Skip to content
Snippets Groups Projects
Select Git revision
  • 04823c833b3eaef7816e28e3727124394f6bb3c3
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

memcontrol.c

Blame
  • memcontrol.c 147.42 KiB
    /* memcontrol.c - Memory Controller
     *
     * Copyright IBM Corporation, 2007
     * Author Balbir Singh <balbir@linux.vnet.ibm.com>
     *
     * Copyright 2007 OpenVZ SWsoft Inc
     * Author: Pavel Emelianov <xemul@openvz.org>
     *
     * Memory thresholds
     * Copyright (C) 2009 Nokia Corporation
     * Author: Kirill A. Shutemov
     *
     * Kernel Memory Controller
     * Copyright (C) 2012 Parallels Inc. and Google Inc.
     * Authors: Glauber Costa and Suleiman Souhlal
     *
     * Native page reclaim
     * Charge lifetime sanitation
     * Lockless page tracking & accounting
     * Unified hierarchy configuration model
     * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation; either version 2 of the License, or
     * (at your option) any later version.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     */
    
    #include <linux/page_counter.h>
    #include <linux/memcontrol.h>
    #include <linux/cgroup.h>
    #include <linux/mm.h>
    #include <linux/hugetlb.h>
    #include <linux/pagemap.h>
    #include <linux/smp.h>
    #include <linux/page-flags.h>
    #include <linux/backing-dev.h>
    #include <linux/bit_spinlock.h>
    #include <linux/rcupdate.h>
    #include <linux/limits.h>
    #include <linux/export.h>
    #include <linux/mutex.h>
    #include <linux/rbtree.h>
    #include <linux/slab.h>
    #include <linux/swap.h>
    #include <linux/swapops.h>
    #include <linux/spinlock.h>
    #include <linux/eventfd.h>
    #include <linux/poll.h>
    #include <linux/sort.h>
    #include <linux/fs.h>
    #include <linux/seq_file.h>
    #include <linux/vmpressure.h>
    #include <linux/mm_inline.h>
    #include <linux/swap_cgroup.h>
    #include <linux/cpu.h>
    #include <linux/oom.h>
    #include <linux/lockdep.h>
    #include <linux/file.h>
    #include <linux/tracehook.h>
    #include "internal.h"
    #include <net/sock.h>
    #include <net/ip.h>
    #include <net/tcp_memcontrol.h>
    #include "slab.h"
    
    #include <asm/uaccess.h>
    
    #include <trace/events/vmscan.h>
    
    struct cgroup_subsys memory_cgrp_subsys __read_mostly;
    EXPORT_SYMBOL(memory_cgrp_subsys);
    
    struct mem_cgroup *root_mem_cgroup __read_mostly;
    
    #define MEM_CGROUP_RECLAIM_RETRIES	5
    
    /* Socket memory accounting disabled? */
    static bool cgroup_memory_nosocket;
    
    /* Kernel memory accounting disabled? */
    static bool cgroup_memory_nokmem;
    
    /* Whether the swap controller is active */
    #ifdef CONFIG_MEMCG_SWAP
    int do_swap_account __read_mostly;
    #else
    #define do_swap_account		0
    #endif
    
    /* Whether legacy memory+swap accounting is active */
    static bool do_memsw_account(void)
    {
    	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
    }
    
    static const char * const mem_cgroup_stat_names[] = {
    	"cache",
    	"rss",
    	"rss_huge",
    	"mapped_file",
    	"dirty",
    	"writeback",
    	"swap",
    };
    
    static const char * const mem_cgroup_events_names[] = {
    	"pgpgin",
    	"pgpgout",
    	"pgfault",
    	"pgmajfault",
    };
    
    static const char * const mem_cgroup_lru_names[] = {
    	"inactive_anon",
    	"active_anon",
    	"inactive_file",
    	"active_file",
    	"unevictable",
    };
    
    #define THRESHOLDS_EVENTS_TARGET 128
    #define SOFTLIMIT_EVENTS_TARGET 1024
    #define NUMAINFO_EVENTS_TARGET	1024
    
    /*
     * Cgroups above their limits are maintained in a RB-Tree, independent of
     * their hierarchy representation
     */
    
    struct mem_cgroup_tree_per_zone {
    	struct rb_root rb_root;
    	spinlock_t lock;
    };
    
    struct mem_cgroup_tree_per_node {
    	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
    };
    
    struct mem_cgroup_tree {
    	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
    };
    
    static struct mem_cgroup_tree soft_limit_tree __read_mostly;
    
    /* for OOM */
    struct mem_cgroup_eventfd_list {
    	struct list_head list;
    	struct eventfd_ctx *eventfd;
    };
    
    /*
     * cgroup_event represents events which userspace want to receive.
     */
    struct mem_cgroup_event {
    	/*
    	 * memcg which the event belongs to.
    	 */
    	struct mem_cgroup *memcg;
    	/*
    	 * eventfd to signal userspace about the event.
    	 */
    	struct eventfd_ctx *eventfd;
    	/*
    	 * Each of these stored in a list by the cgroup.
    	 */
    	struct list_head list;
    	/*
    	 * register_event() callback will be used to add new userspace
    	 * waiter for changes related to this event.  Use eventfd_signal()
    	 * on eventfd to send notification to userspace.
    	 */
    	int (*register_event)(struct mem_cgroup *memcg,
    			      struct eventfd_ctx *eventfd, const char *args);
    	/*
    	 * unregister_event() callback will be called when userspace closes
    	 * the eventfd or on cgroup removing.  This callback must be set,
    	 * if you want provide notification functionality.
    	 */
    	void (*unregister_event)(struct mem_cgroup *memcg,
    				 struct eventfd_ctx *eventfd);
    	/*
    	 * All fields below needed to unregister event when
    	 * userspace closes eventfd.
    	 */
    	poll_table pt;
    	wait_queue_head_t *wqh;
    	wait_queue_t wait;
    	struct work_struct remove;
    };
    
    static void mem_cgroup_threshold(struct mem_cgroup *memcg);
    static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
    
    /* Stuffs for move charges at task migration. */
    /*
     * Types of charges to be moved.
     */
    #define MOVE_ANON	0x1U
    #define MOVE_FILE	0x2U
    #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
    
    /* "mc" and its members are protected by cgroup_mutex */
    static struct move_charge_struct {
    	spinlock_t	  lock; /* for from, to */
    	struct mem_cgroup *from;
    	struct mem_cgroup *to;
    	unsigned long flags;
    	unsigned long precharge;
    	unsigned long moved_charge;
    	unsigned long moved_swap;
    	struct task_struct *moving_task;	/* a task moving charges */
    	wait_queue_head_t waitq;		/* a waitq for other context */
    } mc = {
    	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
    	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
    };
    
    /*
     * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
     * limit reclaim to prevent infinite loops, if they ever occur.
     */
    #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
    #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
    
    enum charge_type {
    	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
    	MEM_CGROUP_CHARGE_TYPE_ANON,
    	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
    	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
    	NR_CHARGE_TYPE,
    };
    
    /* for encoding cft->private value on file */
    enum res_type {
    	_MEM,
    	_MEMSWAP,
    	_OOM_TYPE,
    	_KMEM,
    };
    
    #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
    #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
    #define MEMFILE_ATTR(val)	((val) & 0xffff)
    /* Used for OOM nofiier */
    #define OOM_CONTROL		(0)
    
    /*
     * The memcg_create_mutex will be held whenever a new cgroup is created.
     * As a consequence, any change that needs to protect against new child cgroups
     * appearing has to hold it as well.
     */
    static DEFINE_MUTEX(memcg_create_mutex);
    
    /* Some nice accessors for the vmpressure. */
    struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
    {
    	if (!memcg)
    		memcg = root_mem_cgroup;
    	return &memcg->vmpressure;
    }
    
    struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
    {
    	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
    }
    
    static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
    {
    	return (memcg == root_mem_cgroup);
    }
    
    /*
     * We restrict the id in the range of [1, 65535], so it can fit into
     * an unsigned short.
     */
    #define MEM_CGROUP_ID_MAX	USHRT_MAX
    
    static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
    {
    	return memcg->css.id;
    }
    
    /*
     * A helper function to get mem_cgroup from ID. must be called under
     * rcu_read_lock().  The caller is responsible for calling
     * css_tryget_online() if the mem_cgroup is used for charging. (dropping
     * refcnt from swap can be called against removed memcg.)
     */
    static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
    {
    	struct cgroup_subsys_state *css;
    
    	css = css_from_id(id, &memory_cgrp_subsys);
    	return mem_cgroup_from_css(css);
    }
    
    #ifndef CONFIG_SLOB
    /*
     * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
     * The main reason for not using cgroup id for this:
     *  this works better in sparse environments, where we have a lot of memcgs,
     *  but only a few kmem-limited. Or also, if we have, for instance, 200
     *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
     *  200 entry array for that.
     *
     * The current size of the caches array is stored in memcg_nr_cache_ids. It
     * will double each time we have to increase it.
     */
    static DEFINE_IDA(memcg_cache_ida);
    int memcg_nr_cache_ids;
    
    /* Protects memcg_nr_cache_ids */
    static DECLARE_RWSEM(memcg_cache_ids_sem);
    
    void memcg_get_cache_ids(void)
    {
    	down_read(&memcg_cache_ids_sem);
    }
    
    void memcg_put_cache_ids(void)
    {
    	up_read(&memcg_cache_ids_sem);
    }
    
    /*
     * MIN_SIZE is different than 1, because we would like to avoid going through
     * the alloc/free process all the time. In a small machine, 4 kmem-limited
     * cgroups is a reasonable guess. In the future, it could be a parameter or
     * tunable, but that is strictly not necessary.
     *
     * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
     * this constant directly from cgroup, but it is understandable that this is
     * better kept as an internal representation in cgroup.c. In any case, the
     * cgrp_id space is not getting any smaller, and we don't have to necessarily
     * increase ours as well if it increases.
     */
    #define MEMCG_CACHES_MIN_SIZE 4
    #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
    
    /*
     * A lot of the calls to the cache allocation functions are expected to be
     * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
     * conditional to this static branch, we'll have to allow modules that does
     * kmem_cache_alloc and the such to see this symbol as well
     */
    DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
    EXPORT_SYMBOL(memcg_kmem_enabled_key);
    
    #endif /* !CONFIG_SLOB */
    
    static struct mem_cgroup_per_zone *
    mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
    {
    	int nid = zone_to_nid(zone);
    	int zid = zone_idx(zone);
    
    	return &memcg->nodeinfo[nid]->zoneinfo[zid];
    }
    
    /**
     * mem_cgroup_css_from_page - css of the memcg associated with a page
     * @page: page of interest
     *
     * If memcg is bound to the default hierarchy, css of the memcg associated
     * with @page is returned.  The returned css remains associated with @page
     * until it is released.
     *
     * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
     * is returned.
     *
     * XXX: The above description of behavior on the default hierarchy isn't
     * strictly true yet as replace_page_cache_page() can modify the
     * association before @page is released even on the default hierarchy;
     * however, the current and planned usages don't mix the the two functions
     * and replace_page_cache_page() will soon be updated to make the invariant
     * actually true.
     */
    struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
    {
    	struct mem_cgroup *memcg;
    
    	memcg = page->mem_cgroup;
    
    	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
    		memcg = root_mem_cgroup;
    
    	return &memcg->css;
    }
    
    /**
     * page_cgroup_ino - return inode number of the memcg a page is charged to
     * @page: the page
     *
     * Look up the closest online ancestor of the memory cgroup @page is charged to
     * and return its inode number or 0 if @page is not charged to any cgroup. It
     * is safe to call this function without holding a reference to @page.
     *
     * Note, this function is inherently racy, because there is nothing to prevent
     * the cgroup inode from getting torn down and potentially reallocated a moment
     * after page_cgroup_ino() returns, so it only should be used by callers that
     * do not care (such as procfs interfaces).
     */
    ino_t page_cgroup_ino(struct page *page)
    {
    	struct mem_cgroup *memcg;
    	unsigned long ino = 0;
    
    	rcu_read_lock();
    	memcg = READ_ONCE(page->mem_cgroup);
    	while (memcg && !(memcg->css.flags & CSS_ONLINE))
    		memcg = parent_mem_cgroup(memcg);
    	if (memcg)
    		ino = cgroup_ino(memcg->css.cgroup);
    	rcu_read_unlock();
    	return ino;
    }
    
    static struct mem_cgroup_per_zone *
    mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
    {
    	int nid = page_to_nid(page);
    	int zid = page_zonenum(page);
    
    	return &memcg->nodeinfo[nid]->zoneinfo[zid];
    }
    
    static struct mem_cgroup_tree_per_zone *
    soft_limit_tree_node_zone(int nid, int zid)
    {
    	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
    }
    
    static struct mem_cgroup_tree_per_zone *
    soft_limit_tree_from_page(struct page *page)
    {
    	int nid = page_to_nid(page);
    	int zid = page_zonenum(page);
    
    	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
    }
    
    static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
    					 struct mem_cgroup_tree_per_zone *mctz,
    					 unsigned long new_usage_in_excess)
    {
    	struct rb_node **p = &mctz->rb_root.rb_node;
    	struct rb_node *parent = NULL;
    	struct mem_cgroup_per_zone *mz_node;
    
    	if (mz->on_tree)
    		return;
    
    	mz->usage_in_excess = new_usage_in_excess;
    	if (!mz->usage_in_excess)
    		return;
    	while (*p) {
    		parent = *p;
    		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
    					tree_node);
    		if (mz->usage_in_excess < mz_node->usage_in_excess)
    			p = &(*p)->rb_left;
    		/*
    		 * We can't avoid mem cgroups that are over their soft
    		 * limit by the same amount
    		 */
    		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
    			p = &(*p)->rb_right;
    	}
    	rb_link_node(&mz->tree_node, parent, p);
    	rb_insert_color(&mz->tree_node, &mctz->rb_root);
    	mz->on_tree = true;
    }
    
    static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
    					 struct mem_cgroup_tree_per_zone *mctz)
    {
    	if (!mz->on_tree)
    		return;
    	rb_erase(&mz->tree_node, &mctz->rb_root);
    	mz->on_tree = false;
    }
    
    static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
    				       struct mem_cgroup_tree_per_zone *mctz)
    {
    	unsigned long flags;
    
    	spin_lock_irqsave(&mctz->lock, flags);
    	__mem_cgroup_remove_exceeded(mz, mctz);
    	spin_unlock_irqrestore(&mctz->lock, flags);
    }
    
    static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
    {
    	unsigned long nr_pages = page_counter_read(&memcg->memory);
    	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
    	unsigned long excess = 0;
    
    	if (nr_pages > soft_limit)
    		excess = nr_pages - soft_limit;
    
    	return excess;
    }
    
    static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
    {
    	unsigned long excess;
    	struct mem_cgroup_per_zone *mz;
    	struct mem_cgroup_tree_per_zone *mctz;
    
    	mctz = soft_limit_tree_from_page(page);
    	/*
    	 * Necessary to update all ancestors when hierarchy is used.
    	 * because their event counter is not touched.
    	 */
    	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
    		mz = mem_cgroup_page_zoneinfo(memcg, page);
    		excess = soft_limit_excess(memcg);
    		/*
    		 * We have to update the tree if mz is on RB-tree or
    		 * mem is over its softlimit.
    		 */
    		if (excess || mz->on_tree) {
    			unsigned long flags;
    
    			spin_lock_irqsave(&mctz->lock, flags);
    			/* if on-tree, remove it */
    			if (mz->on_tree)
    				__mem_cgroup_remove_exceeded(mz, mctz);
    			/*
    			 * Insert again. mz->usage_in_excess will be updated.
    			 * If excess is 0, no tree ops.
    			 */
    			__mem_cgroup_insert_exceeded(mz, mctz, excess);
    			spin_unlock_irqrestore(&mctz->lock, flags);
    		}
    	}
    }
    
    static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
    {
    	struct mem_cgroup_tree_per_zone *mctz;
    	struct mem_cgroup_per_zone *mz;
    	int nid, zid;
    
    	for_each_node(nid) {
    		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
    			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
    			mctz = soft_limit_tree_node_zone(nid, zid);
    			mem_cgroup_remove_exceeded(mz, mctz);
    		}
    	}
    }
    
    static struct mem_cgroup_per_zone *
    __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
    {
    	struct rb_node *rightmost = NULL;
    	struct mem_cgroup_per_zone *mz;
    
    retry:
    	mz = NULL;
    	rightmost = rb_last(&mctz->rb_root);
    	if (!rightmost)
    		goto done;		/* Nothing to reclaim from */
    
    	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
    	/*
    	 * Remove the node now but someone else can add it back,
    	 * we will to add it back at the end of reclaim to its correct
    	 * position in the tree.
    	 */
    	__mem_cgroup_remove_exceeded(mz, mctz);
    	if (!soft_limit_excess(mz->memcg) ||
    	    !css_tryget_online(&mz->memcg->css))
    		goto retry;
    done:
    	return mz;
    }
    
    static struct mem_cgroup_per_zone *
    mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
    {
    	struct mem_cgroup_per_zone *mz;
    
    	spin_lock_irq(&mctz->lock);
    	mz = __mem_cgroup_largest_soft_limit_node(mctz);
    	spin_unlock_irq(&mctz->lock);
    	return mz;
    }
    
    /*
     * Return page count for single (non recursive) @memcg.
     *
     * Implementation Note: reading percpu statistics for memcg.
     *
     * Both of vmstat[] and percpu_counter has threshold and do periodic
     * synchronization to implement "quick" read. There are trade-off between
     * reading cost and precision of value. Then, we may have a chance to implement
     * a periodic synchronization of counter in memcg's counter.
     *
     * But this _read() function is used for user interface now. The user accounts
     * memory usage by memory cgroup and he _always_ requires exact value because
     * he accounts memory. Even if we provide quick-and-fuzzy read, we always
     * have to visit all online cpus and make sum. So, for now, unnecessary
     * synchronization is not implemented. (just implemented for cpu hotplug)
     *
     * If there are kernel internal actions which can make use of some not-exact
     * value, and reading all cpu value can be performance bottleneck in some
     * common workload, threshold and synchronization as vmstat[] should be
     * implemented.
     */
    static unsigned long
    mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
    {
    	long val = 0;
    	int cpu;
    
    	/* Per-cpu values can be negative, use a signed accumulator */
    	for_each_possible_cpu(cpu)
    		val += per_cpu(memcg->stat->count[idx], cpu);
    	/*
    	 * Summing races with updates, so val may be negative.  Avoid exposing
    	 * transient negative values.
    	 */
    	if (val < 0)
    		val = 0;
    	return val;
    }
    
    static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
    					    enum mem_cgroup_events_index idx)
    {
    	unsigned long val = 0;
    	int cpu;
    
    	for_each_possible_cpu(cpu)
    		val += per_cpu(memcg->stat->events[idx], cpu);
    	return val;
    }
    
    static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
    					 struct page *page,
    					 bool compound, int nr_pages)
    {
    	/*
    	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
    	 * counted as CACHE even if it's on ANON LRU.
    	 */
    	if (PageAnon(page))
    		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
    				nr_pages);
    	else
    		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
    				nr_pages);
    
    	if (compound) {
    		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
    		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
    				nr_pages);
    	}
    
    	/* pagein of a big page is an event. So, ignore page size */
    	if (nr_pages > 0)
    		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
    	else {
    		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
    		nr_pages = -nr_pages; /* for event */
    	}
    
    	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
    }
    
    static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
    						  int nid,
    						  unsigned int lru_mask)
    {
    	unsigned long nr = 0;
    	int zid;
    
    	VM_BUG_ON((unsigned)nid >= nr_node_ids);
    
