Skip to content
Snippets Groups Projects
Select Git revision
  • 0b35786d77ba4037f181982cc8ca20a7a3bf0fd2
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

mkmakefile

Blame
  • btf.c 144.47 KiB
    /* SPDX-License-Identifier: GPL-2.0 */
    /* Copyright (c) 2018 Facebook */
    
    #include <uapi/linux/btf.h>
    #include <uapi/linux/bpf.h>
    #include <uapi/linux/bpf_perf_event.h>
    #include <uapi/linux/types.h>
    #include <linux/seq_file.h>
    #include <linux/compiler.h>
    #include <linux/ctype.h>
    #include <linux/errno.h>
    #include <linux/slab.h>
    #include <linux/anon_inodes.h>
    #include <linux/file.h>
    #include <linux/uaccess.h>
    #include <linux/kernel.h>
    #include <linux/idr.h>
    #include <linux/sort.h>
    #include <linux/bpf_verifier.h>
    #include <linux/btf.h>
    #include <linux/btf_ids.h>
    #include <linux/skmsg.h>
    #include <linux/perf_event.h>
    #include <linux/bsearch.h>
    #include <net/sock.h>
    
    /* BTF (BPF Type Format) is the meta data format which describes
     * the data types of BPF program/map.  Hence, it basically focus
     * on the C programming language which the modern BPF is primary
     * using.
     *
     * ELF Section:
     * ~~~~~~~~~~~
     * The BTF data is stored under the ".BTF" ELF section
     *
     * struct btf_type:
     * ~~~~~~~~~~~~~~~
     * Each 'struct btf_type' object describes a C data type.
     * Depending on the type it is describing, a 'struct btf_type'
     * object may be followed by more data.  F.e.
     * To describe an array, 'struct btf_type' is followed by
     * 'struct btf_array'.
     *
     * 'struct btf_type' and any extra data following it are
     * 4 bytes aligned.
     *
     * Type section:
     * ~~~~~~~~~~~~~
     * The BTF type section contains a list of 'struct btf_type' objects.
     * Each one describes a C type.  Recall from the above section
     * that a 'struct btf_type' object could be immediately followed by extra
     * data in order to desribe some particular C types.
     *
     * type_id:
     * ~~~~~~~
     * Each btf_type object is identified by a type_id.  The type_id
     * is implicitly implied by the location of the btf_type object in
     * the BTF type section.  The first one has type_id 1.  The second
     * one has type_id 2...etc.  Hence, an earlier btf_type has
     * a smaller type_id.
     *
     * A btf_type object may refer to another btf_type object by using
     * type_id (i.e. the "type" in the "struct btf_type").
     *
     * NOTE that we cannot assume any reference-order.
     * A btf_type object can refer to an earlier btf_type object
     * but it can also refer to a later btf_type object.
     *
     * For example, to describe "const void *".  A btf_type
     * object describing "const" may refer to another btf_type
     * object describing "void *".  This type-reference is done
     * by specifying type_id:
     *
     * [1] CONST (anon) type_id=2
     * [2] PTR (anon) type_id=0
     *
     * The above is the btf_verifier debug log:
     *   - Each line started with "[?]" is a btf_type object
     *   - [?] is the type_id of the btf_type object.
     *   - CONST/PTR is the BTF_KIND_XXX
     *   - "(anon)" is the name of the type.  It just
     *     happens that CONST and PTR has no name.
     *   - type_id=XXX is the 'u32 type' in btf_type
     *
     * NOTE: "void" has type_id 0
     *
     * String section:
     * ~~~~~~~~~~~~~~
     * The BTF string section contains the names used by the type section.
     * Each string is referred by an "offset" from the beginning of the
     * string section.
     *
     * Each string is '\0' terminated.
     *
     * The first character in the string section must be '\0'
     * which is used to mean 'anonymous'. Some btf_type may not
     * have a name.
     */
    
    /* BTF verification:
     *
     * To verify BTF data, two passes are needed.
     *
     * Pass #1
     * ~~~~~~~
     * The first pass is to collect all btf_type objects to
     * an array: "btf->types".
     *
     * Depending on the C type that a btf_type is describing,
     * a btf_type may be followed by extra data.  We don't know
     * how many btf_type is there, and more importantly we don't
     * know where each btf_type is located in the type section.
     *
     * Without knowing the location of each type_id, most verifications
     * cannot be done.  e.g. an earlier btf_type may refer to a later
     * btf_type (recall the "const void *" above), so we cannot
     * check this type-reference in the first pass.
     *
     * In the first pass, it still does some verifications (e.g.
     * checking the name is a valid offset to the string section).
     *
     * Pass #2
     * ~~~~~~~
     * The main focus is to resolve a btf_type that is referring
     * to another type.
     *
     * We have to ensure the referring type:
     * 1) does exist in the BTF (i.e. in btf->types[])
     * 2) does not cause a loop:
     *	struct A {
     *		struct B b;
     *	};
     *
     *	struct B {
     *		struct A a;
     *	};
     *
     * btf_type_needs_resolve() decides if a btf_type needs
     * to be resolved.
     *
     * The needs_resolve type implements the "resolve()" ops which
     * essentially does a DFS and detects backedge.
     *
     * During resolve (or DFS), different C types have different
     * "RESOLVED" conditions.
     *
     * When resolving a BTF_KIND_STRUCT, we need to resolve all its
     * members because a member is always referring to another
     * type.  A struct's member can be treated as "RESOLVED" if
     * it is referring to a BTF_KIND_PTR.  Otherwise, the
     * following valid C struct would be rejected:
     *
     *	struct A {
     *		int m;
     *		struct A *a;
     *	};
     *
     * When resolving a BTF_KIND_PTR, it needs to keep resolving if
     * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
     * detect a pointer loop, e.g.:
     * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
     *                        ^                                         |
     *                        +-----------------------------------------+
     *
     */
    
    #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
    #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
    #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
    #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
    #define BITS_ROUNDUP_BYTES(bits) \
    	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
    
    #define BTF_INFO_MASK 0x8f00ffff
    #define BTF_INT_MASK 0x0fffffff
    #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
    #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
    
    /* 16MB for 64k structs and each has 16 members and
     * a few MB spaces for the string section.
     * The hard limit is S32_MAX.
     */
    #define BTF_MAX_SIZE (16 * 1024 * 1024)
    
    #define for_each_member_from(i, from, struct_type, member)		\
    	for (i = from, member = btf_type_member(struct_type) + from;	\
    	     i < btf_type_vlen(struct_type);				\
    	     i++, member++)
    
    #define for_each_vsi_from(i, from, struct_type, member)				\
    	for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\
    	     i < btf_type_vlen(struct_type);					\
    	     i++, member++)
    
    DEFINE_IDR(btf_idr);
    DEFINE_SPINLOCK(btf_idr_lock);
    
    struct btf {
    	void *data;
    	struct btf_type **types;
    	u32 *resolved_ids;
    	u32 *resolved_sizes;
    	const char *strings;
    	void *nohdr_data;
    	struct btf_header hdr;
    	u32 nr_types; /* includes VOID for base BTF */
    	u32 types_size;
    	u32 data_size;
    	refcount_t refcnt;
    	u32 id;
    	struct rcu_head rcu;
    
    	/* split BTF support */
    	struct btf *base_btf;
    	u32 start_id; /* first type ID in this BTF (0 for base BTF) */
    	u32 start_str_off; /* first string offset (0 for base BTF) */
    };
    
    enum verifier_phase {
    	CHECK_META,
    	CHECK_TYPE,
    };
    
    struct resolve_vertex {
    	const struct btf_type *t;
    	u32 type_id;
    	u16 next_member;
    };
    
    enum visit_state {
    	NOT_VISITED,
    	VISITED,
    	RESOLVED,
    };
    
    enum resolve_mode {
    	RESOLVE_TBD,	/* To Be Determined */
    	RESOLVE_PTR,	/* Resolving for Pointer */
    	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
    					 * or array
    					 */
    };
    
    #define MAX_RESOLVE_DEPTH 32
    
    struct btf_sec_info {
    	u32 off;
    	u32 len;
    };
    
    struct btf_verifier_env {
    	struct btf *btf;
    	u8 *visit_states;
    	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
    	struct bpf_verifier_log log;
    	u32 log_type_id;
    	u32 top_stack;
    	enum verifier_phase phase;
    	enum resolve_mode resolve_mode;
    };
    
    static const char * const btf_kind_str[NR_BTF_KINDS] = {
    	[BTF_KIND_UNKN]		= "UNKNOWN",
    	[BTF_KIND_INT]		= "INT",
    	[BTF_KIND_PTR]		= "PTR",
    	[BTF_KIND_ARRAY]	= "ARRAY",
    	[BTF_KIND_STRUCT]	= "STRUCT",
    	[BTF_KIND_UNION]	= "UNION",
    	[BTF_KIND_ENUM]		= "ENUM",
    	[BTF_KIND_FWD]		= "FWD",
    	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
    	[BTF_KIND_VOLATILE]	= "VOLATILE",
    	[BTF_KIND_CONST]	= "CONST",
    	[BTF_KIND_RESTRICT]	= "RESTRICT",
    	[BTF_KIND_FUNC]		= "FUNC",
    	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
    	[BTF_KIND_VAR]		= "VAR",
    	[BTF_KIND_DATASEC]	= "DATASEC",
    };
    
    static const char *btf_type_str(const struct btf_type *t)
    {
    	return btf_kind_str[BTF_INFO_KIND(t->info)];
    }
    
    /* Chunk size we use in safe copy of data to be shown. */
    #define BTF_SHOW_OBJ_SAFE_SIZE		32
    
    /*
     * This is the maximum size of a base type value (equivalent to a
     * 128-bit int); if we are at the end of our safe buffer and have
     * less than 16 bytes space we can't be assured of being able
     * to copy the next type safely, so in such cases we will initiate
     * a new copy.
     */
    #define BTF_SHOW_OBJ_BASE_TYPE_SIZE	16
    
    /* Type name size */
    #define BTF_SHOW_NAME_SIZE		80
    
    /*
     * Common data to all BTF show operations. Private show functions can add
     * their own data to a structure containing a struct btf_show and consult it
     * in the show callback.  See btf_type_show() below.
     *
     * One challenge with showing nested data is we want to skip 0-valued
     * data, but in order to figure out whether a nested object is all zeros
     * we need to walk through it.  As a result, we need to make two passes
     * when handling structs, unions and arrays; the first path simply looks
     * for nonzero data, while the second actually does the display.  The first
     * pass is signalled by show->state.depth_check being set, and if we
     * encounter a non-zero value we set show->state.depth_to_show to
     * the depth at which we encountered it.  When we have completed the
     * first pass, we will know if anything needs to be displayed if
     * depth_to_show > depth.  See btf_[struct,array]_show() for the
     * implementation of this.
     *
     * Another problem is we want to ensure the data for display is safe to
     * access.  To support this, the anonymous "struct {} obj" tracks the data
     * object and our safe copy of it.  We copy portions of the data needed
     * to the object "copy" buffer, but because its size is limited to
     * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
     * traverse larger objects for display.
     *
     * The various data type show functions all start with a call to
     * btf_show_start_type() which returns a pointer to the safe copy
     * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
     * raw data itself).  btf_show_obj_safe() is responsible for
     * using copy_from_kernel_nofault() to update the safe data if necessary
     * as we traverse the object's data.  skbuff-like semantics are
     * used:
     *
     * - obj.head points to the start of the toplevel object for display
     * - obj.size is the size of the toplevel object
     * - obj.data points to the current point in the original data at
     *   which our safe data starts.  obj.data will advance as we copy
     *   portions of the data.
     *
     * In most cases a single copy will suffice, but larger data structures
     * such as "struct task_struct" will require many copies.  The logic in
     * btf_show_obj_safe() handles the logic that determines if a new
     * copy_from_kernel_nofault() is needed.
     */
    struct btf_show {
    	u64 flags;
    	void *target;	/* target of show operation (seq file, buffer) */
    	void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
    	const struct btf *btf;
    	/* below are used during iteration */
    	struct {
    		u8 depth;
    		u8 depth_to_show;
    		u8 depth_check;
    		u8 array_member:1,
    		   array_terminated:1;
    		u16 array_encoding;
    		u32 type_id;
    		int status;			/* non-zero for error */
    		const struct btf_type *type;
    		const struct btf_member *member;
    		char name[BTF_SHOW_NAME_SIZE];	/* space for member name/type */
    	} state;
    	struct {
    		u32 size;
    		void *head;
    		void *data;
    		u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
    	} obj;
    };
    
    struct btf_kind_operations {
    	s32 (*check_meta)(struct btf_verifier_env *env,
    			  const struct btf_type *t,
    			  u32 meta_left);
    	int (*resolve)(struct btf_verifier_env *env,
    		       const struct resolve_vertex *v);
    	int (*check_member)(struct btf_verifier_env *env,
    			    const struct btf_type *struct_type,
    			    const struct btf_member *member,
    			    const struct btf_type *member_type);
    	int (*check_kflag_member)(struct btf_verifier_env *env,
    				  const struct btf_type *struct_type,
    				  const struct btf_member *member,
    				  const struct btf_type *member_type);
    	void (*log_details)(struct btf_verifier_env *env,
    			    const struct btf_type *t);
    	void (*show)(const struct btf *btf, const struct btf_type *t,
    			 u32 type_id, void *data, u8 bits_offsets,
    			 struct btf_show *show);
    };
    
    static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
    static struct btf_type btf_void;
    
    static int btf_resolve(struct btf_verifier_env *env,
    		       const struct btf_type *t, u32 type_id);
    
    static bool btf_type_is_modifier(const struct btf_type *t)
    {
    	/* Some of them is not strictly a C modifier
    	 * but they are grouped into the same bucket
    	 * for BTF concern:
    	 *   A type (t) that refers to another
    	 *   type through t->type AND its size cannot
    	 *   be determined without following the t->type.
    	 *
    	 * ptr does not fall into this bucket
    	 * because its size is always sizeof(void *).
    	 */
    	switch (BTF_INFO_KIND(t->info)) {
    	case BTF_KIND_TYPEDEF:
    	case BTF_KIND_VOLATILE:
    	case BTF_KIND_CONST:
    	case BTF_KIND_RESTRICT:
    		return true;
    	}
    
