Newer
Older
/*
* linux/mm/compaction.c
*
* Memory compaction for the reduction of external fragmentation. Note that
* this heavily depends upon page migration to do all the real heavy
* lifting
*
* Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
*/
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
#include <linux/sched/signal.h>
#include <linux/sysctl.h>
#include <linux/sysfs.h>
#include <linux/page-isolation.h>
#include <linux/kasan.h>
#include <linux/kthread.h>
#include <linux/freezer.h>
#include <linux/page_owner.h>
#ifdef CONFIG_COMPACTION
static inline void count_compact_event(enum vm_event_item item)
{
count_vm_event(item);
}
static inline void count_compact_events(enum vm_event_item item, long delta)
{
count_vm_events(item, delta);
}
#else
#define count_compact_event(item) do { } while (0)
#define count_compact_events(item, delta) do { } while (0)
#endif
#if defined CONFIG_COMPACTION || defined CONFIG_CMA
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>
#define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
#define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
#define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
#define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
static unsigned long release_freepages(struct list_head *freelist)
{
struct page *page, *next;
unsigned long high_pfn = 0;
list_for_each_entry_safe(page, next, freelist, lru) {
unsigned long pfn = page_to_pfn(page);
list_del(&page->lru);
__free_page(page);
if (pfn > high_pfn)
high_pfn = pfn;
return high_pfn;
static void map_pages(struct list_head *list)
{
unsigned int i, order, nr_pages;
struct page *page, *next;
LIST_HEAD(tmp_list);
list_for_each_entry_safe(page, next, list, lru) {
list_del(&page->lru);
order = page_private(page);
nr_pages = 1 << order;
post_alloc_hook(page, order, __GFP_MOVABLE);
if (order)
split_page(page, order);
for (i = 0; i < nr_pages; i++) {
list_add(&page->lru, &tmp_list);
page++;
}
list_splice(&tmp_list, list);
#ifdef CONFIG_COMPACTION
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
int PageMovable(struct page *page)
{
struct address_space *mapping;
VM_BUG_ON_PAGE(!PageLocked(page), page);
if (!__PageMovable(page))
return 0;
mapping = page_mapping(page);
if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
return 1;
return 0;
}
EXPORT_SYMBOL(PageMovable);
void __SetPageMovable(struct page *page, struct address_space *mapping)
{
VM_BUG_ON_PAGE(!PageLocked(page), page);
VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
}
EXPORT_SYMBOL(__SetPageMovable);
void __ClearPageMovable(struct page *page)
{
VM_BUG_ON_PAGE(!PageLocked(page), page);
VM_BUG_ON_PAGE(!PageMovable(page), page);
/*
* Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
* flag so that VM can catch up released page by driver after isolation.
* With it, VM migration doesn't try to put it back.
*/
page->mapping = (void *)((unsigned long)page->mapping &
PAGE_MAPPING_MOVABLE);
}
EXPORT_SYMBOL(__ClearPageMovable);
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
/* Do not skip compaction more than 64 times */
#define COMPACT_MAX_DEFER_SHIFT 6
/*
* Compaction is deferred when compaction fails to result in a page
* allocation success. 1 << compact_defer_limit compactions are skipped up
* to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
*/
void defer_compaction(struct zone *zone, int order)
{
zone->compact_considered = 0;
zone->compact_defer_shift++;
if (order < zone->compact_order_failed)
zone->compact_order_failed = order;
if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
trace_mm_compaction_defer_compaction(zone, order);
}
/* Returns true if compaction should be skipped this time */
bool compaction_deferred(struct zone *zone, int order)
{
unsigned long defer_limit = 1UL << zone->compact_defer_shift;
if (order < zone->compact_order_failed)
return false;
/* Avoid possible overflow */
if (++zone->compact_considered > defer_limit)
zone->compact_considered = defer_limit;
if (zone->compact_considered >= defer_limit)
return false;
trace_mm_compaction_deferred(zone, order);
return true;
}
/*
* Update defer tracking counters after successful compaction of given order,
* which means an allocation either succeeded (alloc_success == true) or is
* expected to succeed.
*/
void compaction_defer_reset(struct zone *zone, int order,
bool alloc_success)
{
if (alloc_success) {
zone->compact_considered = 0;
zone->compact_defer_shift = 0;
}
if (order >= zone->compact_order_failed)
zone->compact_order_failed = order + 1;
trace_mm_compaction_defer_reset(zone, order);
}
/* Returns true if restarting compaction after many failures */
bool compaction_restarting(struct zone *zone, int order)
{
if (order < zone->compact_order_failed)
return false;
return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
zone->compact_considered >= 1UL << zone->compact_defer_shift;
}
/* Returns true if the pageblock should be scanned for pages to isolate. */
static inline bool isolation_suitable(struct compact_control *cc,
struct page *page)
{
if (cc->ignore_skip_hint)
return true;
return !get_pageblock_skip(page);
}
static void reset_cached_positions(struct zone *zone)
{
zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
zone->compact_cached_free_pfn =
pageblock_start_pfn(zone_end_pfn(zone) - 1);
/*
* This function is called to clear all cached information on pageblocks that
* should be skipped for page isolation when the migrate and free page scanner
* meet.
*/
static void __reset_isolation_suitable(struct zone *zone)
{
unsigned long start_pfn = zone->zone_start_pfn;
unsigned long end_pfn = zone_end_pfn(zone);
unsigned long pfn;
zone->compact_blockskip_flush = false;
/* Walk the zone and mark every pageblock as suitable for isolation */
for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
struct page *page;
cond_resched();
page = pfn_to_online_page(pfn);
if (!page)
continue;
if (zone != page_zone(page))
continue;
clear_pageblock_skip(page);
}
reset_cached_positions(zone);
}
void reset_isolation_suitable(pg_data_t *pgdat)
{
int zoneid;
for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
struct zone *zone = &pgdat->node_zones[zoneid];
if (!populated_zone(zone))
continue;
/* Only flush if a full compaction finished recently */
if (zone->compact_blockskip_flush)
__reset_isolation_suitable(zone);
}
}
/*
* If no pages were isolated then mark this pageblock to be skipped in the
* future. The information is later cleared by __reset_isolation_suitable().
*/
static void update_pageblock_skip(struct compact_control *cc,
struct page *page, unsigned long nr_isolated,