    	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
    		struct mem_cgroup_per_zone *mz;
    		enum lru_list lru;
    
    		for_each_lru(lru) {
    			if (!(BIT(lru) & lru_mask))
    				continue;
    			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
    			nr += mz->lru_size[lru];
    		}
    	}
    	return nr;
    }
    
    static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
    			unsigned int lru_mask)
    {
    	unsigned long nr = 0;
    	int nid;
    
    	for_each_node_state(nid, N_MEMORY)
    		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
    	return nr;
    }
    
    static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
    				       enum mem_cgroup_events_target target)
    {
    	unsigned long val, next;
    
    	val = __this_cpu_read(memcg->stat->nr_page_events);
    	next = __this_cpu_read(memcg->stat->targets[target]);
    	/* from time_after() in jiffies.h */
    	if ((long)next - (long)val < 0) {
    		switch (target) {
    		case MEM_CGROUP_TARGET_THRESH:
    			next = val + THRESHOLDS_EVENTS_TARGET;
    			break;
    		case MEM_CGROUP_TARGET_SOFTLIMIT:
    			next = val + SOFTLIMIT_EVENTS_TARGET;
    			break;
    		case MEM_CGROUP_TARGET_NUMAINFO:
    			next = val + NUMAINFO_EVENTS_TARGET;
    			break;
    		default:
    			break;
    		}
    		__this_cpu_write(memcg->stat->targets[target], next);
    		return true;
    	}
    	return false;
    }
    
    /*
     * Check events in order.
     *
     */
    static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
    {
    	/* threshold event is triggered in finer grain than soft limit */
    	if (unlikely(mem_cgroup_event_ratelimit(memcg,
    						MEM_CGROUP_TARGET_THRESH))) {
    		bool do_softlimit;
    		bool do_numainfo __maybe_unused;
    
    		do_softlimit = mem_cgroup_event_ratelimit(memcg,
    						MEM_CGROUP_TARGET_SOFTLIMIT);
    #if MAX_NUMNODES > 1
    		do_numainfo = mem_cgroup_event_ratelimit(memcg,
    						MEM_CGROUP_TARGET_NUMAINFO);
    #endif
    		mem_cgroup_threshold(memcg);
    		if (unlikely(do_softlimit))
    			mem_cgroup_update_tree(memcg, page);
    #if MAX_NUMNODES > 1
    		if (unlikely(do_numainfo))
    			atomic_inc(&memcg->numainfo_events);
    #endif
    	}
    }
    
    struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
    {
    	/*
    	 * mm_update_next_owner() may clear mm->owner to NULL
    	 * if it races with swapoff, page migration, etc.
    	 * So this can be called with p == NULL.
    	 */
    	if (unlikely(!p))
    		return NULL;
    
    	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
    }
    EXPORT_SYMBOL(mem_cgroup_from_task);
    
    static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
    {
    	struct mem_cgroup *memcg = NULL;
    
    	rcu_read_lock();
    	do {
    		/*
    		 * Page cache insertions can happen withou an
    		 * actual mm context, e.g. during disk probing
    		 * on boot, loopback IO, acct() writes etc.
    		 */
    		if (unlikely(!mm))
    			memcg = root_mem_cgroup;
    		else {
    			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
    			if (unlikely(!memcg))
    				memcg = root_mem_cgroup;
    		}
    	} while (!css_tryget_online(&memcg->css));
    	rcu_read_unlock();
    	return memcg;
    }
    
    /**
     * mem_cgroup_iter - iterate over memory cgroup hierarchy
     * @root: hierarchy root
     * @prev: previously returned memcg, NULL on first invocation
     * @reclaim: cookie for shared reclaim walks, NULL for full walks
     *
     * Returns references to children of the hierarchy below @root, or
     * @root itself, or %NULL after a full round-trip.
     *
     * Caller must pass the return value in @prev on subsequent
     * invocations for reference counting, or use mem_cgroup_iter_break()
     * to cancel a hierarchy walk before the round-trip is complete.
     *
     * Reclaimers can specify a zone and a priority level in @reclaim to
     * divide up the memcgs in the hierarchy among all concurrent
     * reclaimers operating on the same zone and priority.
     */
    struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
    				   struct mem_cgroup *prev,
    				   struct mem_cgroup_reclaim_cookie *reclaim)
    {
    	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
    	struct cgroup_subsys_state *css = NULL;
    	struct mem_cgroup *memcg = NULL;
    	struct mem_cgroup *pos = NULL;
    
    	if (mem_cgroup_disabled())
    		return NULL;
    
    	if (!root)
    		root = root_mem_cgroup;
    
    	if (prev && !reclaim)
    		pos = prev;
    
    	if (!root->use_hierarchy && root != root_mem_cgroup) {
    		if (prev)
    			goto out;
    		return root;
    	}
    
    	rcu_read_lock();
    
    	if (reclaim) {
    		struct mem_cgroup_per_zone *mz;
    
    		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
    		iter = &mz->iter[reclaim->priority];
    
    		if (prev && reclaim->generation != iter->generation)
    			goto out_unlock;
    
    		while (1) {
    			pos = READ_ONCE(iter->position);
    			if (!pos || css_tryget(&pos->css))
    				break;
    			/*
    			 * css reference reached zero, so iter->position will
    			 * be cleared by ->css_released. However, we should not
    			 * rely on this happening soon, because ->css_released
    			 * is called from a work queue, and by busy-waiting we
    			 * might block it. So we clear iter->position right
    			 * away.
    			 */
    			(void)cmpxchg(&iter->position, pos, NULL);
    		}
    	}
    
    	if (pos)
    		css = &pos->css;
    
    	for (;;) {
    		css = css_next_descendant_pre(css, &root->css);
    		if (!css) {
    			/*
    			 * Reclaimers share the hierarchy walk, and a
    			 * new one might jump in right at the end of
    			 * the hierarchy - make sure they see at least
    			 * one group and restart from the beginning.
    			 */
    			if (!prev)
    				continue;
    			break;
    		}
    
    		/*
    		 * Verify the css and acquire a reference.  The root
    		 * is provided by the caller, so we know it's alive
    		 * and kicking, and don't take an extra reference.
    		 */
    		memcg = mem_cgroup_from_css(css);
    
    		if (css == &root->css)
    			break;
    
    		if (css_tryget(css)) {
    			/*
    			 * Make sure the memcg is initialized:
    			 * mem_cgroup_css_online() orders the the
    			 * initialization against setting the flag.
    			 */
    			if (smp_load_acquire(&memcg->initialized))
    				break;
    
    			css_put(css);
    		}
    
    		memcg = NULL;
    	}
    
    	if (reclaim) {
    		/*
    		 * The position could have already been updated by a competing
    		 * thread, so check that the value hasn't changed since we read
    		 * it to avoid reclaiming from the same cgroup twice.
    		 */
    		(void)cmpxchg(&iter->position, pos, memcg);
    
    		if (pos)
    			css_put(&pos->css);
    
    		if (!memcg)
    			iter->generation++;
    		else if (!prev)
    			reclaim->generation = iter->generation;
    	}
    
    out_unlock:
    	rcu_read_unlock();
    out:
    	if (prev && prev != root)
    		css_put(&prev->css);
    
    	return memcg;
    }
    
    /**
     * mem_cgroup_iter_break - abort a hierarchy walk prematurely
     * @root: hierarchy root
     * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
     */
    void mem_cgroup_iter_break(struct mem_cgroup *root,
    			   struct mem_cgroup *prev)
    {
    	if (!root)
    		root = root_mem_cgroup;
    	if (prev && prev != root)
    		css_put(&prev->css);
    }
    
    static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
    {
    	struct mem_cgroup *memcg = dead_memcg;
    	struct mem_cgroup_reclaim_iter *iter;
    	struct mem_cgroup_per_zone *mz;
    	int nid, zid;
    	int i;
    
    	while ((memcg = parent_mem_cgroup(memcg))) {
    		for_each_node(nid) {
    			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
    				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
    				for (i = 0; i <= DEF_PRIORITY; i++) {
    					iter = &mz->iter[i];
    					cmpxchg(&iter->position,
    						dead_memcg, NULL);
    				}
    			}
    		}
    	}
    }
    
    /*
     * Iteration constructs for visiting all cgroups (under a tree).  If
     * loops are exited prematurely (break), mem_cgroup_iter_break() must
     * be used for reference counting.
     */
    #define for_each_mem_cgroup_tree(iter, root)		\
    	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
    	     iter != NULL;				\
    	     iter = mem_cgroup_iter(root, iter, NULL))
    
    #define for_each_mem_cgroup(iter)			\
    	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
    	     iter != NULL;				\
    	     iter = mem_cgroup_iter(NULL, iter, NULL))
    
    /**
     * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
     * @zone: zone of the wanted lruvec
     * @memcg: memcg of the wanted lruvec
     *
     * Returns the lru list vector holding pages for the given @zone and
     * @mem.  This can be the global zone lruvec, if the memory controller
     * is disabled.
     */
    struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
    				      struct mem_cgroup *memcg)
    {
    	struct mem_cgroup_per_zone *mz;
    	struct lruvec *lruvec;
    
    	if (mem_cgroup_disabled()) {
    		lruvec = &zone->lruvec;
    		goto out;
    	}
    
    	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
    	lruvec = &mz->lruvec;
    out:
    	/*
    	 * Since a node can be onlined after the mem_cgroup was created,
    	 * we have to be prepared to initialize lruvec->zone here;
    	 * and if offlined then reonlined, we need to reinitialize it.
    	 */
    	if (unlikely(lruvec->zone != zone))
    		lruvec->zone = zone;
    	return lruvec;
    }
    
    /**
     * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
     * @page: the page
     * @zone: zone of the page
     *
     * This function is only safe when following the LRU page isolation
     * and putback protocol: the LRU lock must be held, and the page must
     * either be PageLRU() or the caller must have isolated/allocated it.
     */
    struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
    {
    	struct mem_cgroup_per_zone *mz;
    	struct mem_cgroup *memcg;
    	struct lruvec *lruvec;
    
    	if (mem_cgroup_disabled()) {
    		lruvec = &zone->lruvec;
    		goto out;
    	}
    
    	memcg = page->mem_cgroup;
    	/*
    	 * Swapcache readahead pages are added to the LRU - and
    	 * possibly migrated - before they are charged.
    	 */
    	if (!memcg)
    		memcg = root_mem_cgroup;
    
    	mz = mem_cgroup_page_zoneinfo(memcg, page);
    	lruvec = &mz->lruvec;
    out:
    	/*
    	 * Since a node can be onlined after the mem_cgroup was created,
    	 * we have to be prepared to initialize lruvec->zone here;
    	 * and if offlined then reonlined, we need to reinitialize it.
    	 */
    	if (unlikely(lruvec->zone != zone))
    		lruvec->zone = zone;
    	return lruvec;
    }
    
    /**
     * mem_cgroup_update_lru_size - account for adding or removing an lru page
     * @lruvec: mem_cgroup per zone lru vector
     * @lru: index of lru list the page is sitting on
     * @nr_pages: positive when adding or negative when removing
     *
     * This function must be called when a page is added to or removed from an
     * lru list.
     */
    void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
    				int nr_pages)
    {
    	struct mem_cgroup_per_zone *mz;
    	unsigned long *lru_size;
    
    	if (mem_cgroup_disabled())
    		return;
    
    	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
    	lru_size = mz->lru_size + lru;
    	*lru_size += nr_pages;
    	VM_BUG_ON((long)(*lru_size) < 0);
    }
    
    bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
    {
    	struct mem_cgroup *task_memcg;
    	struct task_struct *p;
    	bool ret;
    
    	p = find_lock_task_mm(task);
    	if (p) {
    		task_memcg = get_mem_cgroup_from_mm(p->mm);
    		task_unlock(p);
    	} else {
    		/*
    		 * All threads may have already detached their mm's, but the oom
    		 * killer still needs to detect if they have already been oom
    		 * killed to prevent needlessly killing additional tasks.
    		 */
    		rcu_read_lock();
    		task_memcg = mem_cgroup_from_task(task);
    		css_get(&task_memcg->css);
    		rcu_read_unlock();
    	}
    	ret = mem_cgroup_is_descendant(task_memcg, memcg);
    	css_put(&task_memcg->css);
    	return ret;
    }
    
    /**
     * mem_cgroup_margin - calculate chargeable space of a memory cgroup
     * @memcg: the memory cgroup
     *
     * Returns the maximum amount of memory @mem can be charged with, in
     * pages.
     */
    static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
    {
    	unsigned long margin = 0;
    	unsigned long count;
    	unsigned long limit;
    
    	count = page_counter_read(&memcg->memory);
    	limit = READ_ONCE(memcg->memory.limit);
    	if (count < limit)
    		margin = limit - count;
    
    	if (do_memsw_account()) {
    		count = page_counter_read(&memcg->memsw);
    		limit = READ_ONCE(memcg->memsw.limit);
    		if (count <= limit)
    			margin = min(margin, limit - count);
    	}
    
    	return margin;
    }
    
    /*
     * A routine for checking "mem" is under move_account() or not.
     *
     * Checking a cgroup is mc.from or mc.to or under hierarchy of
     * moving cgroups. This is for waiting at high-memory pressure
     * caused by "move".
     */
    static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
    {
    	struct mem_cgroup *from;
    	struct mem_cgroup *to;
    	bool ret = false;
    	/*
    	 * Unlike task_move routines, we access mc.to, mc.from not under
    	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
    	 */
    	spin_lock(&mc.lock);
    	from = mc.from;
    	to = mc.to;
    	if (!from)
    		goto unlock;
    
    	ret = mem_cgroup_is_descendant(from, memcg) ||
    		mem_cgroup_is_descendant(to, memcg);
    unlock:
    	spin_unlock(&mc.lock);
    	return ret;
    }
    
    static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
    {
    	if (mc.moving_task && current != mc.moving_task) {
    		if (mem_cgroup_under_move(memcg)) {
    			DEFINE_WAIT(wait);
    			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
    			/* moving charge context might have finished. */
    			if (mc.moving_task)
    				schedule();
    			finish_wait(&mc.waitq, &wait);
    			return true;
    		}
    	}
    	return false;
    }
    
    #define K(x) ((x) << (PAGE_SHIFT-10))
    /**
     * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
     * @memcg: The memory cgroup that went over limit
     * @p: Task that is going to be killed
     *
     * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
     * enabled
     */
    void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
    {
    	/* oom_info_lock ensures that parallel ooms do not interleave */
    	static DEFINE_MUTEX(oom_info_lock);
    	struct mem_cgroup *iter;
    	unsigned int i;
    
    	mutex_lock(&oom_info_lock);
    	rcu_read_lock();
    
    	if (p) {
    		pr_info("Task in ");
    		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
    		pr_cont(" killed as a result of limit of ");
    	} else {
    		pr_info("Memory limit reached of cgroup ");
    	}
    
    	pr_cont_cgroup_path(memcg->css.cgroup);
    	pr_cont("\n");
    
    	rcu_read_unlock();
    
    	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
    		K((u64)page_counter_read(&memcg->memory)),
    		K((u64)memcg->memory.limit), memcg->memory.failcnt);
    	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
    		K((u64)page_counter_read(&memcg->memsw)),
    		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
    	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
    		K((u64)page_counter_read(&memcg->kmem)),
    		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
    
    	for_each_mem_cgroup_tree(iter, memcg) {
    		pr_info("Memory cgroup stats for ");
    		pr_cont_cgroup_path(iter->css.cgroup);
    		pr_cont(":");
    
    		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
    			if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
    				continue;
    			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
    				K(mem_cgroup_read_stat(iter, i)));
    		}
    
    		for (i = 0; i < NR_LRU_LISTS; i++)
    			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
    				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
    
    		pr_cont("\n");
    	}
    	mutex_unlock(&oom_info_lock);
    }
    
    /*
     * This function returns the number of memcg under hierarchy tree. Returns
     * 1(self count) if no children.
     */
    static int mem_cgroup_count_children(struct mem_cgroup *memcg)
    {
    	int num = 0;
    	struct mem_cgroup *iter;
    
    	for_each_mem_cgroup_tree(iter, memcg)
    		num++;
    	return num;
    }
    
    /*
     * Return the memory (and swap, if configured) limit for a memcg.
     */
    static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
    {
    	unsigned long limit;
    
    	limit = memcg->memory.limit;
    	if (mem_cgroup_swappiness(memcg)) {
    		unsigned long memsw_limit;
    
    		memsw_limit = memcg->memsw.limit;
    		limit = min(limit + total_swap_pages, memsw_limit);
    	}
    	return limit;
    }
    
    static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
    				     int order)
    {
    	struct oom_control oc = {
    		.zonelist = NULL,
    		.nodemask = NULL,
    		.gfp_mask = gfp_mask,
    		.order = order,
    	};
    	struct mem_cgroup *iter;
    	unsigned long chosen_points = 0;
    	unsigned long totalpages;
    	unsigned int points = 0;
    	struct task_struct *chosen = NULL;
    
    	mutex_lock(&oom_lock);
    
    	/*
    	 * If current has a pending SIGKILL or is exiting, then automatically
    	 * select it.  The goal is to allow it to allocate so that it may
    	 * quickly exit and free its memory.
    	 */
    	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
    		mark_oom_victim(current);
    		goto unlock;
    	}
    
    	check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
    	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
    	for_each_mem_cgroup_tree(iter, memcg) {
    		struct css_task_iter it;
    		struct task_struct *task;
    
    		css_task_iter_start(&iter->css, &it);
    		while ((task = css_task_iter_next(&it))) {
    			switch (oom_scan_process_thread(&oc, task, totalpages)) {
    			case OOM_SCAN_SELECT:
    				if (chosen)
    					put_task_struct(chosen);
    				chosen = task;
    				chosen_points = ULONG_MAX;
    				get_task_struct(chosen);
    				/* fall through */
    			case OOM_SCAN_CONTINUE:
    				continue;
    			case OOM_SCAN_ABORT:
    				css_task_iter_end(&it);
    				mem_cgroup_iter_break(memcg, iter);
    				if (chosen)
    					put_task_struct(chosen);
    				goto unlock;
    			case OOM_SCAN_OK:
    				break;
    			};
    			points = oom_badness(task, memcg, NULL, totalpages);
    			if (!points || points < chosen_points)
    				continue;
    			/* Prefer thread group leaders for display purposes */
    			if (points == chosen_points &&
    			    thread_group_leader(chosen))
    				continue;
    
    			if (chosen)
    				put_task_struct(chosen);
    			chosen = task;
    			chosen_points = points;
    			get_task_struct(chosen);
    		}
    		css_task_iter_end(&it);
    	}
    
    	if (chosen) {
    		points = chosen_points * 1000 / totalpages;
    		oom_kill_process(&oc, chosen, points, totalpages, memcg,
    				 "Memory cgroup out of memory");
    	}
    unlock:
    	mutex_unlock(&oom_lock);
    }
    
    #if MAX_NUMNODES > 1
    
    /**
     * test_mem_cgroup_node_reclaimable
     * @memcg: the target memcg
     * @nid: the node ID to be checked.
     * @noswap : specify true here if the user wants flle only information.
     *
     * This function returns whether the specified memcg contains any
     * reclaimable pages on a node. Returns true if there are any reclaimable
     * pages in the node.
     */
    static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
    		int nid, bool noswap)
    {
    	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
    		return true;
    	if (noswap || !total_swap_pages)
    		return false;
    	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
    		return true;
    	return false;
    
    }
    
    /*
     * Always updating the nodemask is not very good - even if we have an empty
     * list or the wrong list here, we can start from some node and traverse all
     * nodes based on the zonelist. So update the list loosely once per 10 secs.
     *
     */
    static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
    {
    	int nid;
    	/*
    	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
    	 * pagein/pageout changes since the last update.
    	 */
    	if (!atomic_read(&memcg->numainfo_events))
    		return;
    	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
    		return;
    
    	/* make a nodemask where this memcg uses memory from */
    	memcg->scan_nodes = node_states[N_MEMORY];
    
    	for_each_node_mask(nid, node_states[N_MEMORY]) {
    
    		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
    			node_clear(nid, memcg->scan_nodes);
    	}
    
    	atomic_set(&memcg->numainfo_events, 0);
    	atomic_set(&memcg->numainfo_updating, 0);
    }
    