    	return false;
    }
    
    bool btf_type_is_void(const struct btf_type *t)
    {
    	return t == &btf_void;
    }
    
    static bool btf_type_is_fwd(const struct btf_type *t)
    {
    	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
    }
    
    static bool btf_type_nosize(const struct btf_type *t)
    {
    	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
    	       btf_type_is_func(t) || btf_type_is_func_proto(t);
    }
    
    static bool btf_type_nosize_or_null(const struct btf_type *t)
    {
    	return !t || btf_type_nosize(t);
    }
    
    static bool __btf_type_is_struct(const struct btf_type *t)
    {
    	return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
    }
    
    static bool btf_type_is_array(const struct btf_type *t)
    {
    	return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
    }
    
    static bool btf_type_is_datasec(const struct btf_type *t)
    {
    	return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
    }
    
    static u32 btf_nr_types_total(const struct btf *btf)
    {
    	u32 total = 0;
    
    	while (btf) {
    		total += btf->nr_types;
    		btf = btf->base_btf;
    	}
    
    	return total;
    }
    
    s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
    {
    	const struct btf_type *t;
    	const char *tname;
    	u32 i, total;
    
    	total = btf_nr_types_total(btf);
    	for (i = 1; i < total; i++) {
    		t = btf_type_by_id(btf, i);
    		if (BTF_INFO_KIND(t->info) != kind)
    			continue;
    
    		tname = btf_name_by_offset(btf, t->name_off);
    		if (!strcmp(tname, name))
    			return i;
    	}
    
    	return -ENOENT;
    }
    
    const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
    					       u32 id, u32 *res_id)
    {
    	const struct btf_type *t = btf_type_by_id(btf, id);
    
    	while (btf_type_is_modifier(t)) {
    		id = t->type;
    		t = btf_type_by_id(btf, t->type);
    	}
    
    	if (res_id)
    		*res_id = id;
    
    	return t;
    }
    
    const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
    					    u32 id, u32 *res_id)
    {
    	const struct btf_type *t;
    
    	t = btf_type_skip_modifiers(btf, id, NULL);
    	if (!btf_type_is_ptr(t))
    		return NULL;
    
    	return btf_type_skip_modifiers(btf, t->type, res_id);
    }
    
    const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
    						 u32 id, u32 *res_id)
    {
    	const struct btf_type *ptype;
    
    	ptype = btf_type_resolve_ptr(btf, id, res_id);
    	if (ptype && btf_type_is_func_proto(ptype))
    		return ptype;
    
    	return NULL;
    }
    
    /* Types that act only as a source, not sink or intermediate
     * type when resolving.
     */
    static bool btf_type_is_resolve_source_only(const struct btf_type *t)
    {
    	return btf_type_is_var(t) ||
    	       btf_type_is_datasec(t);
    }
    
    /* What types need to be resolved?
     *
     * btf_type_is_modifier() is an obvious one.
     *
     * btf_type_is_struct() because its member refers to
     * another type (through member->type).
     *
     * btf_type_is_var() because the variable refers to
     * another type. btf_type_is_datasec() holds multiple
     * btf_type_is_var() types that need resolving.
     *
     * btf_type_is_array() because its element (array->type)
     * refers to another type.  Array can be thought of a
     * special case of struct while array just has the same
     * member-type repeated by array->nelems of times.
     */
    static bool btf_type_needs_resolve(const struct btf_type *t)
    {
    	return btf_type_is_modifier(t) ||
    	       btf_type_is_ptr(t) ||
    	       btf_type_is_struct(t) ||
    	       btf_type_is_array(t) ||
    	       btf_type_is_var(t) ||
    	       btf_type_is_datasec(t);
    }
    
    /* t->size can be used */
    static bool btf_type_has_size(const struct btf_type *t)
    {
    	switch (BTF_INFO_KIND(t->info)) {
    	case BTF_KIND_INT:
    	case BTF_KIND_STRUCT:
    	case BTF_KIND_UNION:
    	case BTF_KIND_ENUM:
    	case BTF_KIND_DATASEC:
    		return true;
    	}
    
    	return false;
    }
    
    static const char *btf_int_encoding_str(u8 encoding)
    {
    	if (encoding == 0)
    		return "(none)";
    	else if (encoding == BTF_INT_SIGNED)
    		return "SIGNED";
    	else if (encoding == BTF_INT_CHAR)
    		return "CHAR";
    	else if (encoding == BTF_INT_BOOL)
    		return "BOOL";
    	else
    		return "UNKN";
    }
    
    static u32 btf_type_int(const struct btf_type *t)
    {
    	return *(u32 *)(t + 1);
    }
    
    static const struct btf_array *btf_type_array(const struct btf_type *t)
    {
    	return (const struct btf_array *)(t + 1);
    }
    
    static const struct btf_enum *btf_type_enum(const struct btf_type *t)
    {
    	return (const struct btf_enum *)(t + 1);
    }
    
    static const struct btf_var *btf_type_var(const struct btf_type *t)
    {
    	return (const struct btf_var *)(t + 1);
    }
    
    static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
    {
    	return kind_ops[BTF_INFO_KIND(t->info)];
    }
    
    static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
    {
    	if (!BTF_STR_OFFSET_VALID(offset))
    		return false;
    
    	while (offset < btf->start_str_off)
    		btf = btf->base_btf;
    
    	offset -= btf->start_str_off;
    	return offset < btf->hdr.str_len;
    }
    
    static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
    {
    	if ((first ? !isalpha(c) :
    		     !isalnum(c)) &&
    	    c != '_' &&
    	    ((c == '.' && !dot_ok) ||
    	      c != '.'))
    		return false;
    	return true;
    }
    
    static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
    {
    	while (offset < btf->start_str_off)
    		btf = btf->base_btf;
    
    	offset -= btf->start_str_off;
    	if (offset < btf->hdr.str_len)
    		return &btf->strings[offset];
    
    	return NULL;
    }
    
    static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
    {
    	/* offset must be valid */
    	const char *src = btf_str_by_offset(btf, offset);
    	const char *src_limit;
    
    	if (!__btf_name_char_ok(*src, true, dot_ok))
    		return false;
    
    	/* set a limit on identifier length */
    	src_limit = src + KSYM_NAME_LEN;
    	src++;
    	while (*src && src < src_limit) {
    		if (!__btf_name_char_ok(*src, false, dot_ok))
    			return false;
    		src++;
    	}
    
    	return !*src;
    }
    
    /* Only C-style identifier is permitted. This can be relaxed if
     * necessary.
     */
    static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
    {
    	return __btf_name_valid(btf, offset, false);
    }
    
    static bool btf_name_valid_section(const struct btf *btf, u32 offset)
    {
    	return __btf_name_valid(btf, offset, true);
    }
    
    static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
    {
    	const char *name;
    
    	if (!offset)
    		return "(anon)";
    
    	name = btf_str_by_offset(btf, offset);
    	return name ?: "(invalid-name-offset)";
    }
    
    const char *btf_name_by_offset(const struct btf *btf, u32 offset)
    {
    	return btf_str_by_offset(btf, offset);
    }
    
    const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
    {
    	while (type_id < btf->start_id)
    		btf = btf->base_btf;
    
    	type_id -= btf->start_id;
    	if (type_id >= btf->nr_types)
    		return NULL;
    	return btf->types[type_id];
    }
    
    /*
     * Regular int is not a bit field and it must be either
     * u8/u16/u32/u64 or __int128.
     */
    static bool btf_type_int_is_regular(const struct btf_type *t)
    {
    	u8 nr_bits, nr_bytes;
    	u32 int_data;
    
    	int_data = btf_type_int(t);
    	nr_bits = BTF_INT_BITS(int_data);
    	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
    	if (BITS_PER_BYTE_MASKED(nr_bits) ||
    	    BTF_INT_OFFSET(int_data) ||
    	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
    	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
    	     nr_bytes != (2 * sizeof(u64)))) {
    		return false;
    	}
    
    	return true;
    }
    
    /*
     * Check that given struct member is a regular int with expected
     * offset and size.
     */
    bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
    			   const struct btf_member *m,
    			   u32 expected_offset, u32 expected_size)
    {
    	const struct btf_type *t;
    	u32 id, int_data;
    	u8 nr_bits;
    
    	id = m->type;
    	t = btf_type_id_size(btf, &id, NULL);
    	if (!t || !btf_type_is_int(t))
    		return false;
    
    	int_data = btf_type_int(t);
    	nr_bits = BTF_INT_BITS(int_data);
    	if (btf_type_kflag(s)) {
    		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
    		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
    
    		/* if kflag set, int should be a regular int and
    		 * bit offset should be at byte boundary.
    		 */
    		return !bitfield_size &&
    		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
    		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
    	}
    
    	if (BTF_INT_OFFSET(int_data) ||
    	    BITS_PER_BYTE_MASKED(m->offset) ||
    	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
    	    BITS_PER_BYTE_MASKED(nr_bits) ||
    	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
    		return false;
    
    	return true;
    }
    
    /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
    static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
    						       u32 id)
    {
    	const struct btf_type *t = btf_type_by_id(btf, id);
    
    	while (btf_type_is_modifier(t) &&
    	       BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
    		id = t->type;
    		t = btf_type_by_id(btf, t->type);
    	}
    
    	return t;
    }
    
    #define BTF_SHOW_MAX_ITER	10
    
    #define BTF_KIND_BIT(kind)	(1ULL << kind)
    
    /*
     * Populate show->state.name with type name information.
     * Format of type name is
     *
     * [.member_name = ] (type_name)
     */
    static const char *btf_show_name(struct btf_show *show)
    {
    	/* BTF_MAX_ITER array suffixes "[]" */
    	const char *array_suffixes = "[][][][][][][][][][]";
    	const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
    	/* BTF_MAX_ITER pointer suffixes "*" */
    	const char *ptr_suffixes = "**********";
    	const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
    	const char *name = NULL, *prefix = "", *parens = "";
    	const struct btf_member *m = show->state.member;
    	const struct btf_type *t = show->state.type;
    	const struct btf_array *array;
    	u32 id = show->state.type_id;
    	const char *member = NULL;
    	bool show_member = false;
    	u64 kinds = 0;
    	int i;
    
    	show->state.name[0] = '\0';
    
    	/*
    	 * Don't show type name if we're showing an array member;
    	 * in that case we show the array type so don't need to repeat
    	 * ourselves for each member.
    	 */
    	if (show->state.array_member)
    		return "";
    
    	/* Retrieve member name, if any. */
    	if (m) {
    		member = btf_name_by_offset(show->btf, m->name_off);
    		show_member = strlen(member) > 0;
    		id = m->type;
    	}
    
    	/*
    	 * Start with type_id, as we have resolved the struct btf_type *
    	 * via btf_modifier_show() past the parent typedef to the child
    	 * struct, int etc it is defined as.  In such cases, the type_id
    	 * still represents the starting type while the struct btf_type *
    	 * in our show->state points at the resolved type of the typedef.
    	 */
    	t = btf_type_by_id(show->btf, id);
    	if (!t)
    		return "";
    
    	/*
    	 * The goal here is to build up the right number of pointer and
    	 * array suffixes while ensuring the type name for a typedef
    	 * is represented.  Along the way we accumulate a list of
    	 * BTF kinds we have encountered, since these will inform later
    	 * display; for example, pointer types will not require an
    	 * opening "{" for struct, we will just display the pointer value.
    	 *
    	 * We also want to accumulate the right number of pointer or array
    	 * indices in the format string while iterating until we get to
    	 * the typedef/pointee/array member target type.
    	 *
    	 * We start by pointing at the end of pointer and array suffix
    	 * strings; as we accumulate pointers and arrays we move the pointer
    	 * or array string backwards so it will show the expected number of
    	 * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
    	 * and/or arrays and typedefs are supported as a precaution.
    	 *
    	 * We also want to get typedef name while proceeding to resolve
    	 * type it points to so that we can add parentheses if it is a
    	 * "typedef struct" etc.
    	 */
    	for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
    
    		switch (BTF_INFO_KIND(t->info)) {
    		case BTF_KIND_TYPEDEF:
    			if (!name)
    				name = btf_name_by_offset(show->btf,
    							       t->name_off);
    			kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
    			id = t->type;
    			break;
    		case BTF_KIND_ARRAY:
    			kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
    			parens = "[";
    			if (!t)
    				return "";
    			array = btf_type_array(t);
    			if (array_suffix > array_suffixes)
    				array_suffix -= 2;
    			id = array->type;
    			break;
    		case BTF_KIND_PTR:
    			kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
    			if (ptr_suffix > ptr_suffixes)
    				ptr_suffix -= 1;
    			id = t->type;
    			break;
    		default:
    			id = 0;
    			break;
    		}
    		if (!id)
    			break;
    		t = btf_type_skip_qualifiers(show->btf, id);
    	}
    	/* We may not be able to represent this type; bail to be safe */
    	if (i == BTF_SHOW_MAX_ITER)
    		return "";
    
    	if (!name)
    		name = btf_name_by_offset(show->btf, t->name_off);
    
    	switch (BTF_INFO_KIND(t->info)) {
    	case BTF_KIND_STRUCT:
    	case BTF_KIND_UNION:
    		prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
    			 "struct" : "union";
    		/* if it's an array of struct/union, parens is already set */
    		if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
    			parens = "{";
    		break;
    	case BTF_KIND_ENUM:
    		prefix = "enum";
    		break;
    	default:
    		break;
    	}
    
    	/* pointer does not require parens */
    	if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
    		parens = "";
    	/* typedef does not require struct/union/enum prefix */
    	if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
    		prefix = "";
    
    	if (!name)
    		name = "";
    
