cache *ecryptfs_header_cache_1;
struct kmem_cache *ecryptfs_header_cache_2;
/**
* ecryptfs_write_headers_virt
* @page_virt: The virtual address to write the headers to
* @size: Set to the number of bytes written by this function
* @crypt_stat: The cryptographic context
* @ecryptfs_dentry: The eCryptfs dentry
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
*
* Format version: 1
*
* Header Extent:
* Octets 0-7: Unencrypted file size (big-endian)
* Octets 8-15: eCryptfs special marker
* Octets 16-19: Flags
* Octet 16: File format version number (between 0 and 255)
* Octets 17-18: Reserved
* Octet 19: Bit 1 (lsb): Reserved
* Bit 2: Encrypted?
* Bits 3-8: Reserved
* Octets 20-23: Header extent size (big-endian)
* Octets 24-25: Number of header extents at front of file
* (big-endian)
* Octet 26: Begin RFC 2440 authentication token packet set
* Data Extent 0:
* Lower data (CBC encrypted)
* Data Extent 1:
* Lower data (CBC encrypted)
* ...
*
* Returns zero on success
*/
static int ecryptfs_write_headers_virt(char *page_virt, size_t *size,
struct ecryptfs_crypt_stat *crypt_stat,
struct dentry *ecryptfs_dentry)
{
int rc;
size_t written;
size_t offset;
offset = ECRYPTFS_FILE_SIZE_BYTES;
write_ecryptfs_marker((page_virt + offset), &written);
offset += written;
write_ecryptfs_flags((page_virt + offset), crypt_stat, &written);
offset += written;
ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
&written);
offset += written;
rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
ecryptfs_dentry, &written,
PAGE_CACHE_SIZE - offset);
if (rc)
ecryptfs_printk(KERN_WARNING, "Error generating key packet "
"set; rc = [%d]\n", rc);
if (size) {
offset += written;
*size = offset;
}
return rc;
}
static int
ecryptfs_write_metadata_to_contents(struct ecryptfs_crypt_stat *crypt_stat,
struct file *lower_file, char *page_virt)
{
mm_segment_t oldfs;
int current_header_page;
int header_pages;
ssize_t size;
int rc = 0;
lower_file->f_pos = 0;
oldfs = get_fs();
set_fs(get_ds());
size = vfs_write(lower_file, (char __user *)page_virt, PAGE_CACHE_SIZE,
&lower_file->f_pos);
if (size < 0) {
rc = (int)size;
printk(KERN_ERR "Error attempting to write lower page; "
"rc = [%d]\n", rc);
set_fs(oldfs);
goto out;
}
header_pages = ((crypt_stat->extent_size
* crypt_stat->num_header_extents_at_front)
/ PAGE_CACHE_SIZE);
memset(page_virt, 0, PAGE_CACHE_SIZE);
current_header_page = 1;
while (current_header_page < header_pages) {
size = vfs_write(lower_file, (char __user *)page_virt,
PAGE_CACHE_SIZE, &lower_file->f_pos);
if (size < 0) {
rc = (int)size;
printk(KERN_ERR "Error attempting to write lower page; "
"rc = [%d]\n", rc);
set_fs(oldfs);
goto out;
}
current_header_page++;
}
set_fs(oldfs);
out:
return rc;
static int
ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
struct ecryptfs_crypt_stat *crypt_stat,
char *page_virt, size_t size)
{
int rc;
rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
size, 0);
return rc;
}
/**
* ecryptfs_write_metadata
* @ecryptfs_dentry: The eCryptfs dentry
* @lower_file: The lower file struct, which was returned from dentry_open
*
* Write the file headers out. This will likely involve a userspace
* callout, in which the session key is encrypted with one or more
* public keys and/or the passphrase necessary to do the encryption is
* retrieved via a prompt. Exactly what happens at this point should
* be policy-dependent.