Vlastimil Babka
committed
bool migrate_scanner)
{
struct zone *zone = cc->zone;
unsigned long pfn;
if (cc->ignore_skip_hint)
return;
if (!page)
return;
if (nr_isolated)
return;

Vlastimil Babka
committed
set_pageblock_skip(page);
pfn = page_to_pfn(page);
/* Update where async and sync compaction should restart */
if (migrate_scanner) {
if (pfn > zone->compact_cached_migrate_pfn[0])
zone->compact_cached_migrate_pfn[0] = pfn;
if (cc->mode != MIGRATE_ASYNC &&
pfn > zone->compact_cached_migrate_pfn[1])
zone->compact_cached_migrate_pfn[1] = pfn;
} else {
if (pfn < zone->compact_cached_free_pfn)
zone->compact_cached_free_pfn = pfn;
}
#else
static inline bool isolation_suitable(struct compact_control *cc,
struct page *page)
{
return true;
}
static void update_pageblock_skip(struct compact_control *cc,
struct page *page, unsigned long nr_isolated,

Vlastimil Babka
committed
bool migrate_scanner)
{
}
#endif /* CONFIG_COMPACTION */
/*
* Compaction requires the taking of some coarse locks that are potentially
* very heavily contended. For async compaction, back out if the lock cannot
* be taken immediately. For sync compaction, spin on the lock if needed.
*
* Returns true if the lock is held
* Returns false if the lock is not held and compaction should abort
*/
static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
struct compact_control *cc)
if (cc->mode == MIGRATE_ASYNC) {
if (!spin_trylock_irqsave(lock, *flags)) {
cc->contended = true;
return false;
}
} else {
spin_lock_irqsave(lock, *flags);
}
return true;