    /*
     * Selecting a node where we start reclaim from. Because what we need is just
     * reducing usage counter, start from anywhere is O,K. Considering
     * memory reclaim from current node, there are pros. and cons.
     *
     * Freeing memory from current node means freeing memory from a node which
     * we'll use or we've used. So, it may make LRU bad. And if several threads
     * hit limits, it will see a contention on a node. But freeing from remote
     * node means more costs for memory reclaim because of memory latency.
     *
     * Now, we use round-robin. Better algorithm is welcomed.
     */
    int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
    {
    	int node;
    
    	mem_cgroup_may_update_nodemask(memcg);
    	node = memcg->last_scanned_node;
    
    	node = next_node(node, memcg->scan_nodes);
    	if (node == MAX_NUMNODES)
    		node = first_node(memcg->scan_nodes);
    	/*
    	 * We call this when we hit limit, not when pages are added to LRU.
    	 * No LRU may hold pages because all pages are UNEVICTABLE or
    	 * memcg is too small and all pages are not on LRU. In that case,
    	 * we use curret node.
    	 */
    	if (unlikely(node == MAX_NUMNODES))
    		node = numa_node_id();
    
    	memcg->last_scanned_node = node;
    	return node;
    }
    #else
    int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
    {
    	return 0;
    }
    #endif
    
    static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
    				   struct zone *zone,
    				   gfp_t gfp_mask,
    				   unsigned long *total_scanned)
    {
    	struct mem_cgroup *victim = NULL;
    	int total = 0;
    	int loop = 0;
    	unsigned long excess;
    	unsigned long nr_scanned;
    	struct mem_cgroup_reclaim_cookie reclaim = {
    		.zone = zone,
    		.priority = 0,
    	};
    
    	excess = soft_limit_excess(root_memcg);
    
    	while (1) {
    		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
    		if (!victim) {
    			loop++;
    			if (loop >= 2) {
    				/*
    				 * If we have not been able to reclaim
    				 * anything, it might because there are
    				 * no reclaimable pages under this hierarchy
    				 */
    				if (!total)
    					break;
    				/*
    				 * We want to do more targeted reclaim.
    				 * excess >> 2 is not to excessive so as to
    				 * reclaim too much, nor too less that we keep
    				 * coming back to reclaim from this cgroup
    				 */
    				if (total >= (excess >> 2) ||
    					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
    					break;
    			}
    			continue;
    		}
    		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
    						     zone, &nr_scanned);
    		*total_scanned += nr_scanned;
    		if (!soft_limit_excess(root_memcg))
    			break;
    	}
    	mem_cgroup_iter_break(root_memcg, victim);
    	return total;
    }
    
    #ifdef CONFIG_LOCKDEP
    static struct lockdep_map memcg_oom_lock_dep_map = {
    	.name = "memcg_oom_lock",
    };
    #endif
    
    static DEFINE_SPINLOCK(memcg_oom_lock);
    
    /*
     * Check OOM-Killer is already running under our hierarchy.
     * If someone is running, return false.
     */
    static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
    {
    	struct mem_cgroup *iter, *failed = NULL;
    
    	spin_lock(&memcg_oom_lock);
    
    	for_each_mem_cgroup_tree(iter, memcg) {
    		if (iter->oom_lock) {
    			/*
    			 * this subtree of our hierarchy is already locked
    			 * so we cannot give a lock.
    			 */
    			failed = iter;
    			mem_cgroup_iter_break(memcg, iter);
    			break;
    		} else
    			iter->oom_lock = true;
    	}
    
    	if (failed) {
    		/*
    		 * OK, we failed to lock the whole subtree so we have
    		 * to clean up what we set up to the failing subtree
    		 */
    		for_each_mem_cgroup_tree(iter, memcg) {
    			if (iter == failed) {
    				mem_cgroup_iter_break(memcg, iter);
    				break;
    			}
    			iter->oom_lock = false;
    		}
    	} else
    		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
    
    	spin_unlock(&memcg_oom_lock);
    
    	return !failed;
    }
    
    static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
    {
    	struct mem_cgroup *iter;
    
    	spin_lock(&memcg_oom_lock);
    	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
    	for_each_mem_cgroup_tree(iter, memcg)
    		iter->oom_lock = false;
    	spin_unlock(&memcg_oom_lock);
    }
    
    static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
    {
    	struct mem_cgroup *iter;
    
    	spin_lock(&memcg_oom_lock);
    	for_each_mem_cgroup_tree(iter, memcg)
    		iter->under_oom++;
    	spin_unlock(&memcg_oom_lock);
    }
    
    static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
    {
    	struct mem_cgroup *iter;
    
    	/*
    	 * When a new child is created while the hierarchy is under oom,
    	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
    	 */
    	spin_lock(&memcg_oom_lock);
    	for_each_mem_cgroup_tree(iter, memcg)
    		if (iter->under_oom > 0)
    			iter->under_oom--;
    	spin_unlock(&memcg_oom_lock);
    }
    
    static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
    
    struct oom_wait_info {
    	struct mem_cgroup *memcg;
    	wait_queue_t	wait;
    };
    
    static int memcg_oom_wake_function(wait_queue_t *wait,
    	unsigned mode, int sync, void *arg)
    {
    	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
    	struct mem_cgroup *oom_wait_memcg;
    	struct oom_wait_info *oom_wait_info;
    
    	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
    	oom_wait_memcg = oom_wait_info->memcg;
    
    	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
    	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
    		return 0;
    	return autoremove_wake_function(wait, mode, sync, arg);
    }
    
    static void memcg_oom_recover(struct mem_cgroup *memcg)
    {
    	/*
    	 * For the following lockless ->under_oom test, the only required
    	 * guarantee is that it must see the state asserted by an OOM when
    	 * this function is called as a result of userland actions
    	 * triggered by the notification of the OOM.  This is trivially
    	 * achieved by invoking mem_cgroup_mark_under_oom() before
    	 * triggering notification.
    	 */
    	if (memcg && memcg->under_oom)
    		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
    }
    
    static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
    {
    	if (!current->memcg_may_oom)
    		return;
    	/*
    	 * We are in the middle of the charge context here, so we
    	 * don't want to block when potentially sitting on a callstack
    	 * that holds all kinds of filesystem and mm locks.
    	 *
    	 * Also, the caller may handle a failed allocation gracefully
    	 * (like optional page cache readahead) and so an OOM killer
    	 * invocation might not even be necessary.
    	 *
    	 * That's why we don't do anything here except remember the
    	 * OOM context and then deal with it at the end of the page
    	 * fault when the stack is unwound, the locks are released,
    	 * and when we know whether the fault was overall successful.
    	 */
    	css_get(&memcg->css);
    	current->memcg_in_oom = memcg;
    	current->memcg_oom_gfp_mask = mask;
    	current->memcg_oom_order = order;
    }
    
    /**
     * mem_cgroup_oom_synchronize - complete memcg OOM handling
     * @handle: actually kill/wait or just clean up the OOM state
     *
     * This has to be called at the end of a page fault if the memcg OOM
     * handler was enabled.
     *
     * Memcg supports userspace OOM handling where failed allocations must
     * sleep on a waitqueue until the userspace task resolves the
     * situation.  Sleeping directly in the charge context with all kinds
     * of locks held is not a good idea, instead we remember an OOM state
     * in the task and mem_cgroup_oom_synchronize() has to be called at
     * the end of the page fault to complete the OOM handling.
     *
     * Returns %true if an ongoing memcg OOM situation was detected and
     * completed, %false otherwise.
     */
    bool mem_cgroup_oom_synchronize(bool handle)
    {
    	struct mem_cgroup *memcg = current->memcg_in_oom;
    	struct oom_wait_info owait;
    	bool locked;
    
    	/* OOM is global, do not handle */
    	if (!memcg)
    		return false;
    
    	if (!handle || oom_killer_disabled)
    		goto cleanup;
    
    	owait.memcg = memcg;
    	owait.wait.flags = 0;
    	owait.wait.func = memcg_oom_wake_function;
    	owait.wait.private = current;
    	INIT_LIST_HEAD(&owait.wait.task_list);
    
    	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
    	mem_cgroup_mark_under_oom(memcg);
    
    	locked = mem_cgroup_oom_trylock(memcg);
    
    	if (locked)
    		mem_cgroup_oom_notify(memcg);
    
    	if (locked && !memcg->oom_kill_disable) {
    		mem_cgroup_unmark_under_oom(memcg);
    		finish_wait(&memcg_oom_waitq, &owait.wait);
    		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
    					 current->memcg_oom_order);
    	} else {
    		schedule();
    		mem_cgroup_unmark_under_oom(memcg);
    		finish_wait(&memcg_oom_waitq, &owait.wait);
    	}
    
    	if (locked) {
    		mem_cgroup_oom_unlock(memcg);
    		/*
    		 * There is no guarantee that an OOM-lock contender
    		 * sees the wakeups triggered by the OOM kill
    		 * uncharges.  Wake any sleepers explicitely.
    		 */
    		memcg_oom_recover(memcg);
    	}
    cleanup:
    	current->memcg_in_oom = NULL;
    	css_put(&memcg->css);
    	return true;
    }
    
    /**
     * mem_cgroup_begin_page_stat - begin a page state statistics transaction
     * @page: page that is going to change accounted state
     *
     * This function must mark the beginning of an accounted page state
     * change to prevent double accounting when the page is concurrently
     * being moved to another memcg:
     *
     *   memcg = mem_cgroup_begin_page_stat(page);
     *   if (TestClearPageState(page))
     *     mem_cgroup_update_page_stat(memcg, state, -1);
     *   mem_cgroup_end_page_stat(memcg);
     */
    struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
    {
    	struct mem_cgroup *memcg;
    	unsigned long flags;
    
    	/*
    	 * The RCU lock is held throughout the transaction.  The fast
    	 * path can get away without acquiring the memcg->move_lock
    	 * because page moving starts with an RCU grace period.
    	 *
    	 * The RCU lock also protects the memcg from being freed when
    	 * the page state that is going to change is the only thing
    	 * preventing the page from being uncharged.
    	 * E.g. end-writeback clearing PageWriteback(), which allows
    	 * migration to go ahead and uncharge the page before the
    	 * account transaction might be complete.
    	 */
    	rcu_read_lock();
    
    	if (mem_cgroup_disabled())
    		return NULL;
    again:
    	memcg = page->mem_cgroup;
    	if (unlikely(!memcg))
    		return NULL;
    
    	if (atomic_read(&memcg->moving_account) <= 0)
    		return memcg;
    
    	spin_lock_irqsave(&memcg->move_lock, flags);
    	if (memcg != page->mem_cgroup) {
    		spin_unlock_irqrestore(&memcg->move_lock, flags);
    		goto again;
    	}
    
    	/*
    	 * When charge migration first begins, we can have locked and
    	 * unlocked page stat updates happening concurrently.  Track
    	 * the task who has the lock for mem_cgroup_end_page_stat().
    	 */
    	memcg->move_lock_task = current;
    	memcg->move_lock_flags = flags;
    
    	return memcg;
    }
    EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
    
    /**
     * mem_cgroup_end_page_stat - finish a page state statistics transaction
     * @memcg: the memcg that was accounted against
     */
    void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
    {
    	if (memcg && memcg->move_lock_task == current) {
    		unsigned long flags = memcg->move_lock_flags;
    
    		memcg->move_lock_task = NULL;
    		memcg->move_lock_flags = 0;
    
    		spin_unlock_irqrestore(&memcg->move_lock, flags);
    	}
    
    	rcu_read_unlock();
    }
    EXPORT_SYMBOL(mem_cgroup_end_page_stat);
    
    /*
     * size of first charge trial. "32" comes from vmscan.c's magic value.
     * TODO: maybe necessary to use big numbers in big irons.
     */
    #define CHARGE_BATCH	32U
    struct memcg_stock_pcp {
    	struct mem_cgroup *cached; /* this never be root cgroup */
    	unsigned int nr_pages;
    	struct work_struct work;
    	unsigned long flags;
    #define FLUSHING_CACHED_CHARGE	0
    };
    static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
    static DEFINE_MUTEX(percpu_charge_mutex);
    
    /**
     * consume_stock: Try to consume stocked charge on this cpu.
     * @memcg: memcg to consume from.
     * @nr_pages: how many pages to charge.
     *
     * The charges will only happen if @memcg matches the current cpu's memcg
     * stock, and at least @nr_pages are available in that stock.  Failure to
     * service an allocation will refill the stock.
     *
     * returns true if successful, false otherwise.
     */
    static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
    {
    	struct memcg_stock_pcp *stock;
    	bool ret = false;
    
    	if (nr_pages > CHARGE_BATCH)
    		return ret;
    
    	stock = &get_cpu_var(memcg_stock);
    	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
    		stock->nr_pages -= nr_pages;
    		ret = true;
    	}
    	put_cpu_var(memcg_stock);
    	return ret;
    }
    
    /*
     * Returns stocks cached in percpu and reset cached information.
     */
    static void drain_stock(struct memcg_stock_pcp *stock)
    {
    	struct mem_cgroup *old = stock->cached;
    
    	if (stock->nr_pages) {
    		page_counter_uncharge(&old->memory, stock->nr_pages);
    		if (do_memsw_account())
    			page_counter_uncharge(&old->memsw, stock->nr_pages);
    		css_put_many(&old->css, stock->nr_pages);
    		stock->nr_pages = 0;
    	}
    	stock->cached = NULL;
    }
    
    /*
     * This must be called under preempt disabled or must be called by
     * a thread which is pinned to local cpu.
     */
    static void drain_local_stock(struct work_struct *dummy)
    {
    	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
    	drain_stock(stock);
    	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
    }
    
    /*
     * Cache charges(val) to local per_cpu area.
     * This will be consumed by consume_stock() function, later.
     */
    static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
    {
    	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
    
    	if (stock->cached != memcg) { /* reset if necessary */
    		drain_stock(stock);
    		stock->cached = memcg;
    	}
    	stock->nr_pages += nr_pages;
    	put_cpu_var(memcg_stock);
    }
    
    /*
     * Drains all per-CPU charge caches for given root_memcg resp. subtree
     * of the hierarchy under it.
     */
    static void drain_all_stock(struct mem_cgroup *root_memcg)
    {
    	int cpu, curcpu;
    
    	/* If someone's already draining, avoid adding running more workers. */
    	if (!mutex_trylock(&percpu_charge_mutex))
    		return;
    	/* Notify other cpus that system-wide "drain" is running */
    	get_online_cpus();
    	curcpu = get_cpu();
    	for_each_online_cpu(cpu) {
    		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
    		struct mem_cgroup *memcg;
    
    		memcg = stock->cached;
    		if (!memcg || !stock->nr_pages)
    			continue;
    		if (!mem_cgroup_is_descendant(memcg, root_memcg))
    			continue;
    		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
    			if (cpu == curcpu)
    				drain_local_stock(&stock->work);
    			else
    				schedule_work_on(cpu, &stock->work);
    		}
    	}
    	put_cpu();
    	put_online_cpus();
    	mutex_unlock(&percpu_charge_mutex);
    }
    
    static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
    					unsigned long action,
    					void *hcpu)
    {
    	int cpu = (unsigned long)hcpu;
    	struct memcg_stock_pcp *stock;
    
    	if (action == CPU_ONLINE)
    		return NOTIFY_OK;
    
    	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
    		return NOTIFY_OK;
    
    	stock = &per_cpu(memcg_stock, cpu);
    	drain_stock(stock);
    	return NOTIFY_OK;
    }
    
    static void reclaim_high(struct mem_cgroup *memcg,
    			 unsigned int nr_pages,
    			 gfp_t gfp_mask)
    {
    	do {
    		if (page_counter_read(&memcg->memory) <= memcg->high)
    			continue;
    		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
    		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
    	} while ((memcg = parent_mem_cgroup(memcg)));
    }
    
    static void high_work_func(struct work_struct *work)
    {
    	struct mem_cgroup *memcg;
    
    	memcg = container_of(work, struct mem_cgroup, high_work);
    	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
    }
    
    /*
     * Scheduled by try_charge() to be executed from the userland return path
     * and reclaims memory over the high limit.
     */
    void mem_cgroup_handle_over_high(void)
    {
    	unsigned int nr_pages = current->memcg_nr_pages_over_high;
    	struct mem_cgroup *memcg;
    
    	if (likely(!nr_pages))
    		return;
    
    	memcg = get_mem_cgroup_from_mm(current->mm);
    	reclaim_high(memcg, nr_pages, GFP_KERNEL);
    	css_put(&memcg->css);
    	current->memcg_nr_pages_over_high = 0;
    }
    
    static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
    		      unsigned int nr_pages)
    {
    	unsigned int batch = max(CHARGE_BATCH, nr_pages);
    	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
    	struct mem_cgroup *mem_over_limit;
    	struct page_counter *counter;
    	unsigned long nr_reclaimed;
    	bool may_swap = true;
    	bool drained = false;
    
    	if (mem_cgroup_is_root(memcg))
    		return 0;
    retry:
    	if (consume_stock(memcg, nr_pages))
    		return 0;
    
    	if (!do_memsw_account() ||
    	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
    		if (page_counter_try_charge(&memcg->memory, batch, &counter))
    			goto done_restock;
    		if (do_memsw_account())
    			page_counter_uncharge(&memcg->memsw, batch);
    		mem_over_limit = mem_cgroup_from_counter(counter, memory);
    	} else {
    		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
    		may_swap = false;
    	}
    
    	if (batch > nr_pages) {
    		batch = nr_pages;
    		goto retry;
    	}
    
    	/*
    	 * Unlike in global OOM situations, memcg is not in a physical
    	 * memory shortage.  Allow dying and OOM-killed tasks to
    	 * bypass the last charges so that they can exit quickly and
    	 * free their memory.
    	 */
    	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
    		     fatal_signal_pending(current) ||
    		     current->flags & PF_EXITING))
    		goto force;
    
    	if (unlikely(task_in_memcg_oom(current)))
    		goto nomem;
    
    	if (!gfpflags_allow_blocking(gfp_mask))
    		goto nomem;
    
    	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
    
    	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
    						    gfp_mask, may_swap);
    
    	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
    		goto retry;
    
    	if (!drained) {
    		drain_all_stock(mem_over_limit);
    		drained = true;
    		goto retry;
    	}
    
    	if (gfp_mask & __GFP_NORETRY)
    		goto nomem;
    	/*
    	 * Even though the limit is exceeded at this point, reclaim
    	 * may have been able to free some pages.  Retry the charge
    	 * before killing the task.
    	 *
    	 * Only for regular pages, though: huge pages are rather
    	 * unlikely to succeed so close to the limit, and we fall back
    	 * to regular pages anyway in case of failure.
    	 */
    	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
    		goto retry;
    	/*
    	 * At task move, charge accounts can be doubly counted. So, it's
    	 * better to wait until the end of task_move if something is going on.
    	 */
    	if (mem_cgroup_wait_acct_move(mem_over_limit))
    		goto retry;
    
    	if (nr_retries--)
    		goto retry;
    
    	if (gfp_mask & __GFP_NOFAIL)
    		goto force;
    
    	if (fatal_signal_pending(current))
    		goto force;
    
    	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
    
    	mem_cgroup_oom(mem_over_limit, gfp_mask,
    		       get_order(nr_pages * PAGE_SIZE));
    nomem:
    	if (!(gfp_mask & __GFP_NOFAIL))
    		return -ENOMEM;
    force:
    	/*
    	 * The allocation either can't fail or will lead to more memory
    	 * being freed very soon.  Allow memory usage go over the limit
    	 * temporarily by force charging it.
    	 */
    	page_counter_charge(&memcg->memory, nr_pages);
    	if (do_memsw_account())
    		page_counter_charge(&memcg->memsw, nr_pages);
    	css_get_many(&memcg->css, nr_pages);
    
    	return 0;
    
    done_restock:
    	css_get_many(&memcg->css, batch);
    	if (batch > nr_pages)
    		refill_stock(memcg, batch - nr_pages);
    