*
* Returns zero on success; non-zero on error
*/
int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
struct file *lower_file)
{
struct ecryptfs_crypt_stat *crypt_stat;
char *page_virt;
int rc = 0;
crypt_stat = &ecryptfs_inode_to_private(
ecryptfs_dentry->d_inode)->crypt_stat;
if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
ecryptfs_printk(KERN_DEBUG, "Key is "
"invalid; bailing out\n");
rc = -EINVAL;
goto out;
}
} else {
rc = -EINVAL;
ecryptfs_printk(KERN_WARNING,
"Called with crypt_stat->encrypted == 0\n");
goto out;
}
/* Released in this function */
page_virt = kmem_cache_zalloc(ecryptfs_header_cache_0, GFP_USER);
if (!page_virt) {
ecryptfs_printk(KERN_ERR, "Out of memory\n");
rc = -ENOMEM;
goto out;
}
rc = ecryptfs_write_headers_virt(page_virt, &size, crypt_stat,
ecryptfs_dentry);
if (unlikely(rc)) {
ecryptfs_printk(KERN_ERR, "Error whilst writing headers\n");
memset(page_virt, 0, PAGE_CACHE_SIZE);
goto out_free;
}
if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry,
crypt_stat, page_virt,
size);
else
rc = ecryptfs_write_metadata_to_contents(crypt_stat, lower_file,
page_virt);
if (rc) {
printk(KERN_ERR "Error writing metadata out to lower file; "
"rc = [%d]\n", rc);
goto out_free;
}
out_free:
kmem_cache_free(ecryptfs_header_cache_0, page_virt);
out:
return rc;
}
#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
char *virt, int *bytes_read,
int validate_header_size)
{
int rc = 0;
u32 header_extent_size;
u16 num_header_extents_at_front;
memcpy(&header_extent_size, virt, 4);
header_extent_size = be32_to_cpu(header_extent_size);
virt += 4;
memcpy(&num_header_extents_at_front, virt, 2);
num_header_extents_at_front = be16_to_cpu(num_header_extents_at_front);
crypt_stat->num_header_extents_at_front =
(int)num_header_extents_at_front;
(*bytes_read) = (sizeof(u32) + sizeof(u16));
if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
* crypt_stat->num_header_extents_at_front)
< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
printk(KERN_WARNING "Invalid number of header extents: [%zd]\n",
crypt_stat->num_header_extents_at_front);
}
return rc;
}
/**
* set_default_header_data
* @crypt_stat: The cryptographic context
*
* For version 0 file format; this function is only for backwards
* compatibility for files created with the prior versions of
* eCryptfs.
*/
static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
{
crypt_stat->num_header_extents_at_front = 2;
}
/**
* ecryptfs_read_headers_virt
* @page_virt: The virtual address into which to read the headers
* @crypt_stat: The cryptographic context
* @ecryptfs_dentry: The eCryptfs dentry
* @validate_header_size: Whether to validate the header size while reading
*
* Read/parse the header data. The header format is detailed in the
* comment block for the ecryptfs_write_headers_virt() function.
*
* Returns zero on success
*/
static int ecryptfs_read_headers_virt(char *page_virt,
struct ecryptfs_crypt_stat *crypt_stat,
struct dentry *ecryptfs_dentry,
int validate_header_size)
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
{
int rc = 0;
int offset;
int bytes_read;
ecryptfs_set_default_sizes(crypt_stat);
crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
ecryptfs_dentry->d_sb)->mount_crypt_stat;
offset = ECRYPTFS_FILE_SIZE_BYTES;
rc = contains_ecryptfs_marker(page_virt + offset);
if (rc == 0) {
rc = -EINVAL;
goto out;
}
offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
&bytes_read);
if (rc) {
ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
goto out;
}
if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
"file version [%d] is supported by this "
"version of eCryptfs\n",
crypt_stat->file_version,
ECRYPTFS_SUPPORTED_FILE_VERSION);
rc = -EINVAL;
goto out;
}
offset += bytes_read;
if (crypt_stat->file_version >= 1) {
rc = parse_header_metadata(crypt_stat, (page_virt + offset),
&bytes_read, validate_header_size);
if (rc) {
ecryptfs_printk(KERN_WARNING, "Error reading header "
"metadata; rc = [%d]\n", rc);
}
offset += bytes_read;
} else
set_default_header_data(crypt_stat);
rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
ecryptfs_dentry);
out:
return rc;
}
/**
* ecryptfs_read_xattr_region
* @page_virt: The vitual address into which to read the xattr data
* @ecryptfs_dentry: The eCryptfs dentry
*
* Attempts to read the crypto metadata from the extended attribute
* region of the lower file.
*
* Returns zero on success; non-zero on error
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
*/
int ecryptfs_read_xattr_region(char *page_virt, struct dentry *ecryptfs_dentry)
{
ssize_t size;
int rc = 0;
size = ecryptfs_getxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME,
page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
if (size < 0) {
printk(KERN_DEBUG "Error attempting to read the [%s] "
"xattr from the lower file; return value = [%zd]\n",
ECRYPTFS_XATTR_NAME, size);
rc = -EINVAL;
goto out;
}
out:
return rc;
}
int ecryptfs_read_and_validate_xattr_region(char *page_virt,
struct dentry *ecryptfs_dentry)
{
int rc;
rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry);
if (rc)
goto out;
if (!contains_ecryptfs_marker(page_virt + ECRYPTFS_FILE_SIZE_BYTES)) {
printk(KERN_WARNING "Valid data found in [%s] xattr, but "
"the marker is invalid\n", ECRYPTFS_XATTR_NAME);
rc = -EINVAL;
}
out:
return rc;
}
/**
* ecryptfs_read_metadata
* @ecryptfs_dentry: The eCryptfs dentry
* @lower_file: The lower file from which to read the metadata
*
* Common entry point for reading file metadata. From here, we could
* retrieve the header information from the header region of the file,
* the xattr region of the file, or some other repostory that is
* stored separately from the file itself. The current implementation
* supports retrieving the metadata information from the file contents
* and from the xattr region.