Mel Gorman
committed
/*
* Compaction requires the taking of some coarse locks that are potentially
* very heavily contended. The lock should be periodically unlocked to avoid
* having disabled IRQs for a long time, even when there is nobody waiting on
* the lock. It might also be that allowing the IRQs will result in
* need_resched() becoming true. If scheduling is needed, async compaction
* aborts. Sync compaction schedules.
* Either compaction type will also abort if a fatal signal is pending.
* In either case if the lock was locked, it is dropped and not regained.

Mel Gorman
committed
*
* Returns true if compaction should abort due to fatal signal pending, or
* async compaction due to need_resched()
* Returns false when compaction can continue (sync compaction might have
* scheduled)

Mel Gorman
committed
*/
static bool compact_unlock_should_abort(spinlock_t *lock,
unsigned long flags, bool *locked, struct compact_control *cc)

Mel Gorman
committed
{
if (*locked) {
spin_unlock_irqrestore(lock, flags);
*locked = false;
}
if (fatal_signal_pending(current)) {
cc->contended = true;
return true;
}

Mel Gorman
committed
if (need_resched()) {
if (cc->mode == MIGRATE_ASYNC) {
cc->contended = true;
return true;

Mel Gorman
committed
}
cond_resched();
}
return false;

Mel Gorman
committed
}

Vlastimil Babka
committed
/*
* Aside from avoiding lock contention, compaction also periodically checks
* need_resched() and either schedules in sync compaction or aborts async
* compaction. This is similar to what compact_unlock_should_abort() does, but

Vlastimil Babka
committed
* is used where no lock is concerned.
*
* Returns false when no scheduling was needed, or sync compaction scheduled.
* Returns true when async compaction should abort.
*/
static inline bool compact_should_abort(struct compact_control *cc)
{
/* async compaction aborts if contended */
if (need_resched()) {
if (cc->mode == MIGRATE_ASYNC) {
cc->contended = true;