    	/*
    	 * If the hierarchy is above the normal consumption range, schedule
    	 * reclaim on returning to userland.  We can perform reclaim here
    	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
    	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
    	 * not recorded as it most likely matches current's and won't
    	 * change in the meantime.  As high limit is checked again before
    	 * reclaim, the cost of mismatch is negligible.
    	 */
    	do {
    		if (page_counter_read(&memcg->memory) > memcg->high) {
    			/* Don't bother a random interrupted task */
    			if (in_interrupt()) {
    				schedule_work(&memcg->high_work);
    				break;
    			}
    			current->memcg_nr_pages_over_high += batch;
    			set_notify_resume(current);
    			break;
    		}
    	} while ((memcg = parent_mem_cgroup(memcg)));
    
    	return 0;
    }
    
    static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
    {
    	if (mem_cgroup_is_root(memcg))
    		return;
    
    	page_counter_uncharge(&memcg->memory, nr_pages);
    	if (do_memsw_account())
    		page_counter_uncharge(&memcg->memsw, nr_pages);
    
    	css_put_many(&memcg->css, nr_pages);
    }
    
    static void lock_page_lru(struct page *page, int *isolated)
    {
    	struct zone *zone = page_zone(page);
    
    	spin_lock_irq(&zone->lru_lock);
    	if (PageLRU(page)) {
    		struct lruvec *lruvec;
    
    		lruvec = mem_cgroup_page_lruvec(page, zone);
    		ClearPageLRU(page);
    		del_page_from_lru_list(page, lruvec, page_lru(page));
    		*isolated = 1;
    	} else
    		*isolated = 0;
    }
    
    static void unlock_page_lru(struct page *page, int isolated)
    {
    	struct zone *zone = page_zone(page);
    
    	if (isolated) {
    		struct lruvec *lruvec;
    
    		lruvec = mem_cgroup_page_lruvec(page, zone);
    		VM_BUG_ON_PAGE(PageLRU(page), page);
    		SetPageLRU(page);
    		add_page_to_lru_list(page, lruvec, page_lru(page));
    	}
    	spin_unlock_irq(&zone->lru_lock);
    }
    
    static void commit_charge(struct page *page, struct mem_cgroup *memcg,
    			  bool lrucare)
    {
    	int isolated;
    
    	VM_BUG_ON_PAGE(page->mem_cgroup, page);
    
    	/*
    	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
    	 * may already be on some other mem_cgroup's LRU.  Take care of it.
    	 */
    	if (lrucare)
    		lock_page_lru(page, &isolated);
    
    	/*
    	 * Nobody should be changing or seriously looking at
    	 * page->mem_cgroup at this point:
    	 *
    	 * - the page is uncharged
    	 *
    	 * - the page is off-LRU
    	 *
    	 * - an anonymous fault has exclusive page access, except for
    	 *   a locked page table
    	 *
    	 * - a page cache insertion, a swapin fault, or a migration
    	 *   have the page locked
    	 */
    	page->mem_cgroup = memcg;
    
    	if (lrucare)
    		unlock_page_lru(page, isolated);
    }
    
    #ifndef CONFIG_SLOB
    static int memcg_alloc_cache_id(void)
    {
    	int id, size;
    	int err;
    
    	id = ida_simple_get(&memcg_cache_ida,
    			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
    	if (id < 0)
    		return id;
    
    	if (id < memcg_nr_cache_ids)
    		return id;
    
    	/*
    	 * There's no space for the new id in memcg_caches arrays,
    	 * so we have to grow them.
    	 */
    	down_write(&memcg_cache_ids_sem);
    
    	size = 2 * (id + 1);
    	if (size < MEMCG_CACHES_MIN_SIZE)
    		size = MEMCG_CACHES_MIN_SIZE;
    	else if (size > MEMCG_CACHES_MAX_SIZE)
    		size = MEMCG_CACHES_MAX_SIZE;
    
    	err = memcg_update_all_caches(size);
    	if (!err)
    		err = memcg_update_all_list_lrus(size);
    	if (!err)
    		memcg_nr_cache_ids = size;
    
    	up_write(&memcg_cache_ids_sem);
    
    	if (err) {
    		ida_simple_remove(&memcg_cache_ida, id);
    		return err;
    	}
    	return id;
    }
    
    static void memcg_free_cache_id(int id)
    {
    	ida_simple_remove(&memcg_cache_ida, id);
    }
    
    struct memcg_kmem_cache_create_work {
    	struct mem_cgroup *memcg;
    	struct kmem_cache *cachep;
    	struct work_struct work;
    };
    
    static void memcg_kmem_cache_create_func(struct work_struct *w)
    {
    	struct memcg_kmem_cache_create_work *cw =
    		container_of(w, struct memcg_kmem_cache_create_work, work);
    	struct mem_cgroup *memcg = cw->memcg;
    	struct kmem_cache *cachep = cw->cachep;
    
    	memcg_create_kmem_cache(memcg, cachep);
    
    	css_put(&memcg->css);
    	kfree(cw);
    }
    
    /*
     * Enqueue the creation of a per-memcg kmem_cache.
     */
    static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
    					       struct kmem_cache *cachep)
    {
    	struct memcg_kmem_cache_create_work *cw;
    
    	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
    	if (!cw)
    		return;
    
    	css_get(&memcg->css);
    
    	cw->memcg = memcg;
    	cw->cachep = cachep;
    	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
    
    	schedule_work(&cw->work);
    }
    
    static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
    					     struct kmem_cache *cachep)
    {
    	/*
    	 * We need to stop accounting when we kmalloc, because if the
    	 * corresponding kmalloc cache is not yet created, the first allocation
    	 * in __memcg_schedule_kmem_cache_create will recurse.
    	 *
    	 * However, it is better to enclose the whole function. Depending on
    	 * the debugging options enabled, INIT_WORK(), for instance, can
    	 * trigger an allocation. This too, will make us recurse. Because at
    	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
    	 * the safest choice is to do it like this, wrapping the whole function.
    	 */
    	current->memcg_kmem_skip_account = 1;
    	__memcg_schedule_kmem_cache_create(memcg, cachep);
    	current->memcg_kmem_skip_account = 0;
    }
    
    /*
     * Return the kmem_cache we're supposed to use for a slab allocation.
     * We try to use the current memcg's version of the cache.
     *
     * If the cache does not exist yet, if we are the first user of it,
     * we either create it immediately, if possible, or create it asynchronously
     * in a workqueue.
     * In the latter case, we will let the current allocation go through with
     * the original cache.
     *
     * Can't be called in interrupt context or from kernel threads.
     * This function needs to be called with rcu_read_lock() held.
     */
    struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
    {
    	struct mem_cgroup *memcg;
    	struct kmem_cache *memcg_cachep;
    	int kmemcg_id;
    
    	VM_BUG_ON(!is_root_cache(cachep));
    
    	if (cachep->flags & SLAB_ACCOUNT)
    		gfp |= __GFP_ACCOUNT;
    
    	if (!(gfp & __GFP_ACCOUNT))
    		return cachep;
    
    	if (current->memcg_kmem_skip_account)
    		return cachep;
    
    	memcg = get_mem_cgroup_from_mm(current->mm);
    	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
    	if (kmemcg_id < 0)
    		goto out;
    
    	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
    	if (likely(memcg_cachep))
    		return memcg_cachep;
    
    	/*
    	 * If we are in a safe context (can wait, and not in interrupt
    	 * context), we could be be predictable and return right away.
    	 * This would guarantee that the allocation being performed
    	 * already belongs in the new cache.
    	 *
    	 * However, there are some clashes that can arrive from locking.
    	 * For instance, because we acquire the slab_mutex while doing
    	 * memcg_create_kmem_cache, this means no further allocation
    	 * could happen with the slab_mutex held. So it's better to
    	 * defer everything.
    	 */
    	memcg_schedule_kmem_cache_create(memcg, cachep);
    out:
    	css_put(&memcg->css);
    	return cachep;
    }
    
    void __memcg_kmem_put_cache(struct kmem_cache *cachep)
    {
    	if (!is_root_cache(cachep))
    		css_put(&cachep->memcg_params.memcg->css);
    }
    
    int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
    			      struct mem_cgroup *memcg)
    {
    	unsigned int nr_pages = 1 << order;
    	struct page_counter *counter;
    	int ret;
    
    	if (!memcg_kmem_online(memcg))
    		return 0;
    
    	ret = try_charge(memcg, gfp, nr_pages);
    	if (ret)
    		return ret;
    
    	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
    	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
    		cancel_charge(memcg, nr_pages);
    		return -ENOMEM;
    	}
    
    	page->mem_cgroup = memcg;
    
    	return 0;
    }
    
    int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
    {
    	struct mem_cgroup *memcg;
    	int ret;
    
    	memcg = get_mem_cgroup_from_mm(current->mm);
    	ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
    	css_put(&memcg->css);
    	return ret;
    }
    
    void __memcg_kmem_uncharge(struct page *page, int order)
    {
    	struct mem_cgroup *memcg = page->mem_cgroup;
    	unsigned int nr_pages = 1 << order;
    
    	if (!memcg)
    		return;
    
    	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
    
    	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
    		page_counter_uncharge(&memcg->kmem, nr_pages);
    
    	page_counter_uncharge(&memcg->memory, nr_pages);
    	if (do_memsw_account())
    		page_counter_uncharge(&memcg->memsw, nr_pages);
    
    	page->mem_cgroup = NULL;
    	css_put_many(&memcg->css, nr_pages);
    }
    #endif /* !CONFIG_SLOB */
    
    #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    
    /*
     * Because tail pages are not marked as "used", set it. We're under
     * zone->lru_lock and migration entries setup in all page mappings.
     */
    void mem_cgroup_split_huge_fixup(struct page *head)
    {
    	int i;
    
    	if (mem_cgroup_disabled())
    		return;
    
    	for (i = 1; i < HPAGE_PMD_NR; i++)
    		head[i].mem_cgroup = head->mem_cgroup;
    
    	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
    		       HPAGE_PMD_NR);
    }
    #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
    
    #ifdef CONFIG_MEMCG_SWAP
    static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
    					 bool charge)
    {
    	int val = (charge) ? 1 : -1;
    	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
    }
    
    /**
     * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
     * @entry: swap entry to be moved
     * @from:  mem_cgroup which the entry is moved from
     * @to:  mem_cgroup which the entry is moved to
     *
     * It succeeds only when the swap_cgroup's record for this entry is the same
     * as the mem_cgroup's id of @from.
     *
     * Returns 0 on success, -EINVAL on failure.
     *
     * The caller must have charged to @to, IOW, called page_counter_charge() about
     * both res and memsw, and called css_get().
     */
    static int mem_cgroup_move_swap_account(swp_entry_t entry,
    				struct mem_cgroup *from, struct mem_cgroup *to)
    {
    	unsigned short old_id, new_id;
    
    	old_id = mem_cgroup_id(from);
    	new_id = mem_cgroup_id(to);
    
    	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
    		mem_cgroup_swap_statistics(from, false);
    		mem_cgroup_swap_statistics(to, true);
    		return 0;
    	}
    	return -EINVAL;
    }
    #else
    static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
    				struct mem_cgroup *from, struct mem_cgroup *to)
    {
    	return -EINVAL;
    }
    #endif
    
    static DEFINE_MUTEX(memcg_limit_mutex);
    
    static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
    				   unsigned long limit)
    {
    	unsigned long curusage;
    	unsigned long oldusage;
    	bool enlarge = false;
    	int retry_count;
    	int ret;
    
    	/*
    	 * For keeping hierarchical_reclaim simple, how long we should retry
    	 * is depends on callers. We set our retry-count to be function
    	 * of # of children which we should visit in this loop.
    	 */
    	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
    		      mem_cgroup_count_children(memcg);
    
    	oldusage = page_counter_read(&memcg->memory);
    
    	do {
    		if (signal_pending(current)) {
    			ret = -EINTR;
    			break;
    		}
    
    		mutex_lock(&memcg_limit_mutex);
    		if (limit > memcg->memsw.limit) {
    			mutex_unlock(&memcg_limit_mutex);
    			ret = -EINVAL;
    			break;
    		}
    		if (limit > memcg->memory.limit)
    			enlarge = true;
    		ret = page_counter_limit(&memcg->memory, limit);
    		mutex_unlock(&memcg_limit_mutex);
    
    		if (!ret)
    			break;
    
    		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
    
    		curusage = page_counter_read(&memcg->memory);
    		/* Usage is reduced ? */
    		if (curusage >= oldusage)
    			retry_count--;
    		else
    			oldusage = curusage;
    	} while (retry_count);
    
    	if (!ret && enlarge)
    		memcg_oom_recover(memcg);
    
    	return ret;
    }
    
    static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
    					 unsigned long limit)
    {
    	unsigned long curusage;
    	unsigned long oldusage;
    	bool enlarge = false;
    	int retry_count;
    	int ret;
    
    	/* see mem_cgroup_resize_res_limit */
    	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
    		      mem_cgroup_count_children(memcg);
    
    	oldusage = page_counter_read(&memcg->memsw);
    
    	do {
    		if (signal_pending(current)) {
    			ret = -EINTR;
    			break;
    		}
    
    		mutex_lock(&memcg_limit_mutex);
    		if (limit < memcg->memory.limit) {
    			mutex_unlock(&memcg_limit_mutex);
    			ret = -EINVAL;
    			break;
    		}
    		if (limit > memcg->memsw.limit)
    			enlarge = true;
    		ret = page_counter_limit(&memcg->memsw, limit);
    		mutex_unlock(&memcg_limit_mutex);
    
    		if (!ret)
    			break;
    
    		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
    
    		curusage = page_counter_read(&memcg->memsw);
    		/* Usage is reduced ? */
    		if (curusage >= oldusage)
    			retry_count--;
    		else
    			oldusage = curusage;
    	} while (retry_count);
    
    	if (!ret && enlarge)
    		memcg_oom_recover(memcg);
    
    	return ret;
    }
    
    unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
    					    gfp_t gfp_mask,
    					    unsigned long *total_scanned)
    {
    	unsigned long nr_reclaimed = 0;
    	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
    	unsigned long reclaimed;
    	int loop = 0;
    	struct mem_cgroup_tree_per_zone *mctz;
    	unsigned long excess;
    	unsigned long nr_scanned;
    
    	if (order > 0)
    		return 0;
    
    	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
    	/*
    	 * This loop can run a while, specially if mem_cgroup's continuously
    	 * keep exceeding their soft limit and putting the system under
    	 * pressure
    	 */
    	do {
    		if (next_mz)
    			mz = next_mz;
    		else
    			mz = mem_cgroup_largest_soft_limit_node(mctz);
    		if (!mz)
    			break;
    
    		nr_scanned = 0;
    		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
    						    gfp_mask, &nr_scanned);
    		nr_reclaimed += reclaimed;
    		*total_scanned += nr_scanned;
    		spin_lock_irq(&mctz->lock);
    		__mem_cgroup_remove_exceeded(mz, mctz);
    
    		/*
    		 * If we failed to reclaim anything from this memory cgroup
    		 * it is time to move on to the next cgroup
    		 */
    		next_mz = NULL;
    		if (!reclaimed)
    			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
    
    		excess = soft_limit_excess(mz->memcg);
    		/*
    		 * One school of thought says that we should not add
    		 * back the node to the tree if reclaim returns 0.
    		 * But our reclaim could return 0, simply because due
    		 * to priority we are exposing a smaller subset of
    		 * memory to reclaim from. Consider this as a longer
    		 * term TODO.
    		 */
    		/* If excess == 0, no tree ops */
    		__mem_cgroup_insert_exceeded(mz, mctz, excess);
    		spin_unlock_irq(&mctz->lock);
    		css_put(&mz->memcg->css);
    		loop++;
    		/*
    		 * Could not reclaim anything and there are no more
    		 * mem cgroups to try or we seem to be looping without
    		 * reclaiming anything.
    		 */
    		if (!nr_reclaimed &&
    			(next_mz == NULL ||
    			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
    			break;
    	} while (!nr_reclaimed);
    	if (next_mz)
    		css_put(&next_mz->memcg->css);
    	return nr_reclaimed;
    }
    
    /*
     * Test whether @memcg has children, dead or alive.  Note that this
     * function doesn't care whether @memcg has use_hierarchy enabled and
     * returns %true if there are child csses according to the cgroup
     * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
     */
    static inline bool memcg_has_children(struct mem_cgroup *memcg)
    {
    	bool ret;
    
    	/*
    	 * The lock does not prevent addition or deletion of children, but
    	 * it prevents a new child from being initialized based on this
    	 * parent in css_online(), so it's enough to decide whether
    	 * hierarchically inherited attributes can still be changed or not.
    	 */
    	lockdep_assert_held(&memcg_create_mutex);
    
    	rcu_read_lock();
    	ret = css_next_child(NULL, &memcg->css);
    	rcu_read_unlock();
    	return ret;
    }
    
    /*
     * Reclaims as many pages from the given memcg as possible and moves
     * the rest to the parent.
     *
     * Caller is responsible for holding css reference for memcg.
     */
    static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
    {
    	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
    
    	/* we call try-to-free pages for make this cgroup empty */
    	lru_add_drain_all();
    	/* try to free all pages in this cgroup */
    	while (nr_retries && page_counter_read(&memcg->memory)) {
    		int progress;
    
    		if (signal_pending(current))
    			return -EINTR;
    
    		progress = try_to_free_mem_cgroup_pages(memcg, 1,
    							GFP_KERNEL, true);
    		if (!progress) {
    			nr_retries--;
    			/* maybe some writeback is necessary */
    			congestion_wait(BLK_RW_ASYNC, HZ/10);
    		}
    
    	}
    
    	return 0;
    }
    
    static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
    					    char *buf, size_t nbytes,
    					    loff_t off)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
    
    	if (mem_cgroup_is_root(memcg))
    		return -EINVAL;
    	return mem_cgroup_force_empty(memcg) ?: nbytes;
    }
    
    static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
    				     struct cftype *cft)
    {
    	return mem_cgroup_from_css(css)->use_hierarchy;
    }
    
    static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
    				      struct cftype *cft, u64 val)
    {
    	int retval = 0;
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
    
    	mutex_lock(&memcg_create_mutex);
    
    	if (memcg->use_hierarchy == val)
    		goto out;
    
    	/*
    	 * If parent's use_hierarchy is set, we can't make any modifications
    	 * in the child subtrees. If it is unset, then the change can
    	 * occur, provided the current cgroup has no children.
    	 *
    	 * For the root cgroup, parent_mem is NULL, we allow value to be
    	 * set if there are no children.
    	 */
    	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
    				(val == 1 || val == 0)) {
    		if (!memcg_has_children(memcg))
    			memcg->use_hierarchy = val;
    		else
    			retval = -EBUSY;
    	} else
    		retval = -EINVAL;
    
    out:
    	mutex_unlock(&memcg_create_mutex);
    
    	return retval;
    }
    
    static unsigned long tree_stat(struct mem_cgroup *memcg,
    			       enum mem_cgroup_stat_index idx)
    {
    	struct mem_cgroup *iter;
    	unsigned long val = 0;
    
    	for_each_mem_cgroup_tree(iter, memcg)
    		val += mem_cgroup_read_stat(iter, idx);
    
    	return val;
    }
    
    static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
    {
    	unsigned long val;
    
    	if (mem_cgroup_is_root(memcg)) {
    		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
    		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
    		if (swap)
    			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
    	} else {
    		if (!swap)
    			val = page_counter_read(&memcg->memory);
    		else
    			val = page_counter_read(&memcg->memsw);
    	}
    	return val;
    }
    
    enum {
    	RES_USAGE,
    	RES_LIMIT,
    	RES_MAX_USAGE,
    	RES_FAILCNT,
    	RES_SOFT_LIMIT,
    };
    
    static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
    			       struct cftype *cft)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    	struct page_counter *counter;
    
    	switch (MEMFILE_TYPE(cft->private)) {
    	case _MEM:
    		counter = &memcg->memory;
    		break;
    	case _MEMSWAP:
    		counter = &memcg->memsw;
    		break;
    	case _KMEM:
    		counter = &memcg->kmem;
    		break;
    	default:
    		BUG();
    	}
    
    	switch (MEMFILE_ATTR(cft->private)) {
    	case RES_USAGE:
    		if (counter == &memcg->memory)
    			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
    		if (counter == &memcg->memsw)
    			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
    		return (u64)page_counter_read(counter) * PAGE_SIZE;
    	case RES_LIMIT:
    		return (u64)counter->limit * PAGE_SIZE;
    	case RES_MAX_USAGE:
    		return (u64)counter->watermark * PAGE_SIZE;
    	case RES_FAILCNT:
    		return counter->failcnt;
    	case RES_SOFT_LIMIT:
    		return (u64)memcg->soft_limit * PAGE_SIZE;
    	default:
    		BUG();
    	}
    }
    
    #ifndef CONFIG_SLOB
    static int memcg_online_kmem(struct mem_cgroup *memcg)
    {
    	int err = 0;
    	int memcg_id;
    
    	BUG_ON(memcg->kmemcg_id >= 0);
    	BUG_ON(memcg->kmem_state);
    