    	/* Even if we don't want type name info, we want parentheses etc */
    	if (show->flags & BTF_SHOW_NONAME)
    		snprintf(show->state.name, sizeof(show->state.name), "%s",
    			 parens);
    	else
    		snprintf(show->state.name, sizeof(show->state.name),
    			 "%s%s%s(%s%s%s%s%s%s)%s",
    			 /* first 3 strings comprise ".member = " */
    			 show_member ? "." : "",
    			 show_member ? member : "",
    			 show_member ? " = " : "",
    			 /* ...next is our prefix (struct, enum, etc) */
    			 prefix,
    			 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
    			 /* ...this is the type name itself */
    			 name,
    			 /* ...suffixed by the appropriate '*', '[]' suffixes */
    			 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
    			 array_suffix, parens);
    
    	return show->state.name;
    }
    
    static const char *__btf_show_indent(struct btf_show *show)
    {
    	const char *indents = "                                ";
    	const char *indent = &indents[strlen(indents)];
    
    	if ((indent - show->state.depth) >= indents)
    		return indent - show->state.depth;
    	return indents;
    }
    
    static const char *btf_show_indent(struct btf_show *show)
    {
    	return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
    }
    
    static const char *btf_show_newline(struct btf_show *show)
    {
    	return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
    }
    
    static const char *btf_show_delim(struct btf_show *show)
    {
    	if (show->state.depth == 0)
    		return "";
    
    	if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
    		BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
    		return "|";
    
    	return ",";
    }
    
    __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
    {
    	va_list args;
    
    	if (!show->state.depth_check) {
    		va_start(args, fmt);
    		show->showfn(show, fmt, args);
    		va_end(args);
    	}
    }
    
    /* Macros are used here as btf_show_type_value[s]() prepends and appends
     * format specifiers to the format specifier passed in; these do the work of
     * adding indentation, delimiters etc while the caller simply has to specify
     * the type value(s) in the format specifier + value(s).
     */
    #define btf_show_type_value(show, fmt, value)				       \
    	do {								       \
    		if ((value) != 0 || (show->flags & BTF_SHOW_ZERO) ||	       \
    		    show->state.depth == 0) {				       \
    			btf_show(show, "%s%s" fmt "%s%s",		       \
    				 btf_show_indent(show),			       \
    				 btf_show_name(show),			       \
    				 value, btf_show_delim(show),		       \
    				 btf_show_newline(show));		       \
    			if (show->state.depth > show->state.depth_to_show)     \
    				show->state.depth_to_show = show->state.depth; \
    		}							       \
    	} while (0)
    
    #define btf_show_type_values(show, fmt, ...)				       \
    	do {								       \
    		btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
    			 btf_show_name(show),				       \
    			 __VA_ARGS__, btf_show_delim(show),		       \
    			 btf_show_newline(show));			       \
    		if (show->state.depth > show->state.depth_to_show)	       \
    			show->state.depth_to_show = show->state.depth;	       \
    	} while (0)
    
    /* How much is left to copy to safe buffer after @data? */
    static int btf_show_obj_size_left(struct btf_show *show, void *data)
    {
    	return show->obj.head + show->obj.size - data;
    }
    
    /* Is object pointed to by @data of @size already copied to our safe buffer? */
    static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
    {
    	return data >= show->obj.data &&
    	       (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
    }
    
    /*
     * If object pointed to by @data of @size falls within our safe buffer, return
     * the equivalent pointer to the same safe data.  Assumes
     * copy_from_kernel_nofault() has already happened and our safe buffer is
     * populated.
     */
    static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
    {
    	if (btf_show_obj_is_safe(show, data, size))
    		return show->obj.safe + (data - show->obj.data);
    	return NULL;
    }
    
    /*
     * Return a safe-to-access version of data pointed to by @data.
     * We do this by copying the relevant amount of information
     * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
     *
     * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
     * safe copy is needed.
     *
     * Otherwise we need to determine if we have the required amount
     * of data (determined by the @data pointer and the size of the
     * largest base type we can encounter (represented by
     * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
     * that we will be able to print some of the current object,
     * and if more is needed a copy will be triggered.
     * Some objects such as structs will not fit into the buffer;
     * in such cases additional copies when we iterate over their
     * members may be needed.
     *
     * btf_show_obj_safe() is used to return a safe buffer for
     * btf_show_start_type(); this ensures that as we recurse into
     * nested types we always have safe data for the given type.
     * This approach is somewhat wasteful; it's possible for example
     * that when iterating over a large union we'll end up copying the
     * same data repeatedly, but the goal is safety not performance.
     * We use stack data as opposed to per-CPU buffers because the
     * iteration over a type can take some time, and preemption handling
     * would greatly complicate use of the safe buffer.
     */
    static void *btf_show_obj_safe(struct btf_show *show,
    			       const struct btf_type *t,
    			       void *data)
    {
    	const struct btf_type *rt;
    	int size_left, size;
    	void *safe = NULL;
    
    	if (show->flags & BTF_SHOW_UNSAFE)
    		return data;
    
    	rt = btf_resolve_size(show->btf, t, &size);
    	if (IS_ERR(rt)) {
    		show->state.status = PTR_ERR(rt);
    		return NULL;
    	}
    
    	/*
    	 * Is this toplevel object? If so, set total object size and
    	 * initialize pointers.  Otherwise check if we still fall within
    	 * our safe object data.
    	 */
    	if (show->state.depth == 0) {
    		show->obj.size = size;
    		show->obj.head = data;
    	} else {
    		/*
    		 * If the size of the current object is > our remaining
    		 * safe buffer we _may_ need to do a new copy.  However
    		 * consider the case of a nested struct; it's size pushes
    		 * us over the safe buffer limit, but showing any individual
    		 * struct members does not.  In such cases, we don't need
    		 * to initiate a fresh copy yet; however we definitely need
    		 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
    		 * in our buffer, regardless of the current object size.
    		 * The logic here is that as we resolve types we will
    		 * hit a base type at some point, and we need to be sure
    		 * the next chunk of data is safely available to display
    		 * that type info safely.  We cannot rely on the size of
    		 * the current object here because it may be much larger
    		 * than our current buffer (e.g. task_struct is 8k).
    		 * All we want to do here is ensure that we can print the
    		 * next basic type, which we can if either
    		 * - the current type size is within the safe buffer; or
    		 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
    		 *   the safe buffer.
    		 */
    		safe = __btf_show_obj_safe(show, data,
    					   min(size,
    					       BTF_SHOW_OBJ_BASE_TYPE_SIZE));
    	}
    
    	/*
    	 * We need a new copy to our safe object, either because we haven't
    	 * yet copied and are intializing safe data, or because the data
    	 * we want falls outside the boundaries of the safe object.
    	 */
    	if (!safe) {
    		size_left = btf_show_obj_size_left(show, data);
    		if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
    			size_left = BTF_SHOW_OBJ_SAFE_SIZE;
    		show->state.status = copy_from_kernel_nofault(show->obj.safe,
    							      data, size_left);
    		if (!show->state.status) {
    			show->obj.data = data;
    			safe = show->obj.safe;
    		}
    	}
    
    	return safe;
    }
    
    /*
     * Set the type we are starting to show and return a safe data pointer
     * to be used for showing the associated data.
     */
    static void *btf_show_start_type(struct btf_show *show,
    				 const struct btf_type *t,
    				 u32 type_id, void *data)
    {
    	show->state.type = t;
    	show->state.type_id = type_id;
    	show->state.name[0] = '\0';
    
    	return btf_show_obj_safe(show, t, data);
    }
    
    static void btf_show_end_type(struct btf_show *show)
    {
    	show->state.type = NULL;
    	show->state.type_id = 0;
    	show->state.name[0] = '\0';
    }
    
    static void *btf_show_start_aggr_type(struct btf_show *show,
    				      const struct btf_type *t,
    				      u32 type_id, void *data)
    {
    	void *safe_data = btf_show_start_type(show, t, type_id, data);
    
    	if (!safe_data)
    		return safe_data;
    
    	btf_show(show, "%s%s%s", btf_show_indent(show),
    		 btf_show_name(show),
    		 btf_show_newline(show));
    	show->state.depth++;
    	return safe_data;
    }
    
    static void btf_show_end_aggr_type(struct btf_show *show,
    				   const char *suffix)
    {
    	show->state.depth--;
    	btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
    		 btf_show_delim(show), btf_show_newline(show));
    	btf_show_end_type(show);
    }
    
    static void btf_show_start_member(struct btf_show *show,
    				  const struct btf_member *m)
    {
    	show->state.member = m;
    }
    
    static void btf_show_start_array_member(struct btf_show *show)
    {
    	show->state.array_member = 1;
    	btf_show_start_member(show, NULL);
    }
    
    static void btf_show_end_member(struct btf_show *show)
    {
    	show->state.member = NULL;
    }
    
    static void btf_show_end_array_member(struct btf_show *show)
    {
    	show->state.array_member = 0;
    	btf_show_end_member(show);
    }
    
    static void *btf_show_start_array_type(struct btf_show *show,
    				       const struct btf_type *t,
    				       u32 type_id,
    				       u16 array_encoding,
    				       void *data)
    {
    	show->state.array_encoding = array_encoding;
    	show->state.array_terminated = 0;
    	return btf_show_start_aggr_type(show, t, type_id, data);
    }
    
    static void btf_show_end_array_type(struct btf_show *show)
    {
    	show->state.array_encoding = 0;
    	show->state.array_terminated = 0;
    	btf_show_end_aggr_type(show, "]");
    }
    
    static void *btf_show_start_struct_type(struct btf_show *show,
    					const struct btf_type *t,
    					u32 type_id,
    					void *data)
    {
    	return btf_show_start_aggr_type(show, t, type_id, data);
    }
    
    static void btf_show_end_struct_type(struct btf_show *show)
    {
    	btf_show_end_aggr_type(show, "}");
    }
    
    __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
    					      const char *fmt, ...)
    {
    	va_list args;
    
    	va_start(args, fmt);
    	bpf_verifier_vlog(log, fmt, args);
    	va_end(args);
    }
    
    __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
    					    const char *fmt, ...)
    {
    	struct bpf_verifier_log *log = &env->log;
    	va_list args;
    
    	if (!bpf_verifier_log_needed(log))
    		return;
    
    	va_start(args, fmt);
    	bpf_verifier_vlog(log, fmt, args);
    	va_end(args);
    }
    
    __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
    						   const struct btf_type *t,
    						   bool log_details,
    						   const char *fmt, ...)
    {
    	struct bpf_verifier_log *log = &env->log;
    	u8 kind = BTF_INFO_KIND(t->info);
    	struct btf *btf = env->btf;
    	va_list args;
    
    	if (!bpf_verifier_log_needed(log))
    		return;
    
    	/* btf verifier prints all types it is processing via
    	 * btf_verifier_log_type(..., fmt = NULL).
    	 * Skip those prints for in-kernel BTF verification.
    	 */
    	if (log->level == BPF_LOG_KERNEL && !fmt)
    		return;
    
    	__btf_verifier_log(log, "[%u] %s %s%s",
    			   env->log_type_id,
    			   btf_kind_str[kind],
    			   __btf_name_by_offset(btf, t->name_off),
    			   log_details ? " " : "");
    
    	if (log_details)
    		btf_type_ops(t)->log_details(env, t);
    
    	if (fmt && *fmt) {
    		__btf_verifier_log(log, " ");
    		va_start(args, fmt);
    		bpf_verifier_vlog(log, fmt, args);
    		va_end(args);
    	}
    
    	__btf_verifier_log(log, "\n");
    }
    
    #define btf_verifier_log_type(env, t, ...) \
    	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
    #define btf_verifier_log_basic(env, t, ...) \
    	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
    
    __printf(4, 5)
    static void btf_verifier_log_member(struct btf_verifier_env *env,
    				    const struct btf_type *struct_type,
    				    const struct btf_member *member,
    				    const char *fmt, ...)
    {
    	struct bpf_verifier_log *log = &env->log;
    	struct btf *btf = env->btf;
    	va_list args;
    
    	if (!bpf_verifier_log_needed(log))
    		return;
    
    	if (log->level == BPF_LOG_KERNEL && !fmt)
    		return;
    	/* The CHECK_META phase already did a btf dump.
    	 *
    	 * If member is logged again, it must hit an error in
    	 * parsing this member.  It is useful to print out which
    	 * struct this member belongs to.
    	 */
    	if (env->phase != CHECK_META)
    		btf_verifier_log_type(env, struct_type, NULL);
    
    	if (btf_type_kflag(struct_type))
    		__btf_verifier_log(log,
    				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
    				   __btf_name_by_offset(btf, member->name_off),
    				   member->type,
    				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
    				   BTF_MEMBER_BIT_OFFSET(member->offset));
    	else
    		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
    				   __btf_name_by_offset(btf, member->name_off),
    				   member->type, member->offset);
    
    	if (fmt && *fmt) {
    		__btf_verifier_log(log, " ");
    		va_start(args, fmt);
    		bpf_verifier_vlog(log, fmt, args);
    		va_end(args);
    	}
    
    	__btf_verifier_log(log, "\n");
    }
    
    __printf(4, 5)
    static void btf_verifier_log_vsi(struct btf_verifier_env *env,
    				 const struct btf_type *datasec_type,
    				 const struct btf_var_secinfo *vsi,
    				 const char *fmt, ...)
    {
    	struct bpf_verifier_log *log = &env->log;
    	va_list args;
    
    	if (!bpf_verifier_log_needed(log))
    		return;
    	if (log->level == BPF_LOG_KERNEL && !fmt)
    		return;
    	if (env->phase != CHECK_META)
    		btf_verifier_log_type(env, datasec_type, NULL);
    
    	__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
    			   vsi->type, vsi->offset, vsi->size);
    	if (fmt && *fmt) {
    		__btf_verifier_log(log, " ");
    		va_start(args, fmt);
    		bpf_verifier_vlog(log, fmt, args);
    		va_end(args);
    	}
    