Vlastimil Babka
committed
return true;
}
cond_resched();
}
return false;
}

Jerome Marchand
committed
* Isolate free pages onto a private freelist. If @strict is true, will abort
* returning 0 on any invalid PFNs or non-free pages inside of the pageblock
* (even though it may still end up isolating some pages).
static unsigned long isolate_freepages_block(struct compact_control *cc,
unsigned long *start_pfn,
unsigned long end_pfn,
struct list_head *freelist,
bool strict)
int nr_scanned = 0, total_isolated = 0;
struct page *cursor, *valid_page = NULL;
unsigned long flags = 0;
bool locked = false;
unsigned long blockpfn = *start_pfn;
unsigned int order;
cursor = pfn_to_page(blockpfn);
/* Isolate free pages. */
for (; blockpfn < end_pfn; blockpfn++, cursor++) {
int isolated;
/*
* Periodically drop the lock (if held) regardless of its
* contention, to give chance to IRQs. Abort if fatal signal
* pending or async compaction detects need_resched()
*/
if (!(blockpfn % SWAP_CLUSTER_MAX)
&& compact_unlock_should_abort(&cc->zone->lock, flags,
&locked, cc))
break;
nr_scanned++;
if (!pfn_valid_within(blockpfn))
goto isolate_fail;
if (!valid_page)
valid_page = page;
/*
* For compound pages such as THP and hugetlbfs, we can save
* potentially a lot of iterations if we skip them at once.
* The check is racy, but we can consider only valid values
* and the only danger is skipping too much.
*/
if (PageCompound(page)) {
unsigned int comp_order = compound_order(page);
if (likely(comp_order < MAX_ORDER)) {
blockpfn += (1UL << comp_order) - 1;
cursor += (1UL << comp_order) - 1;
}
goto isolate_fail;
}
if (!PageBuddy(page))
goto isolate_fail;
* If we already hold the lock, we can skip some rechecking.
* Note that if we hold the lock now, checked_pageblock was
* already set in some previous iteration (or strict is true),
* so it is correct to skip the suitable migration target
* recheck as well.
if (!locked) {
/*
* The zone lock must be held to isolate freepages.
* Unfortunately this is a very coarse lock and can be
* heavily contended if there are parallel allocations
* or parallel compactions. For async compaction do not
* spin on the lock and we acquire the lock as late as
* possible.
*/
locked = compact_trylock_irqsave(&cc->zone->lock,
&flags, cc);
if (!locked)
break;
/* Recheck this is a buddy page under lock */
if (!PageBuddy(page))
goto isolate_fail;
}
/* Found a free page, will break it into order-0 pages */
order = page_order(page);
isolated = __isolate_free_page(page, order);
if (!isolated)
break;
set_page_private(page, order);
cc->nr_freepages += isolated;
list_add_tail(&page->lru, freelist);
if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
blockpfn += isolated;
break;
/* Advance to the end of split page */
blockpfn += isolated - 1;
cursor += isolated - 1;
continue;
isolate_fail:
if (strict)
break;
else
continue;
if (locked)
spin_unlock_irqrestore(&cc->zone->lock, flags);
/*
* There is a tiny chance that we have read bogus compound_order(),
* so be careful to not go outside of the pageblock.
*/
if (unlikely(blockpfn > end_pfn))
blockpfn = end_pfn;
trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
nr_scanned, total_isolated);
/* Record how far we have got within the block */
*start_pfn = blockpfn;
/*
* If strict isolation is requested by CMA then check that all the
* pages requested were isolated. If there were any failures, 0 is
* returned and CMA will fail.
*/
if (strict && blockpfn < end_pfn)
total_isolated = 0;
/* Update the pageblock-skip if the whole pageblock was scanned */
if (blockpfn == end_pfn)

Vlastimil Babka
committed
update_pageblock_skip(cc, valid_page, total_isolated, false);
cc->total_free_scanned += nr_scanned;
if (total_isolated)
count_compact_events(COMPACTISOLATED, total_isolated);
/**
* isolate_freepages_range() - isolate free pages.
* @start_pfn: The first PFN to start isolating.
* @end_pfn: The one-past-last PFN.
*
* Non-free pages, invalid PFNs, or zone boundaries within the
* [start_pfn, end_pfn) range are considered errors, cause function to
* undo its actions and return zero.
*
* Otherwise, function returns one-past-the-last PFN of isolated page
* (which may be greater then end_pfn if end fell in a middle of
* a free page).
*/
isolate_freepages_range(struct compact_control *cc,
unsigned long start_pfn, unsigned long end_pfn)
unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
LIST_HEAD(freelist);
pfn = start_pfn;
block_start_pfn = pageblock_start_pfn(pfn);
if (block_start_pfn < cc->zone->zone_start_pfn)
block_start_pfn = cc->zone->zone_start_pfn;
block_end_pfn = pageblock_end_pfn(pfn);
for (; pfn < end_pfn; pfn += isolated,
block_start_pfn = block_end_pfn,
block_end_pfn += pageblock_nr_pages) {
/* Protect pfn from changing by isolate_freepages_block */
unsigned long isolate_start_pfn = pfn;
block_end_pfn = min(block_end_pfn, end_pfn);
/*
* pfn could pass the block_end_pfn if isolated freepage
* is more than pageblock order. In this case, we adjust
* scanning range to right one.
*/
if (pfn >= block_end_pfn) {
block_start_pfn = pageblock_start_pfn(pfn);
block_end_pfn = pageblock_end_pfn(pfn);
block_end_pfn = min(block_end_pfn, end_pfn);
}
if (!pageblock_pfn_to_page(block_start_pfn,
block_end_pfn, cc->zone))
break;
isolated = isolate_freepages_block(cc, &isolate_start_pfn,
block_end_pfn, &freelist, true);
/*
* In strict mode, isolate_freepages_block() returns 0 if
* there are any holes in the block (ie. invalid PFNs or
* non-free pages).
*/
if (!isolated)
break;
/*
* If we managed to isolate pages, it is always (1 << n) *
* pageblock_nr_pages for some non-negative n. (Max order
* page may span two pageblocks).
*/
}
/* __isolate_free_page() does not map the pages */
map_pages(&freelist);
if (pfn < end_pfn) {
/* Loop terminated early, cleanup. */
release_freepages(&freelist);
return 0;
}
/* We don't use freelists for anything. */
return pfn;
}
/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
unsigned long active, inactive, isolated;
inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
return isolated > (inactive + active) / 2;