    	/*
    	 * For simplicity, we won't allow this to be disabled.  It also can't
    	 * be changed if the cgroup has children already, or if tasks had
    	 * already joined.
    	 *
    	 * If tasks join before we set the limit, a person looking at
    	 * kmem.usage_in_bytes will have no way to determine when it took
    	 * place, which makes the value quite meaningless.
    	 *
    	 * After it first became limited, changes in the value of the limit are
    	 * of course permitted.
    	 */
    	mutex_lock(&memcg_create_mutex);
    	if (cgroup_is_populated(memcg->css.cgroup) ||
    	    (memcg->use_hierarchy && memcg_has_children(memcg)))
    		err = -EBUSY;
    	mutex_unlock(&memcg_create_mutex);
    	if (err)
    		goto out;
    
    	memcg_id = memcg_alloc_cache_id();
    	if (memcg_id < 0) {
    		err = memcg_id;
    		goto out;
    	}
    
    	static_branch_inc(&memcg_kmem_enabled_key);
    	/*
    	 * A memory cgroup is considered kmem-online as soon as it gets
    	 * kmemcg_id. Setting the id after enabling static branching will
    	 * guarantee no one starts accounting before all call sites are
    	 * patched.
    	 */
    	memcg->kmemcg_id = memcg_id;
    	memcg->kmem_state = KMEM_ONLINE;
    out:
    	return err;
    }
    
    static int memcg_propagate_kmem(struct mem_cgroup *memcg)
    {
    	int ret = 0;
    	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
    
    	if (!parent)
    		return 0;
    
    	mutex_lock(&memcg_limit_mutex);
    	/*
    	 * If the parent cgroup is not kmem-online now, it cannot be
    	 * onlined after this point, because it has at least one child
    	 * already.
    	 */
    	if (memcg_kmem_online(parent) ||
    	    (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nokmem))
    		ret = memcg_online_kmem(memcg);
    	mutex_unlock(&memcg_limit_mutex);
    	return ret;
    }
    
    static void memcg_offline_kmem(struct mem_cgroup *memcg)
    {
    	struct cgroup_subsys_state *css;
    	struct mem_cgroup *parent, *child;
    	int kmemcg_id;
    
    	if (memcg->kmem_state != KMEM_ONLINE)
    		return;
    	/*
    	 * Clear the online state before clearing memcg_caches array
    	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
    	 * guarantees that no cache will be created for this cgroup
    	 * after we are done (see memcg_create_kmem_cache()).
    	 */
    	memcg->kmem_state = KMEM_ALLOCATED;
    
    	memcg_deactivate_kmem_caches(memcg);
    
    	kmemcg_id = memcg->kmemcg_id;
    	BUG_ON(kmemcg_id < 0);
    
    	parent = parent_mem_cgroup(memcg);
    	if (!parent)
    		parent = root_mem_cgroup;
    
    	/*
    	 * Change kmemcg_id of this cgroup and all its descendants to the
    	 * parent's id, and then move all entries from this cgroup's list_lrus
    	 * to ones of the parent. After we have finished, all list_lrus
    	 * corresponding to this cgroup are guaranteed to remain empty. The
    	 * ordering is imposed by list_lru_node->lock taken by
    	 * memcg_drain_all_list_lrus().
    	 */
    	css_for_each_descendant_pre(css, &memcg->css) {
    		child = mem_cgroup_from_css(css);
    		BUG_ON(child->kmemcg_id != kmemcg_id);
    		child->kmemcg_id = parent->kmemcg_id;
    		if (!memcg->use_hierarchy)
    			break;
    	}
    	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
    
    	memcg_free_cache_id(kmemcg_id);
    }
    
    static void memcg_free_kmem(struct mem_cgroup *memcg)
    {
    	if (memcg->kmem_state == KMEM_ALLOCATED) {
    		memcg_destroy_kmem_caches(memcg);
    		static_branch_dec(&memcg_kmem_enabled_key);
    		WARN_ON(page_counter_read(&memcg->kmem));
    	}
    }
    #else
    static int memcg_propagate_kmem(struct mem_cgroup *memcg)
    {
    	return 0;
    }
    static void memcg_offline_kmem(struct mem_cgroup *memcg)
    {
    }
    static void memcg_free_kmem(struct mem_cgroup *memcg)
    {
    }
    #endif /* !CONFIG_SLOB */
    
    #ifdef CONFIG_MEMCG_KMEM
    static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
    				   unsigned long limit)
    {
    	int ret;
    
    	mutex_lock(&memcg_limit_mutex);
    	/* Top-level cgroup doesn't propagate from root */
    	if (!memcg_kmem_online(memcg)) {
    		ret = memcg_online_kmem(memcg);
    		if (ret)
    			goto out;
    	}
    	ret = page_counter_limit(&memcg->kmem, limit);
    out:
    	mutex_unlock(&memcg_limit_mutex);
    	return ret;
    }
    #else
    static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
    				   unsigned long limit)
    {
    	return -EINVAL;
    }
    #endif /* CONFIG_MEMCG_KMEM */
    
    
    /*
     * The user of this function is...
     * RES_LIMIT.
     */
    static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
    				char *buf, size_t nbytes, loff_t off)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
    	unsigned long nr_pages;
    	int ret;
    
    	buf = strstrip(buf);
    	ret = page_counter_memparse(buf, "-1", &nr_pages);
    	if (ret)
    		return ret;
    
    	switch (MEMFILE_ATTR(of_cft(of)->private)) {
    	case RES_LIMIT:
    		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
    			ret = -EINVAL;
    			break;
    		}
    		switch (MEMFILE_TYPE(of_cft(of)->private)) {
    		case _MEM:
    			ret = mem_cgroup_resize_limit(memcg, nr_pages);
    			break;
    		case _MEMSWAP:
    			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
    			break;
    		case _KMEM:
    			ret = memcg_update_kmem_limit(memcg, nr_pages);
    			break;
    		}
    		break;
    	case RES_SOFT_LIMIT:
    		memcg->soft_limit = nr_pages;
    		ret = 0;
    		break;
    	}
    	return ret ?: nbytes;
    }
    
    static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
    				size_t nbytes, loff_t off)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
    	struct page_counter *counter;
    
    	switch (MEMFILE_TYPE(of_cft(of)->private)) {
    	case _MEM:
    		counter = &memcg->memory;
    		break;
    	case _MEMSWAP:
    		counter = &memcg->memsw;
    		break;
    	case _KMEM:
    		counter = &memcg->kmem;
    		break;
    	default:
    		BUG();
    	}
    
    	switch (MEMFILE_ATTR(of_cft(of)->private)) {
    	case RES_MAX_USAGE:
    		page_counter_reset_watermark(counter);
    		break;
    	case RES_FAILCNT:
    		counter->failcnt = 0;
    		break;
    	default:
    		BUG();
    	}
    
    	return nbytes;
    }
    
    static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
    					struct cftype *cft)
    {
    	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
    }
    
    #ifdef CONFIG_MMU
    static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
    					struct cftype *cft, u64 val)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    
    	if (val & ~MOVE_MASK)
    		return -EINVAL;
    
    	/*
    	 * No kind of locking is needed in here, because ->can_attach() will
    	 * check this value once in the beginning of the process, and then carry
    	 * on with stale data. This means that changes to this value will only
    	 * affect task migrations starting after the change.
    	 */
    	memcg->move_charge_at_immigrate = val;
    	return 0;
    }
    #else
    static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
    					struct cftype *cft, u64 val)
    {
    	return -ENOSYS;
    }
    #endif
    
    #ifdef CONFIG_NUMA
    static int memcg_numa_stat_show(struct seq_file *m, void *v)
    {
    	struct numa_stat {
    		const char *name;
    		unsigned int lru_mask;
    	};
    
    	static const struct numa_stat stats[] = {
    		{ "total", LRU_ALL },
    		{ "file", LRU_ALL_FILE },
    		{ "anon", LRU_ALL_ANON },
    		{ "unevictable", BIT(LRU_UNEVICTABLE) },
    	};
    	const struct numa_stat *stat;
    	int nid;
    	unsigned long nr;
    	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
    
    	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
    		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
    		seq_printf(m, "%s=%lu", stat->name, nr);
    		for_each_node_state(nid, N_MEMORY) {
    			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
    							  stat->lru_mask);
    			seq_printf(m, " N%d=%lu", nid, nr);
    		}
    		seq_putc(m, '\n');
    	}
    
    	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
    		struct mem_cgroup *iter;
    
    		nr = 0;
    		for_each_mem_cgroup_tree(iter, memcg)
    			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
    		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
    		for_each_node_state(nid, N_MEMORY) {
    			nr = 0;
    			for_each_mem_cgroup_tree(iter, memcg)
    				nr += mem_cgroup_node_nr_lru_pages(
    					iter, nid, stat->lru_mask);
    			seq_printf(m, " N%d=%lu", nid, nr);
    		}
    		seq_putc(m, '\n');
    	}
    
    	return 0;
    }
    #endif /* CONFIG_NUMA */
    
    static int memcg_stat_show(struct seq_file *m, void *v)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
    	unsigned long memory, memsw;
    	struct mem_cgroup *mi;
    	unsigned int i;
    
    	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
    		     MEM_CGROUP_STAT_NSTATS);
    	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
    		     MEM_CGROUP_EVENTS_NSTATS);
    	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
    
    	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
    		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
    			continue;
    		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
    			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
    	}
    
    	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
    		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
    			   mem_cgroup_read_events(memcg, i));
    
    	for (i = 0; i < NR_LRU_LISTS; i++)
    		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
    			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
    
    	/* Hierarchical information */
    	memory = memsw = PAGE_COUNTER_MAX;
    	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
    		memory = min(memory, mi->memory.limit);
    		memsw = min(memsw, mi->memsw.limit);
    	}
    	seq_printf(m, "hierarchical_memory_limit %llu\n",
    		   (u64)memory * PAGE_SIZE);
    	if (do_memsw_account())
    		seq_printf(m, "hierarchical_memsw_limit %llu\n",
    			   (u64)memsw * PAGE_SIZE);
    
    	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
    		unsigned long long val = 0;
    
    		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
    			continue;
    		for_each_mem_cgroup_tree(mi, memcg)
    			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
    		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
    	}
    
    	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
    		unsigned long long val = 0;
    
    		for_each_mem_cgroup_tree(mi, memcg)
    			val += mem_cgroup_read_events(mi, i);
    		seq_printf(m, "total_%s %llu\n",
    			   mem_cgroup_events_names[i], val);
    	}
    
    	for (i = 0; i < NR_LRU_LISTS; i++) {
    		unsigned long long val = 0;
    
    		for_each_mem_cgroup_tree(mi, memcg)
    			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
    		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
    	}
    
    #ifdef CONFIG_DEBUG_VM
    	{
    		int nid, zid;
    		struct mem_cgroup_per_zone *mz;
    		struct zone_reclaim_stat *rstat;
    		unsigned long recent_rotated[2] = {0, 0};
    		unsigned long recent_scanned[2] = {0, 0};
    
    		for_each_online_node(nid)
    			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
    				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
    				rstat = &mz->lruvec.reclaim_stat;
    
    				recent_rotated[0] += rstat->recent_rotated[0];
    				recent_rotated[1] += rstat->recent_rotated[1];
    				recent_scanned[0] += rstat->recent_scanned[0];
    				recent_scanned[1] += rstat->recent_scanned[1];
    			}
    		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
    		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
    		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
    		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
    	}
    #endif
    
    	return 0;
    }
    
    static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
    				      struct cftype *cft)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    
    	return mem_cgroup_swappiness(memcg);
    }
    
    static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
    				       struct cftype *cft, u64 val)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    
    	if (val > 100)
    		return -EINVAL;
    
    	if (css->parent)
    		memcg->swappiness = val;
    	else
    		vm_swappiness = val;
    
    	return 0;
    }
    
    static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
    {
    	struct mem_cgroup_threshold_ary *t;
    	unsigned long usage;
    	int i;
    
    	rcu_read_lock();
    	if (!swap)
    		t = rcu_dereference(memcg->thresholds.primary);
    	else
    		t = rcu_dereference(memcg->memsw_thresholds.primary);
    
    	if (!t)
    		goto unlock;
    
    	usage = mem_cgroup_usage(memcg, swap);
    
    	/*
    	 * current_threshold points to threshold just below or equal to usage.
    	 * If it's not true, a threshold was crossed after last
    	 * call of __mem_cgroup_threshold().
    	 */
    	i = t->current_threshold;
    
    	/*
    	 * Iterate backward over array of thresholds starting from
    	 * current_threshold and check if a threshold is crossed.
    	 * If none of thresholds below usage is crossed, we read
    	 * only one element of the array here.
    	 */
    	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
    		eventfd_signal(t->entries[i].eventfd, 1);
    
    	/* i = current_threshold + 1 */
    	i++;
    
    	/*
    	 * Iterate forward over array of thresholds starting from
    	 * current_threshold+1 and check if a threshold is crossed.
    	 * If none of thresholds above usage is crossed, we read
    	 * only one element of the array here.
    	 */
    	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
    		eventfd_signal(t->entries[i].eventfd, 1);
    
    	/* Update current_threshold */
    	t->current_threshold = i - 1;
    unlock:
    	rcu_read_unlock();
    }
    
    static void mem_cgroup_threshold(struct mem_cgroup *memcg)
    {
    	while (memcg) {
    		__mem_cgroup_threshold(memcg, false);
    		if (do_memsw_account())
    			__mem_cgroup_threshold(memcg, true);
    
    		memcg = parent_mem_cgroup(memcg);
    	}
    }
    
    static int compare_thresholds(const void *a, const void *b)
    {
    	const struct mem_cgroup_threshold *_a = a;
    	const struct mem_cgroup_threshold *_b = b;
    
    	if (_a->threshold > _b->threshold)
    		return 1;
    
    	if (_a->threshold < _b->threshold)
    		return -1;
    
    	return 0;
    }
    
    static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
    {
    	struct mem_cgroup_eventfd_list *ev;
    
    	spin_lock(&memcg_oom_lock);
    
    	list_for_each_entry(ev, &memcg->oom_notify, list)
    		eventfd_signal(ev->eventfd, 1);
    
    	spin_unlock(&memcg_oom_lock);
    	return 0;
    }
    
    static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
    {
    	struct mem_cgroup *iter;
    
    	for_each_mem_cgroup_tree(iter, memcg)
    		mem_cgroup_oom_notify_cb(iter);
    }
    
    static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
    	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
    {
    	struct mem_cgroup_thresholds *thresholds;
    	struct mem_cgroup_threshold_ary *new;
    	unsigned long threshold;
    	unsigned long usage;
    	int i, size, ret;
    
    	ret = page_counter_memparse(args, "-1", &threshold);
    	if (ret)
    		return ret;
    
    	mutex_lock(&memcg->thresholds_lock);
    
    	if (type == _MEM) {
    		thresholds = &memcg->thresholds;
    		usage = mem_cgroup_usage(memcg, false);
    	} else if (type == _MEMSWAP) {
    		thresholds = &memcg->memsw_thresholds;
    		usage = mem_cgroup_usage(memcg, true);
    	} else
    		BUG();
    
    	/* Check if a threshold crossed before adding a new one */
    	if (thresholds->primary)
    		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
    
    	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
    
    	/* Allocate memory for new array of thresholds */
    	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
    			GFP_KERNEL);
    	if (!new) {
    		ret = -ENOMEM;
    		goto unlock;
    	}
    	new->size = size;
    
    	/* Copy thresholds (if any) to new array */
    	if (thresholds->primary) {
    		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
    				sizeof(struct mem_cgroup_threshold));
    	}
    
    	/* Add new threshold */
    	new->entries[size - 1].eventfd = eventfd;
    	new->entries[size - 1].threshold = threshold;
    
    	/* Sort thresholds. Registering of new threshold isn't time-critical */
    	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
    			compare_thresholds, NULL);
    
    	/* Find current threshold */
    	new->current_threshold = -1;
    	for (i = 0; i < size; i++) {
    		if (new->entries[i].threshold <= usage) {
    			/*
    			 * new->current_threshold will not be used until
    			 * rcu_assign_pointer(), so it's safe to increment
    			 * it here.
    			 */
    			++new->current_threshold;
    		} else
    			break;
    	}
    
    	/* Free old spare buffer and save old primary buffer as spare */
    	kfree(thresholds->spare);
    	thresholds->spare = thresholds->primary;
    
    	rcu_assign_pointer(thresholds->primary, new);
    
    	/* To be sure that nobody uses thresholds */
    	synchronize_rcu();
    
    unlock:
    	mutex_unlock(&memcg->thresholds_lock);
    
    	return ret;
    }
    
    static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
    	struct eventfd_ctx *eventfd, const char *args)
    {
    	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
    }
    
    static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
    	struct eventfd_ctx *eventfd, const char *args)
    {
    	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
    }
    
    static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
    	struct eventfd_ctx *eventfd, enum res_type type)
    {
    	struct mem_cgroup_thresholds *thresholds;
    	struct mem_cgroup_threshold_ary *new;
    	unsigned long usage;
    	int i, j, size;
    
    	mutex_lock(&memcg->thresholds_lock);
    
    	if (type == _MEM) {
    		thresholds = &memcg->thresholds;
    		usage = mem_cgroup_usage(memcg, false);
    	} else if (type == _MEMSWAP) {
    		thresholds = &memcg->memsw_thresholds;
    		usage = mem_cgroup_usage(memcg, true);
    	} else
    		BUG();
    
    	if (!thresholds->primary)
    		goto unlock;
    
    	/* Check if a threshold crossed before removing */
    	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
    
    	/* Calculate new number of threshold */
    	size = 0;
    	for (i = 0; i < thresholds->primary->size; i++) {
    		if (thresholds->primary->entries[i].eventfd != eventfd)
    			size++;
    	}
    
    	new = thresholds->spare;
    
    	/* Set thresholds array to NULL if we don't have thresholds */
    	if (!size) {
    		kfree(new);
    		new = NULL;
    		goto swap_buffers;
    	}
    
    	new->size = size;
    
    	/* Copy thresholds and find current threshold */
    	new->current_threshold = -1;
    	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
    		if (thresholds->primary->entries[i].eventfd == eventfd)
    			continue;
    
    		new->entries[j] = thresholds->primary->entries[i];
    		if (new->entries[j].threshold <= usage) {
    			/*
    			 * new->current_threshold will not be used
    			 * until rcu_assign_pointer(), so it's safe to increment
    			 * it here.
    			 */
    			++new->current_threshold;
    		}
    		j++;
    	}
    
    swap_buffers:
    	/* Swap primary and spare array */
    	thresholds->spare = thresholds->primary;
    
    	rcu_assign_pointer(thresholds->primary, new);
    
    	/* To be sure that nobody uses thresholds */
    	synchronize_rcu();
    
    	/* If all events are unregistered, free the spare array */
    	if (!new) {
    		kfree(thresholds->spare);
    		thresholds->spare = NULL;
    	}
    unlock:
    	mutex_unlock(&memcg->thresholds_lock);
    }
    
    static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
    	struct eventfd_ctx *eventfd)
    {
    	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
    }
    
    static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
    	struct eventfd_ctx *eventfd)
    {
    	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
    }
    
    static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
    	struct eventfd_ctx *eventfd, const char *args)
    {
    	struct mem_cgroup_eventfd_list *event;
    
    	event = kmalloc(sizeof(*event),	GFP_KERNEL);
    	if (!event)
    		return -ENOMEM;
    
    	spin_lock(&memcg_oom_lock);
    
    	event->eventfd = eventfd;
    	list_add(&event->list, &memcg->oom_notify);
    
    	/* already in OOM ? */
    	if (memcg->under_oom)
    		eventfd_signal(eventfd, 1);
    	spin_unlock(&memcg_oom_lock);
    
    	return 0;
    }
    
    static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
    	struct eventfd_ctx *eventfd)
    {
    	struct mem_cgroup_eventfd_list *ev, *tmp;
    
    	spin_lock(&memcg_oom_lock);
    