*
* Returns zero if valid headers found and parsed; non-zero otherwise
*/
int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry,
struct file *lower_file)
{
int rc = 0;
char *page_virt = NULL;
mm_segment_t oldfs;
ssize_t bytes_read;
struct ecryptfs_crypt_stat *crypt_stat =
&ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
&ecryptfs_superblock_to_private(
ecryptfs_dentry->d_sb)->mount_crypt_stat;
ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
mount_crypt_stat);
/* Read the first page from the underlying file */
page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
if (!page_virt) {
rc = -ENOMEM;
ecryptfs_printk(KERN_ERR, "Unable to allocate page_virt\n");
goto out;
}
lower_file->f_pos = 0;
oldfs = get_fs();
set_fs(get_ds());
bytes_read = lower_file->f_op->read(lower_file,
(char __user *)page_virt,
ECRYPTFS_DEFAULT_EXTENT_SIZE,
&lower_file->f_pos);
set_fs(oldfs);
if (bytes_read != ECRYPTFS_DEFAULT_EXTENT_SIZE) {
rc = -EINVAL;
goto out;
}
rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
ecryptfs_dentry,
ECRYPTFS_VALIDATE_HEADER_SIZE);
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
rc = ecryptfs_read_xattr_region(page_virt,
ecryptfs_dentry);
if (rc) {
printk(KERN_DEBUG "Valid eCryptfs headers not found in "
"file header region or xattr region\n");
rc = -EINVAL;
goto out;
}
rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
ecryptfs_dentry,
ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
if (rc) {
printk(KERN_DEBUG "Valid eCryptfs headers not found in "
"file xattr region either\n");
rc = -EINVAL;
}
if (crypt_stat->mount_crypt_stat->flags
& ECRYPTFS_XATTR_METADATA_ENABLED) {
crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
} else {
printk(KERN_WARNING "Attempt to access file with "
"crypto metadata only in the extended attribute "
"region, but eCryptfs was mounted without "
"xattr support enabled. eCryptfs will not treat "
"this like an encrypted file.\n");
rc = -EINVAL;
}
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
}
out:
if (page_virt) {
memset(page_virt, 0, PAGE_CACHE_SIZE);
kmem_cache_free(ecryptfs_header_cache_1, page_virt);
}
return rc;
}
/**
* ecryptfs_encode_filename - converts a plaintext file name to cipher text
* @crypt_stat: The crypt_stat struct associated with the file anem to encode
* @name: The plaintext name
* @length: The length of the plaintext
* @encoded_name: The encypted name
*
* Encrypts and encodes a filename into something that constitutes a
* valid filename for a filesystem, with printable characters.
*
* We assume that we have a properly initialized crypto context,
* pointed to by crypt_stat->tfm.
*
* TODO: Implement filename decoding and decryption here, in place of
* memcpy. We are keeping the framework around for now to (1)
* facilitate testing of the components needed to implement filename
* encryption and (2) to provide a code base from which other
* developers in the community can easily implement this feature.
*
* Returns the length of encoded filename; negative if error
*/
int
ecryptfs_encode_filename(struct ecryptfs_crypt_stat *crypt_stat,
const char *name, int length, char **encoded_name)
{
int error = 0;
(*encoded_name) = kmalloc(length + 2, GFP_KERNEL);
if (!(*encoded_name)) {
error = -ENOMEM;
goto out;
}
/* TODO: Filename encryption is a scheduled feature for a
* future version of eCryptfs. This function is here only for
* the purpose of providing a framework for other developers
* to easily implement filename encryption. Hint: Replace this
* memcpy() with a call to encrypt and encode the
* filename, the set the length accordingly. */
memcpy((void *)(*encoded_name), (void *)name, length);
(*encoded_name)[length] = '\0';
error = length + 1;
out:
return error;
}
/**
* ecryptfs_decode_filename - converts the cipher text name to plaintext
* @crypt_stat: The crypt_stat struct associated with the file
* @name: The filename in cipher text
* @length: The length of the cipher text name
* @decrypted_name: The plaintext name
*
* Decodes and decrypts the filename.
*
* We assume that we have a properly initialized crypto context,
* pointed to by crypt_stat->tfm.
*
* TODO: Implement filename decoding and decryption here, in place of
* memcpy. We are keeping the framework around for now to (1)
* facilitate testing of the components needed to implement filename
* encryption and (2) to provide a code base from which other
* developers in the community can easily implement this feature.