Vlastimil Babka
committed
* isolate_migratepages_block() - isolate all migrate-able pages within
* a single pageblock
* @cc: Compaction control structure.

Vlastimil Babka
committed
* @low_pfn: The first PFN to isolate
* @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
* @isolate_mode: Isolation mode to be used.
*
* Isolate all pages that can be migrated from the range specified by

Vlastimil Babka
committed
* [low_pfn, end_pfn). The range is expected to be within same pageblock.
* Returns zero if there is a fatal signal pending, otherwise PFN of the
* first page that was not scanned (which may be both less, equal to or more
* than end_pfn).

Vlastimil Babka
committed
* The pages are isolated on cc->migratepages list (not required to be empty),
* and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
* is neither read nor updated.

Vlastimil Babka
committed
static unsigned long
isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
unsigned long end_pfn, isolate_mode_t isolate_mode)

Vlastimil Babka
committed
struct zone *zone = cc->zone;
unsigned long nr_scanned = 0, nr_isolated = 0;
unsigned long flags = 0;
bool locked = false;
struct page *page = NULL, *valid_page = NULL;
unsigned long start_pfn = low_pfn;

Vlastimil Babka
committed
bool skip_on_failure = false;
unsigned long next_skip_pfn = 0;
/*
* Ensure that there are not too many pages isolated from the LRU
* list by either parallel reclaimers or compaction. If there are,
* delay for some time until fewer pages are isolated
*/
while (unlikely(too_many_isolated(zone))) {

Mel Gorman
committed
/* async migration should just abort */
if (cc->mode == MIGRATE_ASYNC)

Mel Gorman
committed
congestion_wait(BLK_RW_ASYNC, HZ/10);
if (fatal_signal_pending(current))

Vlastimil Babka
committed
if (compact_should_abort(cc))
return 0;

Vlastimil Babka
committed
if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
skip_on_failure = true;
next_skip_pfn = block_end_pfn(low_pfn, cc->order);
}
/* Time to isolate some pages for migration */
for (; low_pfn < end_pfn; low_pfn++) {

Vlastimil Babka
committed

Vlastimil Babka
committed
if (skip_on_failure && low_pfn >= next_skip_pfn) {
/*
* We have isolated all migration candidates in the
* previous order-aligned block, and did not skip it due
* to failure. We should migrate the pages now and
* hopefully succeed compaction.
*/
if (nr_isolated)
break;
/*
* We failed to isolate in the previous order-aligned
* block. Set the new boundary to the end of the
* current block. Note we can't simply increase
* next_skip_pfn by 1 << order, as low_pfn might have
* been incremented by a higher number due to skipping
* a compound or a high-order buddy page in the
* previous loop iteration.
*/
next_skip_pfn = block_end_pfn(low_pfn, cc->order);
}
/*
* Periodically drop the lock (if held) regardless of its
* contention, to give chance to IRQs. Abort async compaction
* if contended.
*/
if (!(low_pfn % SWAP_CLUSTER_MAX)
&& compact_unlock_should_abort(zone_lru_lock(zone), flags,
&locked, cc))
break;