    	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
    		if (ev->eventfd == eventfd) {
    			list_del(&ev->list);
    			kfree(ev);
    		}
    	}
    
    	spin_unlock(&memcg_oom_lock);
    }
    
    static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
    
    	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
    	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
    	return 0;
    }
    
    static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
    	struct cftype *cft, u64 val)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    
    	/* cannot set to root cgroup and only 0 and 1 are allowed */
    	if (!css->parent || !((val == 0) || (val == 1)))
    		return -EINVAL;
    
    	memcg->oom_kill_disable = val;
    	if (!val)
    		memcg_oom_recover(memcg);
    
    	return 0;
    }
    
    #ifdef CONFIG_CGROUP_WRITEBACK
    
    struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
    {
    	return &memcg->cgwb_list;
    }
    
    static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
    {
    	return wb_domain_init(&memcg->cgwb_domain, gfp);
    }
    
    static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
    {
    	wb_domain_exit(&memcg->cgwb_domain);
    }
    
    static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
    {
    	wb_domain_size_changed(&memcg->cgwb_domain);
    }
    
    struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
    
    	if (!memcg->css.parent)
    		return NULL;
    
    	return &memcg->cgwb_domain;
    }
    
    /**
     * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
     * @wb: bdi_writeback in question
     * @pfilepages: out parameter for number of file pages
     * @pheadroom: out parameter for number of allocatable pages according to memcg
     * @pdirty: out parameter for number of dirty pages
     * @pwriteback: out parameter for number of pages under writeback
     *
     * Determine the numbers of file, headroom, dirty, and writeback pages in
     * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
     * is a bit more involved.
     *
     * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
     * headroom is calculated as the lowest headroom of itself and the
     * ancestors.  Note that this doesn't consider the actual amount of
     * available memory in the system.  The caller should further cap
     * *@pheadroom accordingly.
     */
    void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
    			 unsigned long *pheadroom, unsigned long *pdirty,
    			 unsigned long *pwriteback)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
    	struct mem_cgroup *parent;
    
    	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
    
    	/* this should eventually include NR_UNSTABLE_NFS */
    	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
    	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
    						     (1 << LRU_ACTIVE_FILE));
    	*pheadroom = PAGE_COUNTER_MAX;
    
    	while ((parent = parent_mem_cgroup(memcg))) {
    		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
    		unsigned long used = page_counter_read(&memcg->memory);
    
    		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
    		memcg = parent;
    	}
    }
    
    #else	/* CONFIG_CGROUP_WRITEBACK */
    
    static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
    {
    	return 0;
    }
    
    static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
    {
    }
    
    static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
    {
    }
    
    #endif	/* CONFIG_CGROUP_WRITEBACK */
    
    /*
     * DO NOT USE IN NEW FILES.
     *
     * "cgroup.event_control" implementation.
     *
     * This is way over-engineered.  It tries to support fully configurable
     * events for each user.  Such level of flexibility is completely
     * unnecessary especially in the light of the planned unified hierarchy.
     *
     * Please deprecate this and replace with something simpler if at all
     * possible.
     */
    
    /*
     * Unregister event and free resources.
     *
     * Gets called from workqueue.
     */
    static void memcg_event_remove(struct work_struct *work)
    {
    	struct mem_cgroup_event *event =
    		container_of(work, struct mem_cgroup_event, remove);
    	struct mem_cgroup *memcg = event->memcg;
    
    	remove_wait_queue(event->wqh, &event->wait);
    
    	event->unregister_event(memcg, event->eventfd);
    
    	/* Notify userspace the event is going away. */
    	eventfd_signal(event->eventfd, 1);
    
    	eventfd_ctx_put(event->eventfd);
    	kfree(event);
    	css_put(&memcg->css);
    }
    
    /*
     * Gets called on POLLHUP on eventfd when user closes it.
     *
     * Called with wqh->lock held and interrupts disabled.
     */
    static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
    			    int sync, void *key)
    {
    	struct mem_cgroup_event *event =
    		container_of(wait, struct mem_cgroup_event, wait);
    	struct mem_cgroup *memcg = event->memcg;
    	unsigned long flags = (unsigned long)key;
    
    	if (flags & POLLHUP) {
    		/*
    		 * If the event has been detached at cgroup removal, we
    		 * can simply return knowing the other side will cleanup
    		 * for us.
    		 *
    		 * We can't race against event freeing since the other
    		 * side will require wqh->lock via remove_wait_queue(),
    		 * which we hold.
    		 */
    		spin_lock(&memcg->event_list_lock);
    		if (!list_empty(&event->list)) {
    			list_del_init(&event->list);
    			/*
    			 * We are in atomic context, but cgroup_event_remove()
    			 * may sleep, so we have to call it in workqueue.
    			 */
    			schedule_work(&event->remove);
    		}
    		spin_unlock(&memcg->event_list_lock);
    	}
    
    	return 0;
    }
    
    static void memcg_event_ptable_queue_proc(struct file *file,
    		wait_queue_head_t *wqh, poll_table *pt)
    {
    	struct mem_cgroup_event *event =
    		container_of(pt, struct mem_cgroup_event, pt);
    
    	event->wqh = wqh;
    	add_wait_queue(wqh, &event->wait);
    }
    
    /*
     * DO NOT USE IN NEW FILES.
     *
     * Parse input and register new cgroup event handler.
     *
     * Input must be in format '<event_fd> <control_fd> <args>'.
     * Interpretation of args is defined by control file implementation.
     */
    static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
    					 char *buf, size_t nbytes, loff_t off)
    {
    	struct cgroup_subsys_state *css = of_css(of);
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    	struct mem_cgroup_event *event;
    	struct cgroup_subsys_state *cfile_css;
    	unsigned int efd, cfd;
    	struct fd efile;
    	struct fd cfile;
    	const char *name;
    	char *endp;
    	int ret;
    
    	buf = strstrip(buf);
    
    	efd = simple_strtoul(buf, &endp, 10);
    	if (*endp != ' ')
    		return -EINVAL;
    	buf = endp + 1;
    
    	cfd = simple_strtoul(buf, &endp, 10);
    	if ((*endp != ' ') && (*endp != '\0'))
    		return -EINVAL;
    	buf = endp + 1;
    
    	event = kzalloc(sizeof(*event), GFP_KERNEL);
    	if (!event)
    		return -ENOMEM;
    
    	event->memcg = memcg;
    	INIT_LIST_HEAD(&event->list);
    	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
    	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
    	INIT_WORK(&event->remove, memcg_event_remove);
    
    	efile = fdget(efd);
    	if (!efile.file) {
    		ret = -EBADF;
    		goto out_kfree;
    	}
    
    	event->eventfd = eventfd_ctx_fileget(efile.file);
    	if (IS_ERR(event->eventfd)) {
    		ret = PTR_ERR(event->eventfd);
    		goto out_put_efile;
    	}
    
    	cfile = fdget(cfd);
    	if (!cfile.file) {
    		ret = -EBADF;
    		goto out_put_eventfd;
    	}
    
    	/* the process need read permission on control file */
    	/* AV: shouldn't we check that it's been opened for read instead? */
    	ret = inode_permission(file_inode(cfile.file), MAY_READ);
    	if (ret < 0)
    		goto out_put_cfile;
    
    	/*
    	 * Determine the event callbacks and set them in @event.  This used
    	 * to be done via struct cftype but cgroup core no longer knows
    	 * about these events.  The following is crude but the whole thing
    	 * is for compatibility anyway.
    	 *
    	 * DO NOT ADD NEW FILES.
    	 */
    	name = cfile.file->f_path.dentry->d_name.name;
    
    	if (!strcmp(name, "memory.usage_in_bytes")) {
    		event->register_event = mem_cgroup_usage_register_event;
    		event->unregister_event = mem_cgroup_usage_unregister_event;
    	} else if (!strcmp(name, "memory.oom_control")) {
    		event->register_event = mem_cgroup_oom_register_event;
    		event->unregister_event = mem_cgroup_oom_unregister_event;
    	} else if (!strcmp(name, "memory.pressure_level")) {
    		event->register_event = vmpressure_register_event;
    		event->unregister_event = vmpressure_unregister_event;
    	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
    		event->register_event = memsw_cgroup_usage_register_event;
    		event->unregister_event = memsw_cgroup_usage_unregister_event;
    	} else {
    		ret = -EINVAL;
    		goto out_put_cfile;
    	}
    
    	/*
    	 * Verify @cfile should belong to @css.  Also, remaining events are
    	 * automatically removed on cgroup destruction but the removal is
    	 * asynchronous, so take an extra ref on @css.
    	 */
    	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
    					       &memory_cgrp_subsys);
    	ret = -EINVAL;
    	if (IS_ERR(cfile_css))
    		goto out_put_cfile;
    	if (cfile_css != css) {
    		css_put(cfile_css);
    		goto out_put_cfile;
    	}
    
    	ret = event->register_event(memcg, event->eventfd, buf);
    	if (ret)
    		goto out_put_css;
    
    	efile.file->f_op->poll(efile.file, &event->pt);
    
    	spin_lock(&memcg->event_list_lock);
    	list_add(&event->list, &memcg->event_list);
    	spin_unlock(&memcg->event_list_lock);
    
    	fdput(cfile);
    	fdput(efile);
    
    	return nbytes;
    
    out_put_css:
    	css_put(css);
    out_put_cfile:
    	fdput(cfile);
    out_put_eventfd:
    	eventfd_ctx_put(event->eventfd);
    out_put_efile:
    	fdput(efile);
    out_kfree:
    	kfree(event);
    
    	return ret;
    }
    
    static struct cftype mem_cgroup_legacy_files[] = {
    	{
    		.name = "usage_in_bytes",
    		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
    		.read_u64 = mem_cgroup_read_u64,
    	},
    	{
    		.name = "max_usage_in_bytes",
    		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
    		.write = mem_cgroup_reset,
    		.read_u64 = mem_cgroup_read_u64,
    	},
    	{
    		.name = "limit_in_bytes",
    		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
    		.write = mem_cgroup_write,
    		.read_u64 = mem_cgroup_read_u64,
    	},
    	{
    		.name = "soft_limit_in_bytes",
    		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
    		.write = mem_cgroup_write,
    		.read_u64 = mem_cgroup_read_u64,
    	},
    	{
    		.name = "failcnt",
    		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
    		.write = mem_cgroup_reset,
    		.read_u64 = mem_cgroup_read_u64,
    	},
    	{
    		.name = "stat",
    		.seq_show = memcg_stat_show,
    	},
    	{
    		.name = "force_empty",
    		.write = mem_cgroup_force_empty_write,
    	},
    	{
    		.name = "use_hierarchy",
    		.write_u64 = mem_cgroup_hierarchy_write,
    		.read_u64 = mem_cgroup_hierarchy_read,
    	},
    	{
    		.name = "cgroup.event_control",		/* XXX: for compat */
    		.write = memcg_write_event_control,
    		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
    	},
    	{
    		.name = "swappiness",
    		.read_u64 = mem_cgroup_swappiness_read,
    		.write_u64 = mem_cgroup_swappiness_write,
    	},
    	{
    		.name = "move_charge_at_immigrate",
    		.read_u64 = mem_cgroup_move_charge_read,
    		.write_u64 = mem_cgroup_move_charge_write,
    	},
    	{
    		.name = "oom_control",
    		.seq_show = mem_cgroup_oom_control_read,
    		.write_u64 = mem_cgroup_oom_control_write,
    		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
    	},
    	{
    		.name = "pressure_level",
    	},
    #ifdef CONFIG_NUMA
    	{
    		.name = "numa_stat",
    		.seq_show = memcg_numa_stat_show,
    	},
    #endif
    #ifdef CONFIG_MEMCG_KMEM
    	{
    		.name = "kmem.limit_in_bytes",
    		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
    		.write = mem_cgroup_write,
    		.read_u64 = mem_cgroup_read_u64,
    	},
    	{
    		.name = "kmem.usage_in_bytes",
    		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
    		.read_u64 = mem_cgroup_read_u64,
    	},
    	{
    		.name = "kmem.failcnt",
    		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
    		.write = mem_cgroup_reset,
    		.read_u64 = mem_cgroup_read_u64,
    	},
    	{
    		.name = "kmem.max_usage_in_bytes",
    		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
    		.write = mem_cgroup_reset,
    		.read_u64 = mem_cgroup_read_u64,
    	},
    #ifdef CONFIG_SLABINFO
    	{
    		.name = "kmem.slabinfo",
    		.seq_start = slab_start,
    		.seq_next = slab_next,
    		.seq_stop = slab_stop,
    		.seq_show = memcg_slab_show,
    	},
    #endif
    #endif
    	{ },	/* terminate */
    };
    
    static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
    {
    	struct mem_cgroup_per_node *pn;
    	struct mem_cgroup_per_zone *mz;
    	int zone, tmp = node;
    	/*
    	 * This routine is called against possible nodes.
    	 * But it's BUG to call kmalloc() against offline node.
    	 *
    	 * TODO: this routine can waste much memory for nodes which will
    	 *       never be onlined. It's better to use memory hotplug callback
    	 *       function.
    	 */
    	if (!node_state(node, N_NORMAL_MEMORY))
    		tmp = -1;
    	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
    	if (!pn)
    		return 1;
    
    	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
    		mz = &pn->zoneinfo[zone];
    		lruvec_init(&mz->lruvec);
    		mz->usage_in_excess = 0;
    		mz->on_tree = false;
    		mz->memcg = memcg;
    	}
    	memcg->nodeinfo[node] = pn;
    	return 0;
    }
    
    static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
    {
    	kfree(memcg->nodeinfo[node]);
    }
    
    static struct mem_cgroup *mem_cgroup_alloc(void)
    {
    	struct mem_cgroup *memcg;
    	size_t size;
    
    	size = sizeof(struct mem_cgroup);
    	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
    
    	memcg = kzalloc(size, GFP_KERNEL);
    	if (!memcg)
    		return NULL;
    
    	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
    	if (!memcg->stat)
    		goto out_free;
    
    	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
    		goto out_free_stat;
    
    	return memcg;
    
    out_free_stat:
    	free_percpu(memcg->stat);
    out_free:
    	kfree(memcg);
    	return NULL;
    }
    
    /*
     * At destroying mem_cgroup, references from swap_cgroup can remain.
     * (scanning all at force_empty is too costly...)
     *
     * Instead of clearing all references at force_empty, we remember
     * the number of reference from swap_cgroup and free mem_cgroup when
     * it goes down to 0.
     *
     * Removal of cgroup itself succeeds regardless of refs from swap.
     */
    
    static void __mem_cgroup_free(struct mem_cgroup *memcg)
    {
    	int node;
    
    	cancel_work_sync(&memcg->high_work);
    
    	mem_cgroup_remove_from_trees(memcg);
    
    	for_each_node(node)
    		free_mem_cgroup_per_zone_info(memcg, node);
    
    	free_percpu(memcg->stat);
    	memcg_wb_domain_exit(memcg);
    	kfree(memcg);
    }
    
    static struct cgroup_subsys_state * __ref
    mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
    {
    	struct mem_cgroup *memcg;
    	long error = -ENOMEM;
    	int node;
    
    	memcg = mem_cgroup_alloc();
    	if (!memcg)
    		return ERR_PTR(error);
    
    	for_each_node(node)
    		if (alloc_mem_cgroup_per_zone_info(memcg, node))
    			goto free_out;
    
    	/* root ? */
    	if (parent_css == NULL) {
    		root_mem_cgroup = memcg;
    		page_counter_init(&memcg->memory, NULL);
    		memcg->high = PAGE_COUNTER_MAX;
    		memcg->soft_limit = PAGE_COUNTER_MAX;
    		page_counter_init(&memcg->memsw, NULL);
    		page_counter_init(&memcg->kmem, NULL);
    	}
    
    	INIT_WORK(&memcg->high_work, high_work_func);
    	memcg->last_scanned_node = MAX_NUMNODES;
    	INIT_LIST_HEAD(&memcg->oom_notify);
    	memcg->move_charge_at_immigrate = 0;
    	mutex_init(&memcg->thresholds_lock);
    	spin_lock_init(&memcg->move_lock);
    	vmpressure_init(&memcg->vmpressure);
    	INIT_LIST_HEAD(&memcg->event_list);
    	spin_lock_init(&memcg->event_list_lock);
    #ifndef CONFIG_SLOB
    	memcg->kmemcg_id = -1;
    #endif
    #ifdef CONFIG_CGROUP_WRITEBACK
    	INIT_LIST_HEAD(&memcg->cgwb_list);
    #endif
    #ifdef CONFIG_INET
    	memcg->socket_pressure = jiffies;
    #endif
    	return &memcg->css;
    
    free_out:
    	__mem_cgroup_free(memcg);
    	return ERR_PTR(error);
    }
    
    static int
    mem_cgroup_css_online(struct cgroup_subsys_state *css)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
    	int ret;
    
    	if (css->id > MEM_CGROUP_ID_MAX)
    		return -ENOSPC;
    
    	if (!parent)
    		return 0;
    
    	mutex_lock(&memcg_create_mutex);
    
    	memcg->use_hierarchy = parent->use_hierarchy;
    	memcg->oom_kill_disable = parent->oom_kill_disable;
    	memcg->swappiness = mem_cgroup_swappiness(parent);
    
    	if (parent->use_hierarchy) {
    		page_counter_init(&memcg->memory, &parent->memory);
    		memcg->high = PAGE_COUNTER_MAX;
    		memcg->soft_limit = PAGE_COUNTER_MAX;
    		page_counter_init(&memcg->memsw, &parent->memsw);
    		page_counter_init(&memcg->kmem, &parent->kmem);
    
    		/*
    		 * No need to take a reference to the parent because cgroup
    		 * core guarantees its existence.
    		 */
    	} else {
    		page_counter_init(&memcg->memory, NULL);
    		memcg->high = PAGE_COUNTER_MAX;
    		memcg->soft_limit = PAGE_COUNTER_MAX;
    		page_counter_init(&memcg->memsw, NULL);
    		page_counter_init(&memcg->kmem, NULL);
    		/*
    		 * Deeper hierachy with use_hierarchy == false doesn't make
    		 * much sense so let cgroup subsystem know about this
    		 * unfortunate state in our controller.
    		 */
    		if (parent != root_mem_cgroup)
    			memory_cgrp_subsys.broken_hierarchy = true;
    	}
    	mutex_unlock(&memcg_create_mutex);
    
    	ret = memcg_propagate_kmem(memcg);
    	if (ret)
    		return ret;
    
    #ifdef CONFIG_MEMCG_KMEM
    	ret = tcp_init_cgroup(memcg);
    	if (ret)
    		return ret;
    #endif
    
    #ifdef CONFIG_INET
    	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
    		static_branch_inc(&memcg_sockets_enabled_key);
    #endif
    
    	/*
    	 * Make sure the memcg is initialized: mem_cgroup_iter()
    	 * orders reading memcg->initialized against its callers
    	 * reading the memcg members.
    	 */
    	smp_store_release(&memcg->initialized, 1);
    
    	return 0;
    }
    
    static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    	struct mem_cgroup_event *event, *tmp;
    
    	/*
    	 * Unregister events and notify userspace.
    	 * Notify userspace about cgroup removing only after rmdir of cgroup
    	 * directory to avoid race between userspace and kernelspace.
    	 */
    	spin_lock(&memcg->event_list_lock);
    	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
    		list_del_init(&event->list);
    		schedule_work(&event->remove);
    	}
    	spin_unlock(&memcg->event_list_lock);
    
    	vmpressure_cleanup(&memcg->vmpressure);
    
    	memcg_offline_kmem(memcg);
    
    	wb_memcg_offline(memcg);
    }
    
    static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    
    	invalidate_reclaim_iterators(memcg);
    }
    
    static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    
    #ifdef CONFIG_INET
    	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
    		static_branch_dec(&memcg_sockets_enabled_key);
    #endif
    
    	memcg_free_kmem(memcg);
    
    #ifdef CONFIG_MEMCG_KMEM
    	tcp_destroy_cgroup(memcg);
    #endif
    
    	__mem_cgroup_free(memcg);
    }
    
    /**
     * mem_cgroup_css_reset - reset the states of a mem_cgroup
     * @css: the target css
     *
     * Reset the states of the mem_cgroup associated with @css.  This is
     * invoked when the userland requests disabling on the default hierarchy
     * but the memcg is pinned through dependency.  The memcg should stop
     * applying policies and should revert to the vanilla state as it may be
     * made visible again.
     *
     * The current implementation only resets the essential configurations.
     * This needs to be expanded to cover all the visible parts.
     */
    static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    
    	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
    	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
    	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
    	memcg->low = 0;
    	memcg->high = PAGE_COUNTER_MAX;
    	memcg->soft_limit = PAGE_COUNTER_MAX;
    	memcg_wb_domain_size_changed(memcg);
    }
    