    	__btf_verifier_log(log, "\n");
    }
    
    static void btf_verifier_log_hdr(struct btf_verifier_env *env,
    				 u32 btf_data_size)
    {
    	struct bpf_verifier_log *log = &env->log;
    	const struct btf *btf = env->btf;
    	const struct btf_header *hdr;
    
    	if (!bpf_verifier_log_needed(log))
    		return;
    
    	if (log->level == BPF_LOG_KERNEL)
    		return;
    	hdr = &btf->hdr;
    	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
    	__btf_verifier_log(log, "version: %u\n", hdr->version);
    	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
    	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
    	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
    	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
    	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
    	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
    	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
    }
    
    static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
    {
    	struct btf *btf = env->btf;
    
    	if (btf->types_size == btf->nr_types) {
    		/* Expand 'types' array */
    
    		struct btf_type **new_types;
    		u32 expand_by, new_size;
    
    		if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
    			btf_verifier_log(env, "Exceeded max num of types");
    			return -E2BIG;
    		}
    
    		expand_by = max_t(u32, btf->types_size >> 2, 16);
    		new_size = min_t(u32, BTF_MAX_TYPE,
    				 btf->types_size + expand_by);
    
    		new_types = kvcalloc(new_size, sizeof(*new_types),
    				     GFP_KERNEL | __GFP_NOWARN);
    		if (!new_types)
    			return -ENOMEM;
    
    		if (btf->nr_types == 0) {
    			if (!btf->base_btf) {
    				/* lazily init VOID type */
    				new_types[0] = &btf_void;
    				btf->nr_types++;
    			}
    		} else {
    			memcpy(new_types, btf->types,
    			       sizeof(*btf->types) * btf->nr_types);
    		}
    
    		kvfree(btf->types);
    		btf->types = new_types;
    		btf->types_size = new_size;
    	}
    
    	btf->types[btf->nr_types++] = t;
    
    	return 0;
    }
    
    static int btf_alloc_id(struct btf *btf)
    {
    	int id;
    
    	idr_preload(GFP_KERNEL);
    	spin_lock_bh(&btf_idr_lock);
    	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
    	if (id > 0)
    		btf->id = id;
    	spin_unlock_bh(&btf_idr_lock);
    	idr_preload_end();
    
    	if (WARN_ON_ONCE(!id))
    		return -ENOSPC;
    
    	return id > 0 ? 0 : id;
    }
    
    static void btf_free_id(struct btf *btf)
    {
    	unsigned long flags;
    
    	/*
    	 * In map-in-map, calling map_delete_elem() on outer
    	 * map will call bpf_map_put on the inner map.
    	 * It will then eventually call btf_free_id()
    	 * on the inner map.  Some of the map_delete_elem()
    	 * implementation may have irq disabled, so
    	 * we need to use the _irqsave() version instead
    	 * of the _bh() version.
    	 */
    	spin_lock_irqsave(&btf_idr_lock, flags);
    	idr_remove(&btf_idr, btf->id);
    	spin_unlock_irqrestore(&btf_idr_lock, flags);
    }
    
    static void btf_free(struct btf *btf)
    {
    	kvfree(btf->types);
    	kvfree(btf->resolved_sizes);
    	kvfree(btf->resolved_ids);
    	kvfree(btf->data);
    	kfree(btf);
    }
    
    static void btf_free_rcu(struct rcu_head *rcu)
    {
    	struct btf *btf = container_of(rcu, struct btf, rcu);
    
    	btf_free(btf);
    }
    
    void btf_put(struct btf *btf)
    {
    	if (btf && refcount_dec_and_test(&btf->refcnt)) {
    		btf_free_id(btf);
    		call_rcu(&btf->rcu, btf_free_rcu);
    	}
    }
    
    static int env_resolve_init(struct btf_verifier_env *env)
    {
    	struct btf *btf = env->btf;
    	u32 nr_types = btf->nr_types;
    	u32 *resolved_sizes = NULL;
    	u32 *resolved_ids = NULL;
    	u8 *visit_states = NULL;
    
    	resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
    				  GFP_KERNEL | __GFP_NOWARN);
    	if (!resolved_sizes)
    		goto nomem;
    
    	resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
    				GFP_KERNEL | __GFP_NOWARN);
    	if (!resolved_ids)
    		goto nomem;
    
    	visit_states = kvcalloc(nr_types, sizeof(*visit_states),
    				GFP_KERNEL | __GFP_NOWARN);
    	if (!visit_states)
    		goto nomem;
    
    	btf->resolved_sizes = resolved_sizes;
    	btf->resolved_ids = resolved_ids;
    	env->visit_states = visit_states;
    
    	return 0;
    
    nomem:
    	kvfree(resolved_sizes);
    	kvfree(resolved_ids);
    	kvfree(visit_states);
    	return -ENOMEM;
    }
    
    static void btf_verifier_env_free(struct btf_verifier_env *env)
    {
    	kvfree(env->visit_states);
    	kfree(env);
    }
    
    static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
    				     const struct btf_type *next_type)
    {
    	switch (env->resolve_mode) {
    	case RESOLVE_TBD:
    		/* int, enum or void is a sink */
    		return !btf_type_needs_resolve(next_type);
    	case RESOLVE_PTR:
    		/* int, enum, void, struct, array, func or func_proto is a sink
    		 * for ptr
    		 */
    		return !btf_type_is_modifier(next_type) &&
    			!btf_type_is_ptr(next_type);
    	case RESOLVE_STRUCT_OR_ARRAY:
    		/* int, enum, void, ptr, func or func_proto is a sink
    		 * for struct and array
    		 */
    		return !btf_type_is_modifier(next_type) &&
    			!btf_type_is_array(next_type) &&
    			!btf_type_is_struct(next_type);
    	default:
    		BUG();
    	}
    }
    
    static bool env_type_is_resolved(const struct btf_verifier_env *env,
    				 u32 type_id)
    {
    	/* base BTF types should be resolved by now */
    	if (type_id < env->btf->start_id)
    		return true;
    
    	return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
    }
    
    static int env_stack_push(struct btf_verifier_env *env,
    			  const struct btf_type *t, u32 type_id)
    {
    	const struct btf *btf = env->btf;
    	struct resolve_vertex *v;
    
    	if (env->top_stack == MAX_RESOLVE_DEPTH)
    		return -E2BIG;
    
    	if (type_id < btf->start_id
    	    || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
    		return -EEXIST;
    
    	env->visit_states[type_id - btf->start_id] = VISITED;
    
    	v = &env->stack[env->top_stack++];
    	v->t = t;
    	v->type_id = type_id;
    	v->next_member = 0;
    
    	if (env->resolve_mode == RESOLVE_TBD) {
    		if (btf_type_is_ptr(t))
    			env->resolve_mode = RESOLVE_PTR;
    		else if (btf_type_is_struct(t) || btf_type_is_array(t))
    			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
    	}
    
    	return 0;
    }
    
    static void env_stack_set_next_member(struct btf_verifier_env *env,
    				      u16 next_member)
    {
    	env->stack[env->top_stack - 1].next_member = next_member;
    }
    
    static void env_stack_pop_resolved(struct btf_verifier_env *env,
    				   u32 resolved_type_id,
    				   u32 resolved_size)
    {
    	u32 type_id = env->stack[--(env->top_stack)].type_id;
    	struct btf *btf = env->btf;
    
    	type_id -= btf->start_id; /* adjust to local type id */
    	btf->resolved_sizes[type_id] = resolved_size;
    	btf->resolved_ids[type_id] = resolved_type_id;
    	env->visit_states[type_id] = RESOLVED;
    }
    
    static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
    {
    	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
    }
    
    /* Resolve the size of a passed-in "type"
     *
     * type: is an array (e.g. u32 array[x][y])
     * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
     * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
     *             corresponds to the return type.
     * *elem_type: u32
     * *elem_id: id of u32
     * *total_nelems: (x * y).  Hence, individual elem size is
     *                (*type_size / *total_nelems)
     * *type_id: id of type if it's changed within the function, 0 if not
     *
     * type: is not an array (e.g. const struct X)
     * return type: type "struct X"
     * *type_size: sizeof(struct X)
     * *elem_type: same as return type ("struct X")
     * *elem_id: 0
     * *total_nelems: 1
     * *type_id: id of type if it's changed within the function, 0 if not
     */
    static const struct btf_type *
    __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
    		   u32 *type_size, const struct btf_type **elem_type,
    		   u32 *elem_id, u32 *total_nelems, u32 *type_id)
    {
    	const struct btf_type *array_type = NULL;
    	const struct btf_array *array = NULL;
    	u32 i, size, nelems = 1, id = 0;
    
    	for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
    		switch (BTF_INFO_KIND(type->info)) {
    		/* type->size can be used */
    		case BTF_KIND_INT:
    		case BTF_KIND_STRUCT:
    		case BTF_KIND_UNION:
    		case BTF_KIND_ENUM:
    			size = type->size;
    			goto resolved;
    
    		case BTF_KIND_PTR:
    			size = sizeof(void *);
    			goto resolved;
    
    		/* Modifiers */
    		case BTF_KIND_TYPEDEF:
    		case BTF_KIND_VOLATILE:
    		case BTF_KIND_CONST:
    		case BTF_KIND_RESTRICT:
    			id = type->type;
    			type = btf_type_by_id(btf, type->type);
    			break;
    
    		case BTF_KIND_ARRAY:
    			if (!array_type)
    				array_type = type;
    			array = btf_type_array(type);
    			if (nelems && array->nelems > U32_MAX / nelems)
    				return ERR_PTR(-EINVAL);
    			nelems *= array->nelems;
    			type = btf_type_by_id(btf, array->type);
    			break;
    
    		/* type without size */
    		default:
    			return ERR_PTR(-EINVAL);
    		}
    	}
    
    	return ERR_PTR(-EINVAL);
    
    resolved:
    	if (nelems && size > U32_MAX / nelems)
    		return ERR_PTR(-EINVAL);
    
    	*type_size = nelems * size;
    	if (total_nelems)
    		*total_nelems = nelems;
    	if (elem_type)
    		*elem_type = type;
    	if (elem_id)
    		*elem_id = array ? array->type : 0;
    	if (type_id && id)
    		*type_id = id;
    
    	return array_type ? : type;
    }
    
    const struct btf_type *
    btf_resolve_size(const struct btf *btf, const struct btf_type *type,
    		 u32 *type_size)
    {
    	return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
    }
    
    static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
    {
    	while (type_id < btf->start_id)
    		btf = btf->base_btf;
    
    	return btf->resolved_ids[type_id - btf->start_id];
    }
    
    /* The input param "type_id" must point to a needs_resolve type */
    static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
    						  u32 *type_id)
    {
    	*type_id = btf_resolved_type_id(btf, *type_id);
    	return btf_type_by_id(btf, *type_id);
    }
    
    static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
    {
    	while (type_id < btf->start_id)
    		btf = btf->base_btf;
    
    	return btf->resolved_sizes[type_id - btf->start_id];
    }
    
    const struct btf_type *btf_type_id_size(const struct btf *btf,
    					u32 *type_id, u32 *ret_size)
    {
    	const struct btf_type *size_type;
    	u32 size_type_id = *type_id;
    	u32 size = 0;
    
    	size_type = btf_type_by_id(btf, size_type_id);
    	if (btf_type_nosize_or_null(size_type))
    		return NULL;
    
    	if (btf_type_has_size(size_type)) {
    		size = size_type->size;
    	} else if (btf_type_is_array(size_type)) {
    		size = btf_resolved_type_size(btf, size_type_id);
    	} else if (btf_type_is_ptr(size_type)) {
    		size = sizeof(void *);
    	} else {
    		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
    				 !btf_type_is_var(size_type)))
    			return NULL;
    
    		size_type_id = btf_resolved_type_id(btf, size_type_id);
    		size_type = btf_type_by_id(btf, size_type_id);
    		if (btf_type_nosize_or_null(size_type))
    			return NULL;
    		else if (btf_type_has_size(size_type))
    			size = size_type->size;
    		else if (btf_type_is_array(size_type))
    			size = btf_resolved_type_size(btf, size_type_id);
    		else if (btf_type_is_ptr(size_type))
    			size = sizeof(void *);
    		else
    			return NULL;
    	}
    
    	*type_id = size_type_id;
    	if (ret_size)
    		*ret_size = size;
    
    	return size_type;
    }
    
    static int btf_df_check_member(struct btf_verifier_env *env,
    			       const struct btf_type *struct_type,
    			       const struct btf_member *member,
    			       const struct btf_type *member_type)
    {
    	btf_verifier_log_basic(env, struct_type,
    			       "Unsupported check_member");
    	return -EINVAL;
    }
    
    static int btf_df_check_kflag_member(struct btf_verifier_env *env,
    				     const struct btf_type *struct_type,
    				     const struct btf_member *member,
    				     const struct btf_type *member_type)
    {
    	btf_verifier_log_basic(env, struct_type,
    			       "Unsupported check_kflag_member");
    	return -EINVAL;
    }
    
    /* Used for ptr, array and struct/union type members.
     * int, enum and modifier types have their specific callback functions.
     */
    static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
    					  const struct btf_type *struct_type,
    					  const struct btf_member *member,
    					  const struct btf_type *member_type)
    {
    	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
    		btf_verifier_log_member(env, struct_type, member,
    					"Invalid member bitfield_size");
    		return -EINVAL;
    	}
    
    	/* bitfield size is 0, so member->offset represents bit offset only.
    	 * It is safe to call non kflag check_member variants.
    	 */
    	return btf_type_ops(member_type)->check_member(env, struct_type,
    						       member,
    						       member_type);
    }
    
    static int btf_df_resolve(struct btf_verifier_env *env,
    			  const struct resolve_vertex *v)
    {
    	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
    	return -EINVAL;
    }
    
    static void btf_df_show(const struct btf *btf, const struct btf_type *t,
    			u32 type_id, void *data, u8 bits_offsets,
    			struct btf_show *show)
    {
    	btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
    }
    
    static int btf_int_check_member(struct btf_verifier_env *env,
    				const struct btf_type *struct_type,
    				const struct btf_member *member,
    				const struct btf_type *member_type)
    {
    	u32 int_data = btf_type_int(member_type);
    	u32 struct_bits_off = member->offset;
    	u32 struct_size = struct_type->size;
    	u32 nr_copy_bits;
    	u32 bytes_offset;
    