*
* Returns the length of decoded filename; negative if error
*/
int
ecryptfs_decode_filename(struct ecryptfs_crypt_stat *crypt_stat,
const char *name, int length, char **decrypted_name)
{
int error = 0;
(*decrypted_name) = kmalloc(length + 2, GFP_KERNEL);
if (!(*decrypted_name)) {
error = -ENOMEM;
goto out;
}
/* TODO: Filename encryption is a scheduled feature for a
* future version of eCryptfs. This function is here only for
* the purpose of providing a framework for other developers
* to easily implement filename encryption. Hint: Replace this
* memcpy() with a call to decode and decrypt the
* filename, the set the length accordingly. */
memcpy((void *)(*decrypted_name), (void *)name, length);
(*decrypted_name)[length + 1] = '\0'; /* Only for convenience
* in printing out the
* string in debug
* messages */
error = length;
out:
return error;
}
/**
* ecryptfs_process_key_cipher - Perform key cipher initialization.
* @key_tfm: Crypto context for key material, set by this function
* @cipher_name: Name of the cipher
* @key_size: Size of the key in bytes
*
* Returns zero on success. Any crypto_tfm structs allocated here
* should be released by other functions, such as on a superblock put
* event, regardless of whether this function succeeds for fails.
*/
ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
char *cipher_name, size_t *key_size)
{
char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
*key_tfm = NULL;
if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
rc = -EINVAL;
printk(KERN_ERR "Requested key size is [%Zd] bytes; maximum "
"allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
"ecb");
if (rc)
goto out;
*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
kfree(full_alg_name);
if (IS_ERR(*key_tfm)) {
rc = PTR_ERR(*key_tfm);
printk(KERN_ERR "Unable to allocate crypto cipher with name "
"[%s]; rc = [%d]\n", cipher_name, rc);
crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
if (*key_size == 0) {
struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
*key_size = alg->max_keysize;
}
get_random_bytes(dummy_key, *key_size);
rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
if (rc) {
printk(KERN_ERR "Error attempting to set key of size [%Zd] for "
"cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc);
rc = -EINVAL;
goto out;
}
out:
return rc;
}
struct kmem_cache *ecryptfs_key_tfm_cache;
struct list_head key_tfm_list;
struct mutex key_tfm_list_mutex;
int ecryptfs_init_crypto(void)
{
mutex_init(&key_tfm_list_mutex);
INIT_LIST_HEAD(&key_tfm_list);
return 0;
}
int ecryptfs_destroy_crypto(void)
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
{
struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
mutex_lock(&key_tfm_list_mutex);
list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
key_tfm_list) {
list_del(&key_tfm->key_tfm_list);
if (key_tfm->key_tfm)
crypto_free_blkcipher(key_tfm->key_tfm);
kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
}
mutex_unlock(&key_tfm_list_mutex);
return 0;
}
int
ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
size_t key_size)
{
struct ecryptfs_key_tfm *tmp_tfm;
int rc = 0;
tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
if (key_tfm != NULL)
(*key_tfm) = tmp_tfm;
if (!tmp_tfm) {
rc = -ENOMEM;
printk(KERN_ERR "Error attempting to allocate from "
"ecryptfs_key_tfm_cache\n");
goto out;
}
mutex_init(&tmp_tfm->key_tfm_mutex);
strncpy(tmp_tfm->cipher_name, cipher_name,
ECRYPTFS_MAX_CIPHER_NAME_SIZE);
tmp_tfm->key_size = key_size;
rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
tmp_tfm->cipher_name,
&tmp_tfm->key_size);
if (rc) {
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
printk(KERN_ERR "Error attempting to initialize key TFM "
"cipher with name = [%s]; rc = [%d]\n",
tmp_tfm->cipher_name, rc);
kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
if (key_tfm != NULL)
(*key_tfm) = NULL;
goto out;
}
mutex_lock(&key_tfm_list_mutex);
list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
mutex_unlock(&key_tfm_list_mutex);
out:
return rc;
}
int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
struct mutex **tfm_mutex,
char *cipher_name)
{
struct ecryptfs_key_tfm *key_tfm;
int rc = 0;
(*tfm) = NULL;
(*tfm_mutex) = NULL;
mutex_lock(&key_tfm_list_mutex);
list_for_each_entry(key_tfm, &key_tfm_list, key_tfm_list) {
if (strcmp(key_tfm->cipher_name, cipher_name) == 0) {
(*tfm) = key_tfm->key_tfm;
(*tfm_mutex) = &key_tfm->key_tfm_mutex;
mutex_unlock(&key_tfm_list_mutex);
goto out;
}
}
mutex_unlock(&key_tfm_list_mutex);
rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
if (rc) {
printk(KERN_ERR "Error adding new key_tfm to list; rc = [%d]\n",
rc);
goto out;
}
(*tfm) = key_tfm->key_tfm;
(*tfm_mutex) = &key_tfm->key_tfm_mutex;