    #ifdef CONFIG_MMU
    /* Handlers for move charge at task migration. */
    static int mem_cgroup_do_precharge(unsigned long count)
    {
    	int ret;
    
    	/* Try a single bulk charge without reclaim first, kswapd may wake */
    	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
    	if (!ret) {
    		mc.precharge += count;
    		return ret;
    	}
    
    	/* Try charges one by one with reclaim */
    	while (count--) {
    		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
    		if (ret)
    			return ret;
    		mc.precharge++;
    		cond_resched();
    	}
    	return 0;
    }
    
    /**
     * get_mctgt_type - get target type of moving charge
     * @vma: the vma the pte to be checked belongs
     * @addr: the address corresponding to the pte to be checked
     * @ptent: the pte to be checked
     * @target: the pointer the target page or swap ent will be stored(can be NULL)
     *
     * Returns
     *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
     *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
     *     move charge. if @target is not NULL, the page is stored in target->page
     *     with extra refcnt got(Callers should handle it).
     *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
     *     target for charge migration. if @target is not NULL, the entry is stored
     *     in target->ent.
     *
     * Called with pte lock held.
     */
    union mc_target {
    	struct page	*page;
    	swp_entry_t	ent;
    };
    
    enum mc_target_type {
    	MC_TARGET_NONE = 0,
    	MC_TARGET_PAGE,
    	MC_TARGET_SWAP,
    };
    
    static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
    						unsigned long addr, pte_t ptent)
    {
    	struct page *page = vm_normal_page(vma, addr, ptent);
    
    	if (!page || !page_mapped(page))
    		return NULL;
    	if (PageAnon(page)) {
    		if (!(mc.flags & MOVE_ANON))
    			return NULL;
    	} else {
    		if (!(mc.flags & MOVE_FILE))
    			return NULL;
    	}
    	if (!get_page_unless_zero(page))
    		return NULL;
    
    	return page;
    }
    
    #ifdef CONFIG_SWAP
    static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
    			unsigned long addr, pte_t ptent, swp_entry_t *entry)
    {
    	struct page *page = NULL;
    	swp_entry_t ent = pte_to_swp_entry(ptent);
    
    	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
    		return NULL;
    	/*
    	 * Because lookup_swap_cache() updates some statistics counter,
    	 * we call find_get_page() with swapper_space directly.
    	 */
    	page = find_get_page(swap_address_space(ent), ent.val);
    	if (do_memsw_account())
    		entry->val = ent.val;
    
    	return page;
    }
    #else
    static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
    			unsigned long addr, pte_t ptent, swp_entry_t *entry)
    {
    	return NULL;
    }
    #endif
    
    static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
    			unsigned long addr, pte_t ptent, swp_entry_t *entry)
    {
    	struct page *page = NULL;
    	struct address_space *mapping;
    	pgoff_t pgoff;
    
    	if (!vma->vm_file) /* anonymous vma */
    		return NULL;
    	if (!(mc.flags & MOVE_FILE))
    		return NULL;
    
    	mapping = vma->vm_file->f_mapping;
    	pgoff = linear_page_index(vma, addr);
    
    	/* page is moved even if it's not RSS of this task(page-faulted). */
    #ifdef CONFIG_SWAP
    	/* shmem/tmpfs may report page out on swap: account for that too. */
    	if (shmem_mapping(mapping)) {
    		page = find_get_entry(mapping, pgoff);
    		if (radix_tree_exceptional_entry(page)) {
    			swp_entry_t swp = radix_to_swp_entry(page);
    			if (do_memsw_account())
    				*entry = swp;
    			page = find_get_page(swap_address_space(swp), swp.val);
    		}
    	} else
    		page = find_get_page(mapping, pgoff);
    #else
    	page = find_get_page(mapping, pgoff);
    #endif
    	return page;
    }
    
    /**
     * mem_cgroup_move_account - move account of the page
     * @page: the page
     * @nr_pages: number of regular pages (>1 for huge pages)
     * @from: mem_cgroup which the page is moved from.
     * @to:	mem_cgroup which the page is moved to. @from != @to.
     *
     * The caller must make sure the page is not on LRU (isolate_page() is useful.)
     *
     * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
     * from old cgroup.
     */
    static int mem_cgroup_move_account(struct page *page,
    				   bool compound,
    				   struct mem_cgroup *from,
    				   struct mem_cgroup *to)
    {
    	unsigned long flags;
    	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
    	int ret;
    	bool anon;
    
    	VM_BUG_ON(from == to);
    	VM_BUG_ON_PAGE(PageLRU(page), page);
    	VM_BUG_ON(compound && !PageTransHuge(page));
    
    	/*
    	 * Prevent mem_cgroup_replace_page() from looking at
    	 * page->mem_cgroup of its source page while we change it.
    	 */
    	ret = -EBUSY;
    	if (!trylock_page(page))
    		goto out;
    
    	ret = -EINVAL;
    	if (page->mem_cgroup != from)
    		goto out_unlock;
    
    	anon = PageAnon(page);
    
    	spin_lock_irqsave(&from->move_lock, flags);
    
    	if (!anon && page_mapped(page)) {
    		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
    			       nr_pages);
    		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
    			       nr_pages);
    	}
    
    	/*
    	 * move_lock grabbed above and caller set from->moving_account, so
    	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
    	 * So mapping should be stable for dirty pages.
    	 */
    	if (!anon && PageDirty(page)) {
    		struct address_space *mapping = page_mapping(page);
    
    		if (mapping_cap_account_dirty(mapping)) {
    			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
    				       nr_pages);
    			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
    				       nr_pages);
    		}
    	}
    
    	if (PageWriteback(page)) {
    		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
    			       nr_pages);
    		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
    			       nr_pages);
    	}
    
    	/*
    	 * It is safe to change page->mem_cgroup here because the page
    	 * is referenced, charged, and isolated - we can't race with
    	 * uncharging, charging, migration, or LRU putback.
    	 */
    
    	/* caller should have done css_get */
    	page->mem_cgroup = to;
    	spin_unlock_irqrestore(&from->move_lock, flags);
    
    	ret = 0;
    
    	local_irq_disable();
    	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
    	memcg_check_events(to, page);
    	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
    	memcg_check_events(from, page);
    	local_irq_enable();
    out_unlock:
    	unlock_page(page);
    out:
    	return ret;
    }
    
    static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
    		unsigned long addr, pte_t ptent, union mc_target *target)
    {
    	struct page *page = NULL;
    	enum mc_target_type ret = MC_TARGET_NONE;
    	swp_entry_t ent = { .val = 0 };
    
    	if (pte_present(ptent))
    		page = mc_handle_present_pte(vma, addr, ptent);
    	else if (is_swap_pte(ptent))
    		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
    	else if (pte_none(ptent))
    		page = mc_handle_file_pte(vma, addr, ptent, &ent);
    
    	if (!page && !ent.val)
    		return ret;
    	if (page) {
    		/*
    		 * Do only loose check w/o serialization.
    		 * mem_cgroup_move_account() checks the page is valid or
    		 * not under LRU exclusion.
    		 */
    		if (page->mem_cgroup == mc.from) {
    			ret = MC_TARGET_PAGE;
    			if (target)
    				target->page = page;
    		}
    		if (!ret || !target)
    			put_page(page);
    	}
    	/* There is a swap entry and a page doesn't exist or isn't charged */
    	if (ent.val && !ret &&
    	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
    		ret = MC_TARGET_SWAP;
    		if (target)
    			target->ent = ent;
    	}
    	return ret;
    }
    
    #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    /*
     * We don't consider swapping or file mapped pages because THP does not
     * support them for now.
     * Caller should make sure that pmd_trans_huge(pmd) is true.
     */
    static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
    		unsigned long addr, pmd_t pmd, union mc_target *target)
    {
    	struct page *page = NULL;
    	enum mc_target_type ret = MC_TARGET_NONE;
    
    	page = pmd_page(pmd);
    	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
    	if (!(mc.flags & MOVE_ANON))
    		return ret;
    	if (page->mem_cgroup == mc.from) {
    		ret = MC_TARGET_PAGE;
    		if (target) {
    			get_page(page);
    			target->page = page;
    		}
    	}
    	return ret;
    }
    #else
    static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
    		unsigned long addr, pmd_t pmd, union mc_target *target)
    {
    	return MC_TARGET_NONE;
    }
    #endif
    
    static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
    					unsigned long addr, unsigned long end,
    					struct mm_walk *walk)
    {
    	struct vm_area_struct *vma = walk->vma;
    	pte_t *pte;
    	spinlock_t *ptl;
    
    	if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
    		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
    			mc.precharge += HPAGE_PMD_NR;
    		spin_unlock(ptl);
    		return 0;
    	}
    
    	if (pmd_trans_unstable(pmd))
    		return 0;
    	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
    	for (; addr != end; pte++, addr += PAGE_SIZE)
    		if (get_mctgt_type(vma, addr, *pte, NULL))
    			mc.precharge++;	/* increment precharge temporarily */
    	pte_unmap_unlock(pte - 1, ptl);
    	cond_resched();
    
    	return 0;
    }
    
    static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
    {
    	unsigned long precharge;
    
    	struct mm_walk mem_cgroup_count_precharge_walk = {
    		.pmd_entry = mem_cgroup_count_precharge_pte_range,
    		.mm = mm,
    	};
    	down_read(&mm->mmap_sem);
    	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
    	up_read(&mm->mmap_sem);
    
    	precharge = mc.precharge;
    	mc.precharge = 0;
    
    	return precharge;
    }
    
    static int mem_cgroup_precharge_mc(struct mm_struct *mm)
    {
    	unsigned long precharge = mem_cgroup_count_precharge(mm);
    
    	VM_BUG_ON(mc.moving_task);
    	mc.moving_task = current;
    	return mem_cgroup_do_precharge(precharge);
    }
    
    /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
    static void __mem_cgroup_clear_mc(void)
    {
    	struct mem_cgroup *from = mc.from;
    	struct mem_cgroup *to = mc.to;
    
    	/* we must uncharge all the leftover precharges from mc.to */
    	if (mc.precharge) {
    		cancel_charge(mc.to, mc.precharge);
    		mc.precharge = 0;
    	}
    	/*
    	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
    	 * we must uncharge here.
    	 */
    	if (mc.moved_charge) {
    		cancel_charge(mc.from, mc.moved_charge);
    		mc.moved_charge = 0;
    	}
    	/* we must fixup refcnts and charges */
    	if (mc.moved_swap) {
    		/* uncharge swap account from the old cgroup */
    		if (!mem_cgroup_is_root(mc.from))
    			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
    
    		/*
    		 * we charged both to->memory and to->memsw, so we
    		 * should uncharge to->memory.
    		 */
    		if (!mem_cgroup_is_root(mc.to))
    			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
    
    		css_put_many(&mc.from->css, mc.moved_swap);
    
    		/* we've already done css_get(mc.to) */
    		mc.moved_swap = 0;
    	}
    	memcg_oom_recover(from);
    	memcg_oom_recover(to);
    	wake_up_all(&mc.waitq);
    }
    
    static void mem_cgroup_clear_mc(void)
    {
    	/*
    	 * we must clear moving_task before waking up waiters at the end of
    	 * task migration.
    	 */
    	mc.moving_task = NULL;
    	__mem_cgroup_clear_mc();
    	spin_lock(&mc.lock);
    	mc.from = NULL;
    	mc.to = NULL;
    	spin_unlock(&mc.lock);
    }
    
    static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
    {
    	struct cgroup_subsys_state *css;
    	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
    	struct mem_cgroup *from;
    	struct task_struct *leader, *p;
    	struct mm_struct *mm;
    	unsigned long move_flags;
    	int ret = 0;
    
    	/* charge immigration isn't supported on the default hierarchy */
    	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
    		return 0;
    
    	/*
    	 * Multi-process migrations only happen on the default hierarchy
    	 * where charge immigration is not used.  Perform charge
    	 * immigration if @tset contains a leader and whine if there are
    	 * multiple.
    	 */
    	p = NULL;
    	cgroup_taskset_for_each_leader(leader, css, tset) {
    		WARN_ON_ONCE(p);
    		p = leader;
    		memcg = mem_cgroup_from_css(css);
    	}
    	if (!p)
    		return 0;
    
    	/*
    	 * We are now commited to this value whatever it is. Changes in this
    	 * tunable will only affect upcoming migrations, not the current one.
    	 * So we need to save it, and keep it going.
    	 */
    	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
    	if (!move_flags)
    		return 0;
    
    	from = mem_cgroup_from_task(p);
    
    	VM_BUG_ON(from == memcg);
    
    	mm = get_task_mm(p);
    	if (!mm)
    		return 0;
    	/* We move charges only when we move a owner of the mm */
    	if (mm->owner == p) {
    		VM_BUG_ON(mc.from);
    		VM_BUG_ON(mc.to);
    		VM_BUG_ON(mc.precharge);
    		VM_BUG_ON(mc.moved_charge);
    		VM_BUG_ON(mc.moved_swap);
    
    		spin_lock(&mc.lock);
    		mc.from = from;
    		mc.to = memcg;
    		mc.flags = move_flags;
    		spin_unlock(&mc.lock);
    		/* We set mc.moving_task later */
    
    		ret = mem_cgroup_precharge_mc(mm);
    		if (ret)
    			mem_cgroup_clear_mc();
    	}
    	mmput(mm);
    	return ret;
    }
    
    static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
    {
    	if (mc.to)
    		mem_cgroup_clear_mc();
    }
    
    static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
    				unsigned long addr, unsigned long end,
    				struct mm_walk *walk)
    {
    	int ret = 0;
    	struct vm_area_struct *vma = walk->vma;
    	pte_t *pte;
    	spinlock_t *ptl;
    	enum mc_target_type target_type;
    	union mc_target target;
    	struct page *page;
    
    	if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
    		if (mc.precharge < HPAGE_PMD_NR) {
    			spin_unlock(ptl);
    			return 0;
    		}
    		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
    		if (target_type == MC_TARGET_PAGE) {
    			page = target.page;
    			if (!isolate_lru_page(page)) {
    				if (!mem_cgroup_move_account(page, true,
    							     mc.from, mc.to)) {
    					mc.precharge -= HPAGE_PMD_NR;
    					mc.moved_charge += HPAGE_PMD_NR;
    				}
    				putback_lru_page(page);
    			}
    			put_page(page);
    		}
    		spin_unlock(ptl);
    		return 0;
    	}
    
    	if (pmd_trans_unstable(pmd))
    		return 0;
    retry:
    	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
    	for (; addr != end; addr += PAGE_SIZE) {
    		pte_t ptent = *(pte++);
    		swp_entry_t ent;
    
    		if (!mc.precharge)
    			break;
    
    		switch (get_mctgt_type(vma, addr, ptent, &target)) {
    		case MC_TARGET_PAGE:
    			page = target.page;
    			/*
    			 * We can have a part of the split pmd here. Moving it
    			 * can be done but it would be too convoluted so simply
    			 * ignore such a partial THP and keep it in original
    			 * memcg. There should be somebody mapping the head.
    			 */
    			if (PageTransCompound(page))
    				goto put;
    			if (isolate_lru_page(page))
    				goto put;
    			if (!mem_cgroup_move_account(page, false,
    						mc.from, mc.to)) {
    				mc.precharge--;
    				/* we uncharge from mc.from later. */
    				mc.moved_charge++;
    			}
    			putback_lru_page(page);
    put:			/* get_mctgt_type() gets the page */
    			put_page(page);
    			break;
    		case MC_TARGET_SWAP:
    			ent = target.ent;
    			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
    				mc.precharge--;
    				/* we fixup refcnts and charges later. */
    				mc.moved_swap++;
    			}
    			break;
    		default:
    			break;
    		}
    	}
    	pte_unmap_unlock(pte - 1, ptl);
    	cond_resched();
    
    	if (addr != end) {
    		/*
    		 * We have consumed all precharges we got in can_attach().
    		 * We try charge one by one, but don't do any additional
    		 * charges to mc.to if we have failed in charge once in attach()
    		 * phase.
    		 */
    		ret = mem_cgroup_do_precharge(1);
    		if (!ret)
    			goto retry;
    	}
    
    	return ret;
    }
    
    static void mem_cgroup_move_charge(struct mm_struct *mm)
    {
    	struct mm_walk mem_cgroup_move_charge_walk = {
    		.pmd_entry = mem_cgroup_move_charge_pte_range,
    		.mm = mm,
    	};
    
    	lru_add_drain_all();
    	/*
    	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
    	 * move_lock while we're moving its pages to another memcg.
    	 * Then wait for already started RCU-only updates to finish.
    	 */
    	atomic_inc(&mc.from->moving_account);
    	synchronize_rcu();
    retry:
    	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
    		/*
    		 * Someone who are holding the mmap_sem might be waiting in
    		 * waitq. So we cancel all extra charges, wake up all waiters,
    		 * and retry. Because we cancel precharges, we might not be able
    		 * to move enough charges, but moving charge is a best-effort
    		 * feature anyway, so it wouldn't be a big problem.
    		 */
    		__mem_cgroup_clear_mc();
    		cond_resched();
    		goto retry;
    	}
    	/*
    	 * When we have consumed all precharges and failed in doing
    	 * additional charge, the page walk just aborts.
    	 */
    	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
    	up_read(&mm->mmap_sem);
    	atomic_dec(&mc.from->moving_account);
    }
    
    static void mem_cgroup_move_task(struct cgroup_taskset *tset)
    {
    	struct cgroup_subsys_state *css;
    	struct task_struct *p = cgroup_taskset_first(tset, &css);
    	struct mm_struct *mm = get_task_mm(p);
    
    	if (mm) {
    		if (mc.to)
    			mem_cgroup_move_charge(mm);
    		mmput(mm);
    	}
    	if (mc.to)
    		mem_cgroup_clear_mc();
    }
    #else	/* !CONFIG_MMU */
    static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
    {
    	return 0;
    }
    static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
    {
    }
    static void mem_cgroup_move_task(struct cgroup_taskset *tset)
    {
    }
    #endif
    
    /*
     * Cgroup retains root cgroups across [un]mount cycles making it necessary
     * to verify whether we're attached to the default hierarchy on each mount
     * attempt.
     */
    static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
    {
    	/*
    	 * use_hierarchy is forced on the default hierarchy.  cgroup core
    	 * guarantees that @root doesn't have any children, so turning it
    	 * on for the root memcg is enough.
    	 */
    	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
    		root_mem_cgroup->use_hierarchy = true;
    	else
    		root_mem_cgroup->use_hierarchy = false;
    }
    
    static u64 memory_current_read(struct cgroup_subsys_state *css,
    			       struct cftype *cft)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
    
    	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
    }
    
    static int memory_low_show(struct seq_file *m, void *v)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
    	unsigned long low = READ_ONCE(memcg->low);
    
    	if (low == PAGE_COUNTER_MAX)
    		seq_puts(m, "max\n");
    	else
    		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
    
    	return 0;
    }
    
    static ssize_t memory_low_write(struct kernfs_open_file *of,
    				char *buf, size_t nbytes, loff_t off)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
    	unsigned long low;
    	int err;
    
    	buf = strstrip(buf);
    	err = page_counter_memparse(buf, "max", &low);
    	if (err)
    		return err;
    
    	memcg->low = low;
    
    	return nbytes;
    }
    
    static int memory_high_show(struct seq_file *m, void *v)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
    	unsigned long high = READ_ONCE(memcg->high);
    
    	if (high == PAGE_COUNTER_MAX)
    		seq_puts(m, "max\n");
    	else
    		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
    
    	return 0;
    }
    
    static ssize_t memory_high_write(struct kernfs_open_file *of,
    				 char *buf, size_t nbytes, loff_t off)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
    	unsigned long high;
    	int err;
    
    	buf = strstrip(buf);
    	err = page_counter_memparse(buf, "max", &high);
    	if (err)
    		return err;
    
    	memcg->high = high;
    
    	memcg_wb_domain_size_changed(memcg);
    	return nbytes;
    }
    
    static int memory_max_show(struct seq_file *m, void *v)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
    	unsigned long max = READ_ONCE(memcg->memory.limit);
    
    	if (max == PAGE_COUNTER_MAX)
    		seq_puts(m, "max\n");
    	else
    		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
    
    	return 0;
    }
    
    static ssize_t memory_max_write(struct kernfs_open_file *of,
    				char *buf, size_t nbytes, loff_t off)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
    	unsigned long max;
    	int err;
    
    	buf = strstrip(buf);
    	err = page_counter_memparse(buf, "max", &max);
    	if (err)
    		return err;
    
    	err = mem_cgroup_resize_limit(memcg, max);
    	if (err)
    		return err;
    
    	memcg_wb_domain_size_changed(memcg);
    	return nbytes;
    }
    
    static int memory_events_show(struct seq_file *m, void *v)
    {
    	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
    