    	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
    		btf_verifier_log_member(env, struct_type, member,
    					"bits_offset exceeds U32_MAX");
    		return -EINVAL;
    	}
    
    	struct_bits_off += BTF_INT_OFFSET(int_data);
    	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
    	nr_copy_bits = BTF_INT_BITS(int_data) +
    		BITS_PER_BYTE_MASKED(struct_bits_off);
    
    	if (nr_copy_bits > BITS_PER_U128) {
    		btf_verifier_log_member(env, struct_type, member,
    					"nr_copy_bits exceeds 128");
    		return -EINVAL;
    	}
    
    	if (struct_size < bytes_offset ||
    	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
    		btf_verifier_log_member(env, struct_type, member,
    					"Member exceeds struct_size");
    		return -EINVAL;
    	}
    
    	return 0;
    }
    
    static int btf_int_check_kflag_member(struct btf_verifier_env *env,
    				      const struct btf_type *struct_type,
    				      const struct btf_member *member,
    				      const struct btf_type *member_type)
    {
    	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
    	u32 int_data = btf_type_int(member_type);
    	u32 struct_size = struct_type->size;
    	u32 nr_copy_bits;
    
    	/* a regular int type is required for the kflag int member */
    	if (!btf_type_int_is_regular(member_type)) {
    		btf_verifier_log_member(env, struct_type, member,
    					"Invalid member base type");
    		return -EINVAL;
    	}
    
    	/* check sanity of bitfield size */
    	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
    	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
    	nr_int_data_bits = BTF_INT_BITS(int_data);
    	if (!nr_bits) {
    		/* Not a bitfield member, member offset must be at byte
    		 * boundary.
    		 */
    		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
    			btf_verifier_log_member(env, struct_type, member,
    						"Invalid member offset");
    			return -EINVAL;
    		}
    
    		nr_bits = nr_int_data_bits;
    	} else if (nr_bits > nr_int_data_bits) {
    		btf_verifier_log_member(env, struct_type, member,
    					"Invalid member bitfield_size");
    		return -EINVAL;
    	}
    
    	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
    	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
    	if (nr_copy_bits > BITS_PER_U128) {
    		btf_verifier_log_member(env, struct_type, member,
    					"nr_copy_bits exceeds 128");
    		return -EINVAL;
    	}
    
    	if (struct_size < bytes_offset ||
    	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
    		btf_verifier_log_member(env, struct_type, member,
    					"Member exceeds struct_size");
    		return -EINVAL;
    	}
    
    	return 0;
    }
    
    static s32 btf_int_check_meta(struct btf_verifier_env *env,
    			      const struct btf_type *t,
    			      u32 meta_left)
    {
    	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
    	u16 encoding;
    
    	if (meta_left < meta_needed) {
    		btf_verifier_log_basic(env, t,
    				       "meta_left:%u meta_needed:%u",
    				       meta_left, meta_needed);
    		return -EINVAL;
    	}
    
    	if (btf_type_vlen(t)) {
    		btf_verifier_log_type(env, t, "vlen != 0");
    		return -EINVAL;
    	}
    
    	if (btf_type_kflag(t)) {
    		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
    		return -EINVAL;
    	}
    
    	int_data = btf_type_int(t);
    	if (int_data & ~BTF_INT_MASK) {
    		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
    				       int_data);
    		return -EINVAL;
    	}
    
    	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
    
    	if (nr_bits > BITS_PER_U128) {
    		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
    				      BITS_PER_U128);
    		return -EINVAL;
    	}
    
    	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
    		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
    		return -EINVAL;
    	}
    
    	/*
    	 * Only one of the encoding bits is allowed and it
    	 * should be sufficient for the pretty print purpose (i.e. decoding).
    	 * Multiple bits can be allowed later if it is found
    	 * to be insufficient.
    	 */
    	encoding = BTF_INT_ENCODING(int_data);
    	if (encoding &&
    	    encoding != BTF_INT_SIGNED &&
    	    encoding != BTF_INT_CHAR &&
    	    encoding != BTF_INT_BOOL) {
    		btf_verifier_log_type(env, t, "Unsupported encoding");
    		return -ENOTSUPP;
    	}
    
    	btf_verifier_log_type(env, t, NULL);
    
    	return meta_needed;
    }
    
    static void btf_int_log(struct btf_verifier_env *env,
    			const struct btf_type *t)
    {
    	int int_data = btf_type_int(t);
    
    	btf_verifier_log(env,
    			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
    			 t->size, BTF_INT_OFFSET(int_data),
    			 BTF_INT_BITS(int_data),
    			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
    }
    
    static void btf_int128_print(struct btf_show *show, void *data)
    {
    	/* data points to a __int128 number.
    	 * Suppose
    	 *     int128_num = *(__int128 *)data;
    	 * The below formulas shows what upper_num and lower_num represents:
    	 *     upper_num = int128_num >> 64;
    	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
    	 */
    	u64 upper_num, lower_num;
    
    #ifdef __BIG_ENDIAN_BITFIELD
    	upper_num = *(u64 *)data;
    	lower_num = *(u64 *)(data + 8);
    #else
    	upper_num = *(u64 *)(data + 8);
    	lower_num = *(u64 *)data;
    #endif
    	if (upper_num == 0)
    		btf_show_type_value(show, "0x%llx", lower_num);
    	else
    		btf_show_type_values(show, "0x%llx%016llx", upper_num,
    				     lower_num);
    }
    
    static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
    			     u16 right_shift_bits)
    {
    	u64 upper_num, lower_num;
    
    #ifdef __BIG_ENDIAN_BITFIELD
    	upper_num = print_num[0];
    	lower_num = print_num[1];
    #else
    	upper_num = print_num[1];
    	lower_num = print_num[0];
    #endif
    
    	/* shake out un-needed bits by shift/or operations */
    	if (left_shift_bits >= 64) {
    		upper_num = lower_num << (left_shift_bits - 64);
    		lower_num = 0;
    	} else {
    		upper_num = (upper_num << left_shift_bits) |
    			    (lower_num >> (64 - left_shift_bits));
    		lower_num = lower_num << left_shift_bits;
    	}
    
    	if (right_shift_bits >= 64) {
    		lower_num = upper_num >> (right_shift_bits - 64);
    		upper_num = 0;
    	} else {
    		lower_num = (lower_num >> right_shift_bits) |
    			    (upper_num << (64 - right_shift_bits));
    		upper_num = upper_num >> right_shift_bits;
    	}
    
    #ifdef __BIG_ENDIAN_BITFIELD
    	print_num[0] = upper_num;
    	print_num[1] = lower_num;
    #else
    	print_num[0] = lower_num;
    	print_num[1] = upper_num;
    #endif
    }
    
    static void btf_bitfield_show(void *data, u8 bits_offset,
    			      u8 nr_bits, struct btf_show *show)
    {
    	u16 left_shift_bits, right_shift_bits;
    	u8 nr_copy_bytes;
    	u8 nr_copy_bits;
    	u64 print_num[2] = {};
    
    	nr_copy_bits = nr_bits + bits_offset;
    	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
    
    	memcpy(print_num, data, nr_copy_bytes);
    
    #ifdef __BIG_ENDIAN_BITFIELD
    	left_shift_bits = bits_offset;
    #else
    	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
    #endif
    	right_shift_bits = BITS_PER_U128 - nr_bits;
    
    	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
    	btf_int128_print(show, print_num);
    }
    
    
    static void btf_int_bits_show(const struct btf *btf,
    			      const struct btf_type *t,
    			      void *data, u8 bits_offset,
    			      struct btf_show *show)
    {
    	u32 int_data = btf_type_int(t);
    	u8 nr_bits = BTF_INT_BITS(int_data);
    	u8 total_bits_offset;
    
    	/*
    	 * bits_offset is at most 7.
    	 * BTF_INT_OFFSET() cannot exceed 128 bits.
    	 */
    	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
    	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
    	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
    	btf_bitfield_show(data, bits_offset, nr_bits, show);
    }
    
    static void btf_int_show(const struct btf *btf, const struct btf_type *t,
    			 u32 type_id, void *data, u8 bits_offset,
    			 struct btf_show *show)
    {
    	u32 int_data = btf_type_int(t);
    	u8 encoding = BTF_INT_ENCODING(int_data);
    	bool sign = encoding & BTF_INT_SIGNED;
    	u8 nr_bits = BTF_INT_BITS(int_data);
    	void *safe_data;
    
    	safe_data = btf_show_start_type(show, t, type_id, data);
    	if (!safe_data)
    		return;
    
    	if (bits_offset || BTF_INT_OFFSET(int_data) ||
    	    BITS_PER_BYTE_MASKED(nr_bits)) {
    		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
    		goto out;
    	}
    
    	switch (nr_bits) {
    	case 128:
    		btf_int128_print(show, safe_data);
    		break;
    	case 64:
    		if (sign)
    			btf_show_type_value(show, "%lld", *(s64 *)safe_data);
    		else
    			btf_show_type_value(show, "%llu", *(u64 *)safe_data);
    		break;
    	case 32:
    		if (sign)
    			btf_show_type_value(show, "%d", *(s32 *)safe_data);
    		else
    			btf_show_type_value(show, "%u", *(u32 *)safe_data);
    		break;
    	case 16:
    		if (sign)
    			btf_show_type_value(show, "%d", *(s16 *)safe_data);
    		else
    			btf_show_type_value(show, "%u", *(u16 *)safe_data);
    		break;
    	case 8:
    		if (show->state.array_encoding == BTF_INT_CHAR) {
    			/* check for null terminator */
    			if (show->state.array_terminated)
    				break;
    			if (*(char *)data == '\0') {
    				show->state.array_terminated = 1;
    				break;
    			}
    			if (isprint(*(char *)data)) {
    				btf_show_type_value(show, "'%c'",
    						    *(char *)safe_data);
    				break;
    			}
    		}
    		if (sign)
    			btf_show_type_value(show, "%d", *(s8 *)safe_data);
    		else
    			btf_show_type_value(show, "%u", *(u8 *)safe_data);
    		break;
    	default:
    		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
    		break;
    	}
    out:
    	btf_show_end_type(show);
    }
    
    static const struct btf_kind_operations int_ops = {
    	.check_meta = btf_int_check_meta,
    	.resolve = btf_df_resolve,
    	.check_member = btf_int_check_member,
    	.check_kflag_member = btf_int_check_kflag_member,
    	.log_details = btf_int_log,
    	.show = btf_int_show,
    };
    
    static int btf_modifier_check_member(struct btf_verifier_env *env,
    				     const struct btf_type *struct_type,
    				     const struct btf_member *member,
    				     const struct btf_type *member_type)
    {
    	const struct btf_type *resolved_type;
    	u32 resolved_type_id = member->type;
    	struct btf_member resolved_member;
    	struct btf *btf = env->btf;
    
    	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
    	if (!resolved_type) {
    		btf_verifier_log_member(env, struct_type, member,
    					"Invalid member");
    		return -EINVAL;
    	}
    
    	resolved_member = *member;
    	resolved_member.type = resolved_type_id;
    
    	return btf_type_ops(resolved_type)->check_member(env, struct_type,
    							 &resolved_member,
    							 resolved_type);
    }
    
    static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
    					   const struct btf_type *struct_type,
    					   const struct btf_member *member,
    					   const struct btf_type *member_type)
    {
    	const struct btf_type *resolved_type;
    	u32 resolved_type_id = member->type;
    	struct btf_member resolved_member;
    	struct btf *btf = env->btf;
    
    	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
    	if (!resolved_type) {
    		btf_verifier_log_member(env, struct_type, member,
    					"Invalid member");
    		return -EINVAL;
    	}
    
    	resolved_member = *member;
    	resolved_member.type = resolved_type_id;
    
    	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
    							       &resolved_member,
    							       resolved_type);
    }
    
    static int btf_ptr_check_member(struct btf_verifier_env *env,
    				const struct btf_type *struct_type,
    				const struct btf_member *member,
    				const struct btf_type *member_type)
    {
    	u32 struct_size, struct_bits_off, bytes_offset;
    
    	struct_size = struct_type->size;
    	struct_bits_off = member->offset;
    	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
    
    	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
    		btf_verifier_log_member(env, struct_type, member,
    					"Member is not byte aligned");
    		return -EINVAL;
    	}
    
    	if (struct_size - bytes_offset < sizeof(void *)) {
    		btf_verifier_log_member(env, struct_type, member,
    					"Member exceeds struct_size");
    		return -EINVAL;
    	}
    
    	return 0;
    }
    
    static int btf_ref_type_check_meta(struct btf_verifier_env *env,
    				   const struct btf_type *t,
    				   u32 meta_left)
    {
    	if (btf_type_vlen(t)) {
    		btf_verifier_log_type(env, t, "vlen != 0");
    		return -EINVAL;
    	}
    
    	if (btf_type_kflag(t)) {
    		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
    		return -EINVAL;
    	}
    
    	if (!BTF_TYPE_ID_VALID(t->type)) {
    		btf_verifier_log_type(env, t, "Invalid type_id");
    		return -EINVAL;
    	}
    
    	/* typedef type must have a valid name, and other ref types,
    	 * volatile, const, restrict, should have a null name.
    	 */
    	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
    		if (!t->name_off ||
    		    !btf_name_valid_identifier(env->btf, t->name_off)) {
    			btf_verifier_log_type(env, t, "Invalid name");
    			return -EINVAL;
    		}
    	} else {
    		if (t->name_off) {
    			btf_verifier_log_type(env, t, "Invalid name");
    			return -EINVAL;
    		}
    	}
    
    	btf_verifier_log_type(env, t, NULL);
    
    	return 0;
    }
    
    static int btf_modifier_resolve(struct btf_verifier_env *env,
    				const struct resolve_vertex *v)
    {
    	const struct btf_type *t = v->t;
    	const struct btf_type *next_type;
    	u32 next_type_id = t->type;
    	struct btf *btf = env->btf;
    
    	next_type = btf_type_by_id(btf, next_type_id);
    	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
    		btf_verifier_log_type(env, v->t, "Invalid type_id");
    		return -EINVAL;
    	}
    
    	if (!env_type_is_resolve_sink(env, next_type) &&
    	    !env_type_is_resolved(env, next_type_id))
    		return env_stack_push(env, next_type, next_type_id);
    
    	/* Figure out the resolved next_type_id with size.
    	 * They will be stored in the current modifier's
    	 * resolved_ids and resolved_sizes such that it can
    	 * save us a few type-following when we use it later (e.g. in
    	 * pretty print).
    	 */
    	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
    		if (env_type_is_resolved(env, next_type_id))
    			next_type = btf_type_id_resolve(btf, &next_type_id);
    