Mel Gorman
committed

Vlastimil Babka
committed
goto isolate_fail;
nr_scanned++;
if (!valid_page)
valid_page = page;
* Skip if free. We read page order here without zone lock
* which is generally unsafe, but the race window is small and
* the worst thing that can happen is that we skip some
* potential isolation targets.
if (PageBuddy(page)) {
unsigned long freepage_order = page_order_unsafe(page);
/*
* Without lock, we cannot be sure that what we got is
* a valid page order. Consider only values in the
* valid order range to prevent low_pfn overflow.
*/
if (freepage_order > 0 && freepage_order < MAX_ORDER)
low_pfn += (1UL << freepage_order) - 1;
}

Vlastimil Babka
committed
* Regardless of being on LRU, compound pages such as THP and
* hugetlbfs are not to be compacted. We can potentially save
* a lot of iterations if we skip them at once. The check is
* racy, but we can consider only valid values and the only
* danger is skipping too much.

Vlastimil Babka
committed
if (PageCompound(page)) {
unsigned int comp_order = compound_order(page);
if (likely(comp_order < MAX_ORDER))
low_pfn += (1UL << comp_order) - 1;

Vlastimil Babka
committed

Vlastimil Babka
committed
goto isolate_fail;
/*
* Check may be lockless but that's ok as we recheck later.
* It's possible to migrate LRU and non-lru movable pages.
* Skip any other type of page
*/
if (!PageLRU(page)) {
/*
* __PageMovable can return false positive so we need
* to verify it under page_lock.
*/
if (unlikely(__PageMovable(page)) &&
!PageIsolated(page)) {
if (locked) {
spin_unlock_irqrestore(zone_lru_lock(zone),
flags);
locked = false;
}
if (!isolate_movable_page(page, isolate_mode))
goto isolate_success;
}

Vlastimil Babka
committed
goto isolate_fail;

Vlastimil Babka
committed
/*
* Migration will fail if an anonymous page is pinned in memory,
* so avoid taking lru_lock and isolating it unnecessarily in an
* admittedly racy check.
*/
if (!page_mapping(page) &&
page_count(page) > page_mapcount(page))

Vlastimil Babka
committed
goto isolate_fail;
/*
* Only allow to migrate anonymous pages in GFP_NOFS context
* because those do not depend on fs locks.
*/
if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
goto isolate_fail;
/* If we already hold the lock, we can skip some rechecking */
if (!locked) {
locked = compact_trylock_irqsave(zone_lru_lock(zone),
&flags, cc);
if (!locked)
break;

Vlastimil Babka
committed
/* Recheck PageLRU and PageCompound under lock */
if (!PageLRU(page))

Vlastimil Babka
committed
goto isolate_fail;

Vlastimil Babka
committed
/*
* Page become compound since the non-locked check,
* and it's on LRU. It can only be a THP so the order
* is safe to read and it's 0 for tail pages.
*/
if (unlikely(PageCompound(page))) {
low_pfn += (1UL << compound_order(page)) - 1;

Vlastimil Babka
committed
goto isolate_fail;
lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);

Vlastimil Babka
committed
if (__isolate_lru_page(page, isolate_mode) != 0)

Vlastimil Babka
committed
goto isolate_fail;

Vlastimil Babka
committed
VM_BUG_ON_PAGE(PageCompound(page), page);
del_page_from_lru_list(page, lruvec, page_lru(page));
inc_node_page_state(page,
NR_ISOLATED_ANON + page_is_file_cache(page));
isolate_success:

Vlastimil Babka
committed
list_add(&page->lru, &cc->migratepages);
nr_isolated++;
/*
* Record where we could have freed pages by migration and not
* yet flushed them to buddy allocator.
* - this is the lowest page that was isolated and likely be
* then freed by migration.
*/
if (!cc->last_migrated_pfn)
cc->last_migrated_pfn = low_pfn;
if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
++low_pfn;
}

Vlastimil Babka
committed
continue;
isolate_fail:
if (!skip_on_failure)
continue;
/*
* We have isolated some pages, but then failed. Release them
* instead of migrating, as we cannot form the cc->order buddy
* page anyway.
*/
if (nr_isolated) {
if (locked) {
spin_unlock_irqrestore(zone_lru_lock(zone), flags);

Vlastimil Babka
committed
locked = false;
}
putback_movable_pages(&cc->migratepages);
cc->nr_migratepages = 0;
cc->last_migrated_pfn = 0;
nr_isolated = 0;
}
if (low_pfn < next_skip_pfn) {
low_pfn = next_skip_pfn - 1;
/*
* The check near the loop beginning would have updated
* next_skip_pfn too, but this is a bit simpler.
*/
next_skip_pfn += 1UL << cc->order;
}
/*
* The PageBuddy() check could have potentially brought us outside
* the range to be scanned.
*/
if (unlikely(low_pfn > end_pfn))
low_pfn = end_pfn;

Mel Gorman
committed
if (locked)
spin_unlock_irqrestore(zone_lru_lock(zone), flags);

Vlastimil Babka
committed
/*
* Update the pageblock-skip information and cached scanner pfn,
* if the whole pageblock was scanned without isolating any page.
*/
if (low_pfn == end_pfn)

Vlastimil Babka
committed
update_pageblock_skip(cc, valid_page, nr_isolated, true);
trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
nr_scanned, nr_isolated);
cc->total_migrate_scanned += nr_scanned;
if (nr_isolated)
count_compact_events(COMPACTISOLATED, nr_isolated);
return low_pfn;
}

Vlastimil Babka
committed
/**
* isolate_migratepages_range() - isolate migrate-able pages in a PFN range
* @cc: Compaction control structure.
* @start_pfn: The first PFN to start isolating.
* @end_pfn: The one-past-last PFN.
*
* Returns zero if isolation fails fatally due to e.g. pending signal.
* Otherwise, function returns one-past-the-last PFN of isolated page
* (which may be greater than end_pfn if end fell in a middle of a THP page).
*/
unsigned long
isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
unsigned long end_pfn)
{
unsigned long pfn, block_start_pfn, block_end_pfn;

Vlastimil Babka
committed
/* Scan block by block. First and last block may be incomplete */
pfn = start_pfn;
block_start_pfn = pageblock_start_pfn(pfn);
if (block_start_pfn < cc->zone->zone_start_pfn)
block_start_pfn = cc->zone->zone_start_pfn;
block_end_pfn = pageblock_end_pfn(pfn);

Vlastimil Babka
committed
for (; pfn < end_pfn; pfn = block_end_pfn,
block_start_pfn = block_end_pfn,

Vlastimil Babka
committed
block_end_pfn += pageblock_nr_pages) {
block_end_pfn = min(block_end_pfn, end_pfn);
if (!pageblock_pfn_to_page(block_start_pfn,
block_end_pfn, cc->zone))

Vlastimil Babka
committed
continue;
pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
ISOLATE_UNEVICTABLE);

Vlastimil Babka
committed
break;
if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
break;

Vlastimil Babka
committed
}
return pfn;
}
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION

Vlastimil Babka
committed
static bool suitable_migration_source(struct compact_control *cc,
struct page *page)
{

Vlastimil Babka
committed
int block_mt;
if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)

Vlastimil Babka
committed
return true;

Vlastimil Babka
committed
block_mt = get_pageblock_migratetype(page);
if (cc->migratetype == MIGRATE_MOVABLE)
return is_migrate_movable(block_mt);
else
return block_mt == cc->migratetype;