    	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
    	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
    	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
    	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
    
    	return 0;
    }
    
    static struct cftype memory_files[] = {
    	{
    		.name = "current",
    		.flags = CFTYPE_NOT_ON_ROOT,
    		.read_u64 = memory_current_read,
    	},
    	{
    		.name = "low",
    		.flags = CFTYPE_NOT_ON_ROOT,
    		.seq_show = memory_low_show,
    		.write = memory_low_write,
    	},
    	{
    		.name = "high",
    		.flags = CFTYPE_NOT_ON_ROOT,
    		.seq_show = memory_high_show,
    		.write = memory_high_write,
    	},
    	{
    		.name = "max",
    		.flags = CFTYPE_NOT_ON_ROOT,
    		.seq_show = memory_max_show,
    		.write = memory_max_write,
    	},
    	{
    		.name = "events",
    		.flags = CFTYPE_NOT_ON_ROOT,
    		.file_offset = offsetof(struct mem_cgroup, events_file),
    		.seq_show = memory_events_show,
    	},
    	{ }	/* terminate */
    };
    
    struct cgroup_subsys memory_cgrp_subsys = {
    	.css_alloc = mem_cgroup_css_alloc,
    	.css_online = mem_cgroup_css_online,
    	.css_offline = mem_cgroup_css_offline,
    	.css_released = mem_cgroup_css_released,
    	.css_free = mem_cgroup_css_free,
    	.css_reset = mem_cgroup_css_reset,
    	.can_attach = mem_cgroup_can_attach,
    	.cancel_attach = mem_cgroup_cancel_attach,
    	.attach = mem_cgroup_move_task,
    	.bind = mem_cgroup_bind,
    	.dfl_cftypes = memory_files,
    	.legacy_cftypes = mem_cgroup_legacy_files,
    	.early_init = 0,
    };
    
    /**
     * mem_cgroup_low - check if memory consumption is below the normal range
     * @root: the highest ancestor to consider
     * @memcg: the memory cgroup to check
     *
     * Returns %true if memory consumption of @memcg, and that of all
     * configurable ancestors up to @root, is below the normal range.
     */
    bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
    {
    	if (mem_cgroup_disabled())
    		return false;
    
    	/*
    	 * The toplevel group doesn't have a configurable range, so
    	 * it's never low when looked at directly, and it is not
    	 * considered an ancestor when assessing the hierarchy.
    	 */
    
    	if (memcg == root_mem_cgroup)
    		return false;
    
    	if (page_counter_read(&memcg->memory) >= memcg->low)
    		return false;
    
    	while (memcg != root) {
    		memcg = parent_mem_cgroup(memcg);
    
    		if (memcg == root_mem_cgroup)
    			break;
    
    		if (page_counter_read(&memcg->memory) >= memcg->low)
    			return false;
    	}
    	return true;
    }
    
    /**
     * mem_cgroup_try_charge - try charging a page
     * @page: page to charge
     * @mm: mm context of the victim
     * @gfp_mask: reclaim mode
     * @memcgp: charged memcg return
     *
     * Try to charge @page to the memcg that @mm belongs to, reclaiming
     * pages according to @gfp_mask if necessary.
     *
     * Returns 0 on success, with *@memcgp pointing to the charged memcg.
     * Otherwise, an error code is returned.
     *
     * After page->mapping has been set up, the caller must finalize the
     * charge with mem_cgroup_commit_charge().  Or abort the transaction
     * with mem_cgroup_cancel_charge() in case page instantiation fails.
     */
    int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
    			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
    			  bool compound)
    {
    	struct mem_cgroup *memcg = NULL;
    	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
    	int ret = 0;
    
    	if (mem_cgroup_disabled())
    		goto out;
    
    	if (PageSwapCache(page)) {
    		/*
    		 * Every swap fault against a single page tries to charge the
    		 * page, bail as early as possible.  shmem_unuse() encounters
    		 * already charged pages, too.  The USED bit is protected by
    		 * the page lock, which serializes swap cache removal, which
    		 * in turn serializes uncharging.
    		 */
    		VM_BUG_ON_PAGE(!PageLocked(page), page);
    		if (page->mem_cgroup)
    			goto out;
    
    		if (do_memsw_account()) {
    			swp_entry_t ent = { .val = page_private(page), };
    			unsigned short id = lookup_swap_cgroup_id(ent);
    
    			rcu_read_lock();
    			memcg = mem_cgroup_from_id(id);
    			if (memcg && !css_tryget_online(&memcg->css))
    				memcg = NULL;
    			rcu_read_unlock();
    		}
    	}
    
    	if (!memcg)
    		memcg = get_mem_cgroup_from_mm(mm);
    
    	ret = try_charge(memcg, gfp_mask, nr_pages);
    
    	css_put(&memcg->css);
    out:
    	*memcgp = memcg;
    	return ret;
    }
    
    /**
     * mem_cgroup_commit_charge - commit a page charge
     * @page: page to charge
     * @memcg: memcg to charge the page to
     * @lrucare: page might be on LRU already
     *
     * Finalize a charge transaction started by mem_cgroup_try_charge(),
     * after page->mapping has been set up.  This must happen atomically
     * as part of the page instantiation, i.e. under the page table lock
     * for anonymous pages, under the page lock for page and swap cache.
     *
     * In addition, the page must not be on the LRU during the commit, to
     * prevent racing with task migration.  If it might be, use @lrucare.
     *
     * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
     */
    void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
    			      bool lrucare, bool compound)
    {
    	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
    
    	VM_BUG_ON_PAGE(!page->mapping, page);
    	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
    
    	if (mem_cgroup_disabled())
    		return;
    	/*
    	 * Swap faults will attempt to charge the same page multiple
    	 * times.  But reuse_swap_page() might have removed the page
    	 * from swapcache already, so we can't check PageSwapCache().
    	 */
    	if (!memcg)
    		return;
    
    	commit_charge(page, memcg, lrucare);
    
    	local_irq_disable();
    	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
    	memcg_check_events(memcg, page);
    	local_irq_enable();
    
    	if (do_memsw_account() && PageSwapCache(page)) {
    		swp_entry_t entry = { .val = page_private(page) };
    		/*
    		 * The swap entry might not get freed for a long time,
    		 * let's not wait for it.  The page already received a
    		 * memory+swap charge, drop the swap entry duplicate.
    		 */
    		mem_cgroup_uncharge_swap(entry);
    	}
    }
    
    /**
     * mem_cgroup_cancel_charge - cancel a page charge
     * @page: page to charge
     * @memcg: memcg to charge the page to
     *
     * Cancel a charge transaction started by mem_cgroup_try_charge().
     */
    void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
    		bool compound)
    {
    	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
    
    	if (mem_cgroup_disabled())
    		return;
    	/*
    	 * Swap faults will attempt to charge the same page multiple
    	 * times.  But reuse_swap_page() might have removed the page
    	 * from swapcache already, so we can't check PageSwapCache().
    	 */
    	if (!memcg)
    		return;
    
    	cancel_charge(memcg, nr_pages);
    }
    
    static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
    			   unsigned long nr_anon, unsigned long nr_file,
    			   unsigned long nr_huge, struct page *dummy_page)
    {
    	unsigned long nr_pages = nr_anon + nr_file;
    	unsigned long flags;
    
    	if (!mem_cgroup_is_root(memcg)) {
    		page_counter_uncharge(&memcg->memory, nr_pages);
    		if (do_memsw_account())
    			page_counter_uncharge(&memcg->memsw, nr_pages);
    		memcg_oom_recover(memcg);
    	}
    
    	local_irq_save(flags);
    	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
    	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
    	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
    	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
    	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
    	memcg_check_events(memcg, dummy_page);
    	local_irq_restore(flags);
    
    	if (!mem_cgroup_is_root(memcg))
    		css_put_many(&memcg->css, nr_pages);
    }
    
    static void uncharge_list(struct list_head *page_list)
    {
    	struct mem_cgroup *memcg = NULL;
    	unsigned long nr_anon = 0;
    	unsigned long nr_file = 0;
    	unsigned long nr_huge = 0;
    	unsigned long pgpgout = 0;
    	struct list_head *next;
    	struct page *page;
    
    	next = page_list->next;
    	do {
    		unsigned int nr_pages = 1;
    
    		page = list_entry(next, struct page, lru);
    		next = page->lru.next;
    
    		VM_BUG_ON_PAGE(PageLRU(page), page);
    		VM_BUG_ON_PAGE(page_count(page), page);
    
    		if (!page->mem_cgroup)
    			continue;
    
    		/*
    		 * Nobody should be changing or seriously looking at
    		 * page->mem_cgroup at this point, we have fully
    		 * exclusive access to the page.
    		 */
    
    		if (memcg != page->mem_cgroup) {
    			if (memcg) {
    				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
    					       nr_huge, page);
    				pgpgout = nr_anon = nr_file = nr_huge = 0;
    			}
    			memcg = page->mem_cgroup;
    		}
    
    		if (PageTransHuge(page)) {
    			nr_pages <<= compound_order(page);
    			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
    			nr_huge += nr_pages;
    		}
    
    		if (PageAnon(page))
    			nr_anon += nr_pages;
    		else
    			nr_file += nr_pages;
    
    		page->mem_cgroup = NULL;
    
    		pgpgout++;
    	} while (next != page_list);
    
    	if (memcg)
    		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
    			       nr_huge, page);
    }
    
    /**
     * mem_cgroup_uncharge - uncharge a page
     * @page: page to uncharge
     *
     * Uncharge a page previously charged with mem_cgroup_try_charge() and
     * mem_cgroup_commit_charge().
     */
    void mem_cgroup_uncharge(struct page *page)
    {
    	if (mem_cgroup_disabled())
    		return;
    
    	/* Don't touch page->lru of any random page, pre-check: */
    	if (!page->mem_cgroup)
    		return;
    
    	INIT_LIST_HEAD(&page->lru);
    	uncharge_list(&page->lru);
    }
    
    /**
     * mem_cgroup_uncharge_list - uncharge a list of page
     * @page_list: list of pages to uncharge
     *
     * Uncharge a list of pages previously charged with
     * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
     */
    void mem_cgroup_uncharge_list(struct list_head *page_list)
    {
    	if (mem_cgroup_disabled())
    		return;
    
    	if (!list_empty(page_list))
    		uncharge_list(page_list);
    }
    
    /**
     * mem_cgroup_replace_page - migrate a charge to another page
     * @oldpage: currently charged page
     * @newpage: page to transfer the charge to
     *
     * Migrate the charge from @oldpage to @newpage.
     *
     * Both pages must be locked, @newpage->mapping must be set up.
     * Either or both pages might be on the LRU already.
     */
    void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
    {
    	struct mem_cgroup *memcg;
    	int isolated;
    
    	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
    	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
    	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
    	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
    		       newpage);
    
    	if (mem_cgroup_disabled())
    		return;
    
    	/* Page cache replacement: new page already charged? */
    	if (newpage->mem_cgroup)
    		return;
    
    	/* Swapcache readahead pages can get replaced before being charged */
    	memcg = oldpage->mem_cgroup;
    	if (!memcg)
    		return;
    
    	lock_page_lru(oldpage, &isolated);
    	oldpage->mem_cgroup = NULL;
    	unlock_page_lru(oldpage, isolated);
    
    	commit_charge(newpage, memcg, true);
    }
    
    #ifdef CONFIG_INET
    
    DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
    EXPORT_SYMBOL(memcg_sockets_enabled_key);
    
    void sock_update_memcg(struct sock *sk)
    {
    	struct mem_cgroup *memcg;
    
    	/* Socket cloning can throw us here with sk_cgrp already
    	 * filled. It won't however, necessarily happen from
    	 * process context. So the test for root memcg given
    	 * the current task's memcg won't help us in this case.
    	 *
    	 * Respecting the original socket's memcg is a better
    	 * decision in this case.
    	 */
    	if (sk->sk_memcg) {
    		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
    		css_get(&sk->sk_memcg->css);
    		return;
    	}
    
    	rcu_read_lock();
    	memcg = mem_cgroup_from_task(current);
    	if (memcg == root_mem_cgroup)
    		goto out;
    #ifdef CONFIG_MEMCG_KMEM
    	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcp_mem.active)
    		goto out;
    #endif
    	if (css_tryget_online(&memcg->css))
    		sk->sk_memcg = memcg;
    out:
    	rcu_read_unlock();
    }
    EXPORT_SYMBOL(sock_update_memcg);
    
    void sock_release_memcg(struct sock *sk)
    {
    	WARN_ON(!sk->sk_memcg);
    	css_put(&sk->sk_memcg->css);
    }
    
    /**
     * mem_cgroup_charge_skmem - charge socket memory
     * @memcg: memcg to charge
     * @nr_pages: number of pages to charge
     *
     * Charges @nr_pages to @memcg. Returns %true if the charge fit within
     * @memcg's configured limit, %false if the charge had to be forced.
     */
    bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
    {
    	gfp_t gfp_mask = GFP_KERNEL;
    
    #ifdef CONFIG_MEMCG_KMEM
    	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
    		struct page_counter *counter;
    
    		if (page_counter_try_charge(&memcg->tcp_mem.memory_allocated,
    					    nr_pages, &counter)) {
    			memcg->tcp_mem.memory_pressure = 0;
    			return true;
    		}
    		page_counter_charge(&memcg->tcp_mem.memory_allocated, nr_pages);
    		memcg->tcp_mem.memory_pressure = 1;
    		return false;
    	}
    #endif
    	/* Don't block in the packet receive path */
    	if (in_softirq())
    		gfp_mask = GFP_NOWAIT;
    
    	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
    		return true;
    
    	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
    	return false;
    }
    
    /**
     * mem_cgroup_uncharge_skmem - uncharge socket memory
     * @memcg - memcg to uncharge
     * @nr_pages - number of pages to uncharge
     */
    void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
    {
    #ifdef CONFIG_MEMCG_KMEM
    	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
    		page_counter_uncharge(&memcg->tcp_mem.memory_allocated,
    				      nr_pages);
    		return;
    	}
    #endif
    	page_counter_uncharge(&memcg->memory, nr_pages);
    	css_put_many(&memcg->css, nr_pages);
    }
    
    #endif /* CONFIG_INET */
    
    static int __init cgroup_memory(char *s)
    {
    	char *token;
    
    	while ((token = strsep(&s, ",")) != NULL) {
    		if (!*token)
    			continue;
    		if (!strcmp(token, "nosocket"))
    			cgroup_memory_nosocket = true;
    		if (!strcmp(token, "nokmem"))
    			cgroup_memory_nokmem = true;
    	}
    	return 0;
    }
    __setup("cgroup.memory=", cgroup_memory);
    
    /*
     * subsys_initcall() for memory controller.
     *
     * Some parts like hotcpu_notifier() have to be initialized from this context
     * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
     * everything that doesn't depend on a specific mem_cgroup structure should
     * be initialized from here.
     */
    static int __init mem_cgroup_init(void)
    {
    	int cpu, node;
    
    	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
    
    	for_each_possible_cpu(cpu)
    		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
    			  drain_local_stock);
    
    	for_each_node(node) {
    		struct mem_cgroup_tree_per_node *rtpn;
    		int zone;
    
    		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
    				    node_online(node) ? node : NUMA_NO_NODE);
    
    		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
    			struct mem_cgroup_tree_per_zone *rtpz;
    
    			rtpz = &rtpn->rb_tree_per_zone[zone];
    			rtpz->rb_root = RB_ROOT;
    			spin_lock_init(&rtpz->lock);
    		}
    		soft_limit_tree.rb_tree_per_node[node] = rtpn;
    	}
    
    	return 0;
    }
    subsys_initcall(mem_cgroup_init);
    
    #ifdef CONFIG_MEMCG_SWAP
    /**
     * mem_cgroup_swapout - transfer a memsw charge to swap
     * @page: page whose memsw charge to transfer
     * @entry: swap entry to move the charge to
     *
     * Transfer the memsw charge of @page to @entry.
     */
    void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
    {
    	struct mem_cgroup *memcg;
    	unsigned short oldid;
    
    	VM_BUG_ON_PAGE(PageLRU(page), page);
    	VM_BUG_ON_PAGE(page_count(page), page);
    
    	if (!do_memsw_account())
    		return;
    
    	memcg = page->mem_cgroup;
    
    	/* Readahead page, never charged */
    	if (!memcg)
    		return;
    
    	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
    	VM_BUG_ON_PAGE(oldid, page);
    	mem_cgroup_swap_statistics(memcg, true);
    
    	page->mem_cgroup = NULL;
    
    	if (!mem_cgroup_is_root(memcg))
    		page_counter_uncharge(&memcg->memory, 1);
    
    	/*
    	 * Interrupts should be disabled here because the caller holds the
    	 * mapping->tree_lock lock which is taken with interrupts-off. It is
    	 * important here to have the interrupts disabled because it is the
    	 * only synchronisation we have for udpating the per-CPU variables.
    	 */
    	VM_BUG_ON(!irqs_disabled());
    	mem_cgroup_charge_statistics(memcg, page, false, -1);
    	memcg_check_events(memcg, page);
    }
    
    /**
     * mem_cgroup_uncharge_swap - uncharge a swap entry
     * @entry: swap entry to uncharge
     *
     * Drop the memsw charge associated with @entry.
     */
    void mem_cgroup_uncharge_swap(swp_entry_t entry)
    {
    	struct mem_cgroup *memcg;
    	unsigned short id;
    
    	if (!do_memsw_account())
    		return;
    
    	id = swap_cgroup_record(entry, 0);
    	rcu_read_lock();
    	memcg = mem_cgroup_from_id(id);
    	if (memcg) {
    		if (!mem_cgroup_is_root(memcg))
    			page_counter_uncharge(&memcg->memsw, 1);
    		mem_cgroup_swap_statistics(memcg, false);
    		css_put(&memcg->css);
    	}
    	rcu_read_unlock();
    }
    
    /* for remember boot option*/
    #ifdef CONFIG_MEMCG_SWAP_ENABLED
    static int really_do_swap_account __initdata = 1;
    #else
    static int really_do_swap_account __initdata;
    #endif
    
    static int __init enable_swap_account(char *s)
    {
    	if (!strcmp(s, "1"))
    		really_do_swap_account = 1;
    	else if (!strcmp(s, "0"))
    		really_do_swap_account = 0;
    	return 1;
    }
    __setup("swapaccount=", enable_swap_account);
    
    static struct cftype memsw_cgroup_files[] = {
    	{
    		.name = "memsw.usage_in_bytes",
    		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
    		.read_u64 = mem_cgroup_read_u64,
    	},
    	{
    		.name = "memsw.max_usage_in_bytes",
    		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
    		.write = mem_cgroup_reset,
    		.read_u64 = mem_cgroup_read_u64,
    	},
    	{
    		.name = "memsw.limit_in_bytes",
    		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
    		.write = mem_cgroup_write,
    		.read_u64 = mem_cgroup_read_u64,
    	},
    	{
    		.name = "memsw.failcnt",
    		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
    		.write = mem_cgroup_reset,
    		.read_u64 = mem_cgroup_read_u64,
    	},
    	{ },	/* terminate */
    };
    
    static int __init mem_cgroup_swap_init(void)
    {
    	if (!mem_cgroup_disabled() && really_do_swap_account) {
    		do_swap_account = 1;
    		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
    						  memsw_cgroup_files));
    	}
    	return 0;
    }
    subsys_initcall(mem_cgroup_swap_init);
    
    #endif /* CONFIG_MEMCG_SWAP */