    		/* "typedef void new_void", "const void"...etc */
    		if (!btf_type_is_void(next_type) &&
    		    !btf_type_is_fwd(next_type) &&
    		    !btf_type_is_func_proto(next_type)) {
    			btf_verifier_log_type(env, v->t, "Invalid type_id");
    			return -EINVAL;
    		}
    	}
    
    	env_stack_pop_resolved(env, next_type_id, 0);
    
    	return 0;
    }
    
    static int btf_var_resolve(struct btf_verifier_env *env,
    			   const struct resolve_vertex *v)
    {
    	const struct btf_type *next_type;
    	const struct btf_type *t = v->t;
    	u32 next_type_id = t->type;
    	struct btf *btf = env->btf;
    
    	next_type = btf_type_by_id(btf, next_type_id);
    	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
    		btf_verifier_log_type(env, v->t, "Invalid type_id");
    		return -EINVAL;
    	}
    
    	if (!env_type_is_resolve_sink(env, next_type) &&
    	    !env_type_is_resolved(env, next_type_id))
    		return env_stack_push(env, next_type, next_type_id);
    
    	if (btf_type_is_modifier(next_type)) {
    		const struct btf_type *resolved_type;
    		u32 resolved_type_id;
    
    		resolved_type_id = next_type_id;
    		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
    
    		if (btf_type_is_ptr(resolved_type) &&
    		    !env_type_is_resolve_sink(env, resolved_type) &&
    		    !env_type_is_resolved(env, resolved_type_id))
    			return env_stack_push(env, resolved_type,
    					      resolved_type_id);
    	}
    
    	/* We must resolve to something concrete at this point, no
    	 * forward types or similar that would resolve to size of
    	 * zero is allowed.
    	 */
    	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
    		btf_verifier_log_type(env, v->t, "Invalid type_id");
    		return -EINVAL;
    	}
    
    	env_stack_pop_resolved(env, next_type_id, 0);
    
    	return 0;
    }
    
    static int btf_ptr_resolve(struct btf_verifier_env *env,
    			   const struct resolve_vertex *v)
    {
    	const struct btf_type *next_type;
    	const struct btf_type *t = v->t;
    	u32 next_type_id = t->type;
    	struct btf *btf = env->btf;
    
    	next_type = btf_type_by_id(btf, next_type_id);
    	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
    		btf_verifier_log_type(env, v->t, "Invalid type_id");
    		return -EINVAL;
    	}
    
    	if (!env_type_is_resolve_sink(env, next_type) &&
    	    !env_type_is_resolved(env, next_type_id))
    		return env_stack_push(env, next_type, next_type_id);
    
    	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
    	 * the modifier may have stopped resolving when it was resolved
    	 * to a ptr (last-resolved-ptr).
    	 *
    	 * We now need to continue from the last-resolved-ptr to
    	 * ensure the last-resolved-ptr will not referring back to
    	 * the currenct ptr (t).
    	 */
    	if (btf_type_is_modifier(next_type)) {
    		const struct btf_type *resolved_type;
    		u32 resolved_type_id;
    
    		resolved_type_id = next_type_id;
    		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
    
    		if (btf_type_is_ptr(resolved_type) &&
    		    !env_type_is_resolve_sink(env, resolved_type) &&
    		    !env_type_is_resolved(env, resolved_type_id))
    			return env_stack_push(env, resolved_type,
    					      resolved_type_id);
    	}
    
    	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
    		if (env_type_is_resolved(env, next_type_id))
    			next_type = btf_type_id_resolve(btf, &next_type_id);
    
    		if (!btf_type_is_void(next_type) &&
    		    !btf_type_is_fwd(next_type) &&
    		    !btf_type_is_func_proto(next_type)) {
    			btf_verifier_log_type(env, v->t, "Invalid type_id");
    			return -EINVAL;
    		}
    	}
    
    	env_stack_pop_resolved(env, next_type_id, 0);
    
    	return 0;
    }
    
    static void btf_modifier_show(const struct btf *btf,
    			      const struct btf_type *t,
    			      u32 type_id, void *data,
    			      u8 bits_offset, struct btf_show *show)
    {
    	if (btf->resolved_ids)
    		t = btf_type_id_resolve(btf, &type_id);
    	else
    		t = btf_type_skip_modifiers(btf, type_id, NULL);
    
    	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
    }
    
    static void btf_var_show(const struct btf *btf, const struct btf_type *t,
    			 u32 type_id, void *data, u8 bits_offset,
    			 struct btf_show *show)
    {
    	t = btf_type_id_resolve(btf, &type_id);
    
    	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
    }
    
    static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
    			 u32 type_id, void *data, u8 bits_offset,
    			 struct btf_show *show)
    {
    	void *safe_data;
    
    	safe_data = btf_show_start_type(show, t, type_id, data);
    	if (!safe_data)
    		return;
    
    	/* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
    	if (show->flags & BTF_SHOW_PTR_RAW)
    		btf_show_type_value(show, "0x%px", *(void **)safe_data);
    	else
    		btf_show_type_value(show, "0x%p", *(void **)safe_data);
    	btf_show_end_type(show);
    }
    
    static void btf_ref_type_log(struct btf_verifier_env *env,
    			     const struct btf_type *t)
    {
    	btf_verifier_log(env, "type_id=%u", t->type);
    }
    
    static struct btf_kind_operations modifier_ops = {
    	.check_meta = btf_ref_type_check_meta,
    	.resolve = btf_modifier_resolve,
    	.check_member = btf_modifier_check_member,
    	.check_kflag_member = btf_modifier_check_kflag_member,
    	.log_details = btf_ref_type_log,
    	.show = btf_modifier_show,
    };
    
    static struct btf_kind_operations ptr_ops = {
    	.check_meta = btf_ref_type_check_meta,
    	.resolve = btf_ptr_resolve,
    	.check_member = btf_ptr_check_member,
    	.check_kflag_member = btf_generic_check_kflag_member,
    	.log_details = btf_ref_type_log,
    	.show = btf_ptr_show,
    };
    
    static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
    			      const struct btf_type *t,
    			      u32 meta_left)
    {
    	if (btf_type_vlen(t)) {
    		btf_verifier_log_type(env, t, "vlen != 0");
    		return -EINVAL;
    	}
    
    	if (t->type) {
    		btf_verifier_log_type(env, t, "type != 0");
    		return -EINVAL;
    	}
    
    	/* fwd type must have a valid name */
    	if (!t->name_off ||
    	    !btf_name_valid_identifier(env->btf, t->name_off)) {
    		btf_verifier_log_type(env, t, "Invalid name");
    		return -EINVAL;
    	}
    
    	btf_verifier_log_type(env, t, NULL);
    
    	return 0;
    }
    
    static void btf_fwd_type_log(struct btf_verifier_env *env,
    			     const struct btf_type *t)
    {
    	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
    }
    
    static struct btf_kind_operations fwd_ops = {
    	.check_meta = btf_fwd_check_meta,
    	.resolve = btf_df_resolve,
    	.check_member = btf_df_check_member,
    	.check_kflag_member = btf_df_check_kflag_member,
    	.log_details = btf_fwd_type_log,
    	.show = btf_df_show,
    };
    
    static int btf_array_check_member(struct btf_verifier_env *env,
    				  const struct btf_type *struct_type,
    				  const struct btf_member *member,
    				  const struct btf_type *member_type)
    {
    	u32 struct_bits_off = member->offset;
    	u32 struct_size, bytes_offset;
    	u32 array_type_id, array_size;
    	struct btf *btf = env->btf;
    
    	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
    		btf_verifier_log_member(env, struct_type, member,
    					"Member is not byte aligned");
    		return -EINVAL;
    	}
    
    	array_type_id = member->type;
    	btf_type_id_size(btf, &array_type_id, &array_size);
    	struct_size = struct_type->size;
    	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
    	if (struct_size - bytes_offset < array_size) {
    		btf_verifier_log_member(env, struct_type, member,
    					"Member exceeds struct_size");
    		return -EINVAL;
    	}
    
    	return 0;
    }
    
    static s32 btf_array_check_meta(struct btf_verifier_env *env,
    				const struct btf_type *t,
    				u32 meta_left)
    {
    	const struct btf_array *array = btf_type_array(t);
    	u32 meta_needed = sizeof(*array);
    
    	if (meta_left < meta_needed) {
    		btf_verifier_log_basic(env, t,
    				       "meta_left:%u meta_needed:%u",
    				       meta_left, meta_needed);
    		return -EINVAL;
    	}
    
    	/* array type should not have a name */
    	if (t->name_off) {
    		btf_verifier_log_type(env, t, "Invalid name");
    		return -EINVAL;
    	}
    
    	if (btf_type_vlen(t)) {
    		btf_verifier_log_type(env, t, "vlen != 0");
    		return -EINVAL;
    	}
    
    	if (btf_type_kflag(t)) {
    		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
    		return -EINVAL;
    	}
    
    	if (t->size) {
    		btf_verifier_log_type(env, t, "size != 0");
    		return -EINVAL;
    	}
    
    	/* Array elem type and index type cannot be in type void,
    	 * so !array->type and !array->index_type are not allowed.
    	 */
    	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
    		btf_verifier_log_type(env, t, "Invalid elem");
    		return -EINVAL;
    	}
    
    	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
    		btf_verifier_log_type(env, t, "Invalid index");
    		return -EINVAL;
    	}
    
    	btf_verifier_log_type(env, t, NULL);
    
    	return meta_needed;
    }
    
    static int btf_array_resolve(struct btf_verifier_env *env,
    			     const struct resolve_vertex *v)
    {
    	const struct btf_array *array = btf_type_array(v->t);
    	const struct btf_type *elem_type, *index_type;
    	u32 elem_type_id, index_type_id;
    	struct btf *btf = env->btf;
    	u32 elem_size;
    
    	/* Check array->index_type */
    	index_type_id = array->index_type;
    	index_type = btf_type_by_id(btf, index_type_id);
    	if (btf_type_nosize_or_null(index_type) ||
    	    btf_type_is_resolve_source_only(index_type)) {
    		btf_verifier_log_type(env, v->t, "Invalid index");
    		return -EINVAL;
    	}
    
    	if (!env_type_is_resolve_sink(env, index_type) &&
    	    !env_type_is_resolved(env, index_type_id))
    		return env_stack_push(env, index_type, index_type_id);
    
    	index_type = btf_type_id_size(btf, &index_type_id, NULL);
    	if (!index_type || !btf_type_is_int(index_type) ||
    	    !btf_type_int_is_regular(index_type)) {
    		btf_verifier_log_type(env, v->t, "Invalid index");
    		return -EINVAL;
    	}
    
    	/* Check array->type */
    	elem_type_id = array->type;
    	elem_type = btf_type_by_id(btf, elem_type_id);
    	if (btf_type_nosize_or_null(elem_type) ||
    	    btf_type_is_resolve_source_only(elem_type)) {
    		btf_verifier_log_type(env, v->t,
    				      "Invalid elem");
    		return -EINVAL;
    	}
    
    	if (!env_type_is_resolve_sink(env, elem_type) &&
    	    !env_type_is_resolved(env, elem_type_id))
    		return env_stack_push(env, elem_type, elem_type_id);
    
    	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
    	if (!elem_type) {
    		btf_verifier_log_type(env, v->t, "Invalid elem");
    		return -EINVAL;
    	}
    
    	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
    		btf_verifier_log_type(env, v->t, "Invalid array of int");
    		return -EINVAL;
    	}
    
    	if (array->nelems && elem_size > U32_MAX / array->nelems) {
    		btf_verifier_log_type(env, v->t,
    				      "Array size overflows U32_MAX");
    		return -EINVAL;
    	}
    
    	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
    
    	return 0;
    }
    
    static void btf_array_log(struct btf_verifier_env *env,
    			  const struct btf_type *t)
    {
    	const struct btf_array *array = btf_type_array(t);
    
    	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
    			 array->type, array->index_type, array->nelems);
    }
    
    static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
    			     u32 type_id, void *data, u8 bits_offset,
    			     struct btf_show *show)
    {
    	const struct btf_array *array = btf_type_array(t);
    	const struct btf_kind_operations *elem_ops;
    	const struct btf_type *elem_type;
    	u32 i, elem_size = 0, elem_type_id;
    	u16 encoding = 0;
    
    	elem_type_id = array->type;
    	elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
    	if (elem_type && btf_type_has_size(elem_type))
    		elem_size = elem_type->size;
    
    	if (elem_type && btf_type_is_int(elem_type)) {
    		u32 int_type = btf_type_int(elem_type);
    
    		encoding = BTF_INT_ENCODING(int_type);
    
    		/*
    		 * BTF_INT_CHAR encoding never seems to be set for
    		 * char arrays, so if size is 1 and element is
    		 * printable as a char, we'll do that.
    		 */
    		if (elem_size == 1)
    			encoding = BTF_INT_CHAR;
    	}
    
    	if (!btf_show_start_array_type(show, t, type_id, encoding, data))
    		return;
    
    	if (!elem_type)
    		goto out;
    	elem_ops = btf_type_ops(elem_type);
    
    	for (i = 0; i < array->nelems; i++) {
    
    		btf_show_start_array_member(show);
    
    		elem_ops->show(btf, elem_type, elem_type_id, data,
    			       bits_offset, show);
    		data += elem_size;
    
    		btf_show_end_array_member(show);
    
    		if (show->state.array_terminated)
    			break;
    	}
    out:
    	btf_show_end_array_type(show);
    }
    
    static void btf_array_show(const struct btf *btf, const struct btf_type *t,
    			   u32 type_id, void *data, u8 bits_offset,
    			   struct btf_show *show)
    {
    	const struct btf_member *m = show->state.member;
    
    	/*
    	 * First check if any members would be shown (are non-zero).
    	 * See comments above "struct btf_show" definition for more
    	 * details on how this works at a high-level.
    	 */
    	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
    		if (!show->state.depth_check) {
    			show->state.depth_check = show->state.depth + 1;
    			show->state.depth_to_show = 0;
    		}
    		__btf_array_show(btf, t, type_id, data, bits_offset, show);
    		show->state.member = m;
    
    		if (show->state.depth_check != show->state.depth + 1)
    			return;
    		show->state.depth_check = 0;
    
    		if (show->state.depth_to_show <= show->state.depth)
    			return;
    		/*
    		 * Reaching here indicates we have recursed and found
    		 * non-zero array member(s).
    		 */
    	}
    	__btf_array_show(btf, t, type_id, data, bits_offset, show);
    }
    
    static struct btf_kind_operations array_ops = {
    	.check_meta = btf_array_check_meta,
    	.resolve = btf_array_resolve,
    	.check_member = btf_array_check_member,
    	.check_kflag_member = btf_generic_check_kflag_member,
    	.log_details = btf_array_log,
    	.show = btf_array_show,
    };
    
    static int btf_struct_check_member(struct btf_verifier_env *env,
    				   const struct btf_type *struct_type,
    				   const struct btf_member *member,
    				   const struct btf_type *member_type)
    {
    	u32 struct_bits_off = member->offset;
    	u32 struct_size, bytes_offset;
    
    	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
    		btf_verifier_log_member(env, struct_type, member,
    					"Member is not byte aligned");
    		return -EINVAL;
    	}
    
    	struct_size = struct_type->size;
    	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
    	if (struct_size - bytes_offset < member_type->size) {
    		btf_verifier_log_member(env, struct_type, member,
    					"Member exceeds struct_size");
    		return -EINVAL;
    	}
    
    	return 0;
    }
    
    static s32 btf_struct_check_meta(struct btf_verifier_env *env,
    				 const struct btf_type *t,
    				 u32 meta_left)
    {
    	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
    	const struct btf_member *member;
    	u32 meta_needed, last_offset;
    	struct btf *btf = env->btf;
    	u32 struct_size = t->size;
    	u32 offset;
    	u16 i;
    
    	meta_needed = btf_type_vlen(t) * sizeof(*member);
    	if (meta_left < meta_needed) {
    		btf_verifier_log_basic(env, t,
    				       "meta_left:%u meta_needed:%u",
    				       meta_left, meta_needed);
    		return -EINVAL;
    	}
    
    	/* struct type either no name or a valid one */
    	if (t->name_off &&
    	    !btf_name_valid_identifier(env->btf, t->name_off)) {
    		btf_verifier_log_type(env, t, "Invalid name");
    		return -EINVAL;
    	}
    
    	btf_verifier_log_type(env, t, NULL);
    
    	last_offset = 0;
    	for_each_member(i, t, member) {
    		if (!btf_name_offset_valid(btf, member->name_off)) {
    			btf_verifier_log_member(env, t, member,
    						"Invalid member name_offset:%u",
    						member->name_off);
    			return -EINVAL;
    		}
    
    		/* struct member either no name or a valid one */
    		if (member->name_off &&
    		    !btf_name_valid_identifier(btf, member->name_off)) {
    			btf_verifier_log_member(env, t, member, "Invalid name");
    			return -EINVAL;
    		}
    		/* A member cannot be in type void */
    		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
    			btf_verifier_log_member(env, t, member,
    						"Invalid type_id");
    			return -EINVAL;
    		}
    
    		offset = btf_member_bit_offset(t, member);
    		if (is_union && offset) {
    			btf_verifier_log_member(env, t, member,
    						"Invalid member bits_offset");
    			return -EINVAL;
    		}
    
    		/*
    		 * ">" instead of ">=" because the last member could be
    		 * "char a[0];"
    		 */
    		if (last_offset > offset) {
    			btf_verifier_log_member(env, t, member,
    						"Invalid member bits_offset");
    			return -EINVAL;
    		}
    
    		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
    			btf_verifier_log_member(env, t, member,
    						"Member bits_offset exceeds its struct size");
    			return -EINVAL;
    		}
    
    		btf_verifier_log_member(env, t, member, NULL);
    		last_offset = offset;
    	}
    
    	return meta_needed;
    }
    
    static int btf_struct_resolve(struct btf_verifier_env *env,
    			      const struct resolve_vertex *v)
    {
    	const struct btf_member *member;
    	int err;
    	u16 i;
    
    	/* Before continue resolving the next_member,
    	 * ensure the last member is indeed resolved to a
    	 * type with size info.
    	 */
    	if (v->next_member) {
    		const struct btf_type *last_member_type;
    		const struct btf_member *last_member;
    		u16 last_member_type_id;
    
    		last_member = btf_type_member(v->t) + v->next_member - 1;
    		last_member_type_id = last_member->type;
    		if (WARN_ON_ONCE(!env_type_is_resolved(env,
    						       last_member_type_id)))
    			return -EINVAL;
    
    		last_member_type = btf_type_by_id(env->btf,
    						  last_member_type_id);
    		if (btf_type_kflag(v->t))
    			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
    								last_member,
    								last_member_type);
    		else
    			err = btf_type_ops(last_member_type)->check_member(env, v->t,
    								last_member,
    								last_member_type);
    		if (err)
    			return err;
    	}
    
    	for_each_member_from(i, v->next_member, v->t, member) {
    		u32 member_type_id = member->type;
    		const struct btf_type *member_type = btf_type_by_id(env->btf,
    								member_type_id);
    
    		if (btf_type_nosize_or_null(member_type) ||
    		    btf_type_is_resolve_source_only(member_type)) {
    			btf_verifier_log_member(env, v->t, member,
    						"Invalid member");
    			return -EINVAL;
    		}
    
    		if (!env_type_is_resolve_sink(env, member_type) &&
    		    !env_type_is_resolved(env, member_type_id)) {
    			env_stack_set_next_member(env, i + 1);
    			return env_stack_push(env, member_type, member_type_id);
    		}
    
    		if (btf_type_kflag(v->t))
    			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
    									    member,
    									    member_type);
    		else
    			err = btf_type_ops(member_type)->check_member(env, v->t,
    								      member,
    								      member_type);
    		if (err)
    			return err;
    	}
    
    	env_stack_pop_resolved(env, 0, 0);
    
    	return 0;
    }
    
    static void btf_struct_log(struct btf_verifier_env *env,
    			   const struct btf_type *t)
    {
    	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
    }
    
    /* find 'struct bpf_spin_lock' in map value.
     * return >= 0 offset if found
     * and < 0 in case of error
     */
    int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
    {
    	const struct btf_member *member;
    	u32 i, off = -ENOENT;
    
    	if (!__btf_type_is_struct(t))
    		return -EINVAL;
    
    	for_each_member(i, t, member) {
    		const struct btf_type *member_type = btf_type_by_id(btf,
    								    member->type);
    		if (!__btf_type_is_struct(member_type))
    			continue;
    		if (member_type->size != sizeof(struct bpf_spin_lock))
    			continue;
    		if (strcmp(__btf_name_by_offset(btf, member_type->name_off),
    			   "bpf_spin_lock"))
    			continue;
    		if (off != -ENOENT)
    			/* only one 'struct bpf_spin_lock' is allowed */
    			return -E2BIG;
    		off = btf_member_bit_offset(t, member);
    		if (off % 8)
    			/* valid C code cannot generate such BTF */
    			return -EINVAL;
    		off /= 8;
    		if (off % __alignof__(struct bpf_spin_lock))
    			/* valid struct bpf_spin_lock will be 4 byte aligned */
    			return -EINVAL;
    	}
    	return off;
    }
    
    static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
    			      u32 type_id, void *data, u8 bits_offset,
    			      struct btf_show *show)
    {
    	const struct btf_member *member;
    	void *safe_data;
    	u32 i;
    
    	safe_data = btf_show_start_struct_type(show, t, type_id, data);
    	if (!safe_data)
    		return;
    
    	for_each_member(i, t, member) {
    		const struct btf_type *member_type = btf_type_by_id(btf,
    								member->type);
    		const struct btf_kind_operations *ops;
    		u32 member_offset, bitfield_size;
    		u32 bytes_offset;
    		u8 bits8_offset;
    
    		btf_show_start_member(show, member);
    
    		member_offset = btf_member_bit_offset(t, member);
    		bitfield_size = btf_member_bitfield_size(t, member);
    		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
    		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
    		if (bitfield_size) {
    			safe_data = btf_show_start_type(show, member_type,
    							member->type,
    							data + bytes_offset);
    			if (safe_data)
    				btf_bitfield_show(safe_data,
    						  bits8_offset,
    						  bitfield_size, show);
    			btf_show_end_type(show);
    		} else {
    			ops = btf_type_ops(member_type);
    			ops->show(btf, member_type, member->type,
    				  data + bytes_offset, bits8_offset, show);
    		}
    
    		btf_show_end_member(show);
    	}
    
    	btf_show_end_struct_type(show);
    }
    
    static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
    			    u32 type_id, void *data, u8 bits_offset,
    			    struct btf_show *show)
    {
    	const struct btf_member *m = show->state.member;
    
    	/*
    	 * First check if any members would be shown (are non-zero).
    	 * See comments above "struct btf_show" definition for more
    	 * details on how this works at a high-level.
    	 */
    	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
    		if (!show->state.depth_check) {
    			show->state.depth_check = show->state.depth + 1;
    			show->state.depth_to_show = 0;
    		}
    		__btf_struct_show(btf, t, type_id, data, bits_offset, show);
    		/* Restore saved member data here */
    		show->state.member = m;
    		if (show->state.depth_check != show->state.depth + 1)
    			return;
    		show->state.depth_check = 0;
    
    		if (show->state.depth_to_show <= show->state.depth)
    			return;
    		/*
    		 * Reaching here indicates we have recursed and found
    		 * non-zero child values.
    		 */
    	}
    
    	__btf_struct_show(btf, t, type_id, data, bits_offset, show);
    }
    
    static struct btf_kind_operations struct_ops = {
    	.check_meta = btf_struct_check_meta,
    	.resolve = btf_struct_resolve,
    	.check_member = btf_struct_check_member,
    	.check_kflag_member = btf_generic_check_kflag_member,
    	.log_details = btf_struct_log,
    	.show = btf_struct_show,
    };
    
    static int btf_enum_check_member(struct btf_verifier_env *env,
    				 const struct btf_type *struct_type,
    				 const struct btf_member *member,
    				 const struct btf_type *member_type)
    {
    	u32 struct_bits_off = member->offset;
    	u32 struct_size, bytes_offset;
    
    	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
    		btf_verifier_log_member(env, struct_type, member,
    					"Member is not byte aligned");
    		return -EINVAL;
    	}
    
    	struct_size = struct_type->size;
    	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
    	if (struct_size - bytes_offset < member_type->size) {
    		btf_verifier_log_member(env, struct_type, member,
    					"Member exceeds struct_size");
    		return -EINVAL;
    	}
    
    	return 0;
    }
    
    static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
    				       const struct btf_type *struct_type,
    				       const struct btf_member *member,
    				       const struct btf_type *member_type)
    {
    	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
    	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
    
    	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
    	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
    	if (!nr_bits) {
    		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
    			btf_verifier_log_member(env, struct_type, member,
    						"Member is not byte aligned");
    			return -EINVAL;
    		}
    
    		nr_bits = int_bitsize;
    	} else if (nr_bits > int_bitsize) {
    		btf_verifier_log_member(env, struct_type, member,
    					"Invalid member bitfield_size");
    		return -EINVAL;
    	}
    
    	struct_size = struct_type->size;
    	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
    	if (struct_size < bytes_end) {
    		btf_verifier_log_member(env, struct_type, member,
    					"Member exceeds struct_size");
    		return -EINVAL;
    	}
    
    	return 0;
    }
    
    static s32 btf_enum_check_meta(struct btf_verifier_env *env,
    			       const struct btf_type *t,
    			       u32 meta_left)
    {
    	const struct btf_enum *enums = btf_type_enum(t);
    	struct btf *btf = env->btf;
    	u16 i, nr_enums;
    	u32 meta_needed;
    
    	nr_enums = btf_type_vlen(t);
    	meta_needed = nr_enums * sizeof(*enums);
    
    	if (meta_left < meta_needed) {
    		btf_verifier_log_basic(env, t,
    				       "meta_left:%u meta_needed:%u",
    				       meta_left, meta_needed);
    		return -EINVAL;
    	}
    
    	if (btf_type_kflag(t)) {
    		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
    		return -EINVAL;
    	}
    
    	if (t->size > 8 || !is_power_of_2(t->size)) {
    		btf_verifier_log_type(env, t, "Unexpected size");
    		return -EINVAL;
    	}
    
    	/* enum type either no name or a valid one */
    	if (t->name_off &&
    	    !btf_name_valid_identifier(env->btf, t->name_off)) {
    		btf_verifier_log_type(env, t, "Invalid name");
    		return -EINVAL;
    	}
    
    	btf_verifier_log_type(env, t, NULL);
    
    	for (i = 0; i < nr_enums; i++) {
    		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
    			btf_verifier_log(env, "\tInvalid name_offset:%u",
    					 enums[i].name_off);
    			return -EINVAL;
    		}
    
    		/* enum member must have a valid name */
    		if (!enums[i].name_off ||
    		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
    			btf_verifier_log_type(env, t, "Invalid name");
    			return -EINVAL;
    		}
    
    		if (env->log.level == BPF_LOG_KERNEL)
    			continue;
    		btf_verifier_log(env, "\t%s val=%d\n",
    				 __btf_name_by_offset(btf, enums[i].name_off),
    				 enums[i].val);
    	}
    
    	return meta_needed;
    }
    
    static void btf_enum_log(struct btf_verifier_env *env,
    			 const struct btf_type *t)
    {
    	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
    }
    
    static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
    			  u32 type_id, void *data, u8 bits_offset,
    			  struct btf_show *show)
    {
    	const struct btf_enum *enums = btf_type_enum(t);
    	u32 i, nr_enums = btf_type_vlen(t);
    	void *safe_data;
    	int v;
    
    	safe_data = btf_show_start_type(show, t, type_id, data);
    	if (!safe_data)
    		return;
    
    	v = *(int *)safe_data;
    
    	for (i = 0; i < nr_enums; i++) {
    		if (v != enums[i].val)
    			continue;
    
    		btf_show_type_value(show, "%s",
    				    __btf_name_by_offset(btf,
    							 enums[i].name_off));
    
    		btf_show_end_type(show);
    		return;
    	}
    
    	btf_show_type_value(show, "%d", v);
    	btf_show_end_type(show);
    }
    
    static struct btf_kind_operations enum_ops = {
    	.check_meta = btf_enum_check_meta,
    	.resolve = btf_df_resolve,
    	.check_member = btf_enum_check_member,
    	.check_kflag_member = btf_enum_check_kflag_member,
    	.log_details = btf_enum_log,
    	.show = btf_enum_show,
    };
    
    static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
    				     const struct btf_type *t,
    				     u32 meta_left)
    {
    	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
    
    	if (meta_left < meta_needed) {
    		btf_verifier_log_basic(env, t,
    				       "meta_left:%u meta_needed:%u",
    				       meta_left, meta_needed);
    		return -EINVAL;
    	}
    
    	if (t->name_off) {
    		btf_verifier_log_type(env, t, "Invalid name");
    		return -EINVAL;
    	}
    
    	if (btf_type_kflag(t)) {
    		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
    		return -EINVAL;
    	}
    
    	btf_verifier_log_type(env, t, NULL);
    
    	return meta_needed;
    }
    
    static void btf_func_proto_log(struct btf_verifier_env *env,
    			       const struct btf_type *t)
    {
    	const struct btf_param *args = (const struct btf_param *)(t + 1);
    	u16 nr_args = btf_type_vlen(t), i;
    
    	btf_verifier_log(env, "return=%u args=(", t->type);
    	if (!nr_args) {
    		btf_verifier_log(env, "void");
    		goto done;
    	}
    
    	if (nr_args == 1 && !args[0].type) {
    		/* Only one vararg */
    		btf_verifier_log(env, "vararg");
    		goto done;
    	}
    
    	btf_verifier_log(env, "%u %s", args[0].type,
    			 __btf_name_by_offset(env->btf,
    					      args[0].name_off));
    	for (i = 1; i < nr_args - 1; i++)
    		btf_verifier_log(env, ", %u %s", args[i].type,
    				 __btf_name_by_offset(env->btf,
    						      args[i].name_off));
    
    	if (nr_args > 1) {
    		const struct btf_param *last_arg = &args[nr_args - 1];
    
    		if (last_arg->type)
    			btf_verifier_log(env, ", %u %s", last_arg->type,
    					 __btf_name_by_offset(env->btf,
    							      last_arg->name_off));
    		else
    			btf_verifier_log(env, ", vararg");
    	}
    
    done:
    	btf_verifier_log(env, ")");
    }
    
    static struct btf_kind_operations func_proto_ops = {
    	.check_meta = btf_func_proto_check_meta,
    	.resolve = btf_df_resolve,
    	/*
    	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
    	 * a struct's member.
    	 *
    	 * It should be a funciton pointer instead.
    	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
    	 *
    	 * Hence, there is no btf_func_check_member().
    	 */
    	.check_member = btf_df_check_member,
    	.check_kflag_member = btf_df_check_kflag_member,
    	.log_details = btf_func_proto_log,
    	.show = btf_df_show,
    };
    
    static s32 btf_func_check_meta(struct btf_verifier_env *env,
    			       const struct btf_type *t,
    			       u32 meta_left)
    {
    	if (!t->name_off ||
    	    !btf_name_valid_identifier(env->btf, t->name_off)) {
    		btf_verifier_log_type(env, t, "Invalid name");
    		return -EINVAL;
    	}
    
    	if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
    		btf_verifier_log_type(env, t, "Invalid func linkage");
    		return -EINVAL;
    	}
    
    	if (btf_type_kflag(t)) {
    		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
    		return -EINVAL;
    	}
    
    	btf_verifier_log_type(env, t, NULL);
    
    	return 0;
    }
    
    static struct btf_kind_operations func_ops = {
    	.check_meta = btf_func_check_meta,
    	.resolve = btf_df_resolve,
    	.check_member = btf_df_check_member,
    	.check_kflag_member = btf_df_check_kflag_member,
    	.log_details = btf_ref_type_log,
    	.show = btf_df_show,
    };
    
    static s32 btf_var_check_meta(struct btf_verifier_env *env,
    			      const struct btf_type *t,
    			      u32 meta_left)
    {
    	const struct btf_var *var;
    	u32 meta_needed = sizeof(*var);
    
    	if (meta_left < meta_needed) {
    		btf_verifier_log_basic(env, t,
    				       "meta_left:%u meta_needed:%u",
    				       meta_left, meta_needed);
    		return -EINVAL;
    	}
    
    	if (btf_type_vlen(t)) {
    		btf_verifier_log_type(env, t, "vlen != 0");
    		return -EINVAL;
    	}
    
    	if (btf_type_kflag(t)) {
    		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
    		return -EINVAL;
    	}
    
    	if (!t->name_off ||
    	    !__btf_name_valid(env->btf, t->name_off, true)) {
    		btf_verifier_log_type(env, t, "Invalid name");
    		return -EINVAL;
    	}
    
    	/* A var cannot be in type void */
    	if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
    		btf_verifier_log_type(env, t, "Invalid type_id");
    		return -EINVAL;
    	}
    
    	var = btf_type_var(t);
    	if (var->linkage != BTF_VAR_STATIC &&
    	    var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
    		btf_verifier_log_type(env, t, "Linkage not supported");
    		return -EINVAL;
    	}
    
    	btf_verifier_log_type(env, t, NULL);
    
    	return meta_needed;
    }
    
    static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
    {
    	const struct btf_var *var = btf_type_var(t);
    
    	btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
    }
    
    static const struct btf_kind_operations var_ops = {
    	.check_meta		= btf_var_check_meta,
    	.resolve		= btf_var_resolve,
    	.check_member		= btf_df_check_member,
    	.check_kflag_member	= btf_df_check_kflag_member,
    	.log_details		= btf_var_log,
    	.show			= btf_var_show,
    };
    
    static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
    				  const struct btf_type *t,
    				  u32 meta_left)
    {
    	const struct btf_var_secinfo *vsi;
    	u64 last_vsi_end_off = 0, sum = 0;
    	u32 i, meta_needed;
    
    	meta_needed = btf_type_vlen(t) * sizeof(*vsi);
    	if (meta_left < meta_needed) {
    		btf_verifier_log_basic(env, t,
    				       "meta_left:%u meta_needed:%u",
    				       meta_left, meta_needed);
    		return -EINVAL;
    	}
    
    	if (!btf_type_vlen(t)) {
    		btf_verifier_log_type(env, t, "vlen == 0");
    		return -EINVAL;
    	}
    
    	if (!t->size) {
    		btf_verifier_log_type(env, t, "size == 0");
    		return -EINVAL;
    	}
    
    	if (btf_type_kflag(t)) {
    		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
    		return -EINVAL;
    	}
    
    	if (!t->name_off ||
    	    !btf_name_valid_section(env->btf, t->name_off)) {
    		btf_verifier_log_type(env, t, "Invalid name");
    		return -EINVAL;
    	}
    
    	btf_verifier_log_type(env, t, NULL);
    
    	for_each_vsi(i, t, vsi) {
    		/* A var cannot be in type void */
    		if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
    			btf_verifier_log_vsi(env, t, vsi,
    					     "Invalid type_id");
    			return -EINVAL;
    		}
    
    		if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
    			btf_verifier_log_vsi(env, t, vsi,
    					     "Invalid offset");
    			return -EINVAL;
    		}
    
    		if (!vsi->size || vsi->size > t->size) {
    			btf_verifier_log_vsi(env, t, vsi,
    					     "Invalid size");
    			return -EINVAL;
    		}
    
    		last_vsi_end_off = vsi->offset + vsi->size;
    		if (last_vsi_end_off > t->size) {
    			btf_verifier_log_vsi(env, t, vsi,
    					     "Invalid offset+size");
    			return -EINVAL;
    		}
    
    		btf_verifier_log_vsi(env, t, vsi, NULL);
    		sum += vsi->size;
    	}
    
    	if (t->size < sum) {
    		btf_verifier_log_type(env, t, "Invalid btf_info size");
    		return -EINVAL;
    	}
    
    	return meta_needed;
    }
    
    static int btf_datasec_resolve(struct btf_verifier_env *env,
    			       const struct resolve_vertex *v)
    {
    	const struct btf_var_secinfo *vsi;
    	struct btf *btf = env->btf;
    	u16 i;
    
    	for_each_vsi_from(i, v->next_member, v->t, vsi) {
    		u32 var_type_id = vsi->type, type_id, type_size = 0;
    		const struct btf_type *var_type = btf_type_by_id(env->btf,
    								 var_type_id);
    		if (!var_type || !btf_type_is_var(var_type)) {
    			btf_verifier_log_vsi(env, v->t, vsi,
    					     "Not a VAR kind member");
    			return -EINVAL;
    		}
    
    		if (!env_type_is_resolve_sink(env, var_type) &&
    		    !env_type_is_resolved(env, var_type_id)) {
    			env_stack_set_next_member(env, i + 1);
    			return env_stack_push(env, var_type, var_type_id);
    		}
    
    		type_id = var_type->type;
    		if (!btf_type_id_size(btf, &type_id, &type_size)) {
    			btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
    			return -EINVAL;
    		}
    
    		if (vsi->size < type_size) {
    			btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
    			return -EINVAL;
    		}
    	}
    
    	env_stack_pop_resolved(env, 0, 0);
    	return 0;
    }
    
    static void btf_datasec_log(struct btf_verifier_env *env,
    			    const struct btf_type *t)
    {
    	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
    }
    
    static void btf_datasec_show(const struct btf *btf,
    			     const struct btf_type *t, u32 type_id,
    			     void *data, u8 bits_offset,
    			     struct btf_show *show)
    {
    	const struct btf_var_secinfo *vsi;
    	const struct btf_type *var;
    	u32 i;
    
    	if (!btf_show_start_type(show, t, type_id, data))
    		return;
    
    	btf_show_type_value(show, "section (\"%s\") = {",
    			    __btf_name_by_offset(btf, t->name_off));
    	for_each_vsi(i, t, vsi) {
    		var = btf_type_by_id(btf, vsi->type);
    		if (i)
    			btf_show(show, ",");
    		btf_type_ops(var)->show(btf, var, vsi->type,
    					data + vsi->offset, bits_offset, show);
    	}
    	btf_show_end_type(show);
    }
    
    static const struct btf_kind_operations datasec_ops = {
    	.check_meta		= btf_datasec_check_meta,
    	.resolve		= btf_datasec_resolve,
    	.check_member		= btf_df_check_member,
    	.check_kflag_member	= btf_df_check_kflag_member,
    	.log_details		= btf_datasec_log,
    	.show			= btf_datasec_show,
    };
    
    static int btf_func_proto_check(struct btf_verifier_env *env,
    				const struct btf_type *t)
    {
    	const struct btf_type *ret_type;
    	const struct btf_param *args;
    	const struct btf *btf;
    	u16 nr_args, i;
    	int err;
    
    	btf = env->btf;
    	args = (const struct btf_param *)(t + 1);
    	nr_args = btf_type_vlen(t);
    
    	/* Check func return type which could be "void" (t->type == 0) */
    	if (t->type) {
    		u32 ret_type_id = t->type;
    
    		ret_type = btf_type_by_id(btf, ret_type_id);
    		if (!ret_type) {
    			btf_verifier_log_type(env, t, "Invalid return type");
    			return -EINVAL;
    		}
    
    		if (btf_type_needs_resolve(ret_type) &&
    		    !env_type_is_resolved(env, ret_type_id)) {
    			err = btf_resolve(env, ret_type, ret_type_id);
    			if (err)
    				return err;
    		}
    
    		/* Ensure the return type is a type that has a size */
    		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
    			btf_verifier_log_type(env, t, "Invalid return type");
    			return -EINVAL;
    		}
    	}
    
    	if (!nr_args)
    		return 0;
    
    	/* Last func arg type_id could be 0 if it is a vararg */
    	if (!args[nr_args - 1].type) {
    		if (args[nr_args - 1].name_off) {
    			btf_verifier_log_type(env, t, "Invalid arg#%u",
    					      nr_args);
    			return -EINVAL;
    		}
    		nr_args--;
    	}
    
    	err = 0;
    	for (i = 0; i < nr_args; i++) {
    		const struct btf_type *arg_type;
    		u32 arg_type_id;
    
    		arg_type_id = args[i].type;
    		arg_type = btf_type_by_id(btf, arg_type_id);
    		if (!arg_type) {
    			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
    			err = -EINVAL;
    			break;
    		}
    
    		if (args[i].name_off &&
    		    (!btf_name_offset_valid(btf, args[i].name_off) ||
    		     !btf_name_valid_identifier(btf, args[i].name_off))) {
    			btf_verifier_log_type(env, t,
    					      "Invalid arg#%u", i + 1);
    			err = -EINVAL;
    			break;
    		}
    
    		if (btf_type_needs_resolve(arg_type) &&
    		    !env_type_is_resolved(env, arg_type_id)) {
    			err = btf_resolve(env, arg_type, arg_type_id);
    			if (err)
    				break;
    		}
    
    		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
    			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
    			err = -EINVAL;
    			break;
    		}
    	}
    
    	return err;
    }
    
    static int btf_func_check(struct btf_verifier_env *env,
    			  const struct btf_type *t)
    {
    	const struct btf_type *proto_type;
    	const struct btf_param *args;
    	const struct btf *btf;
    	u16 nr_args, i;
    
    	btf = env->btf;
    	proto_type = btf_type_by_id(btf, t->type);
    
    	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
    		btf_verifier_log_type(env, t, "Invalid type_id");
    		return -EINVAL;
    	}
    
    	args = (const struct btf_param *)(proto_type + 1);
    	nr_args = btf_type_vlen(proto_type);
    	for (i = 0; i < nr_args; i++) {
    		if (!args[i].name_off && args[i].type) {
    			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
    			return -EINVAL;
    		}
    	}
    
    	return 0;
    }
    
    static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
    	[BTF_KIND_INT] = &int_ops,
    	[BTF_KIND_PTR] = &ptr_ops,
    	[BTF_KIND_ARRAY] = &array_ops,
    	[BTF_KIND_STRUCT] = &struct_ops,
    	[BTF_KIND_UNION] = &struct_ops,
    	[BTF_KIND_ENUM] = &enum_ops,
    	[BTF_KIND_FWD] = &fwd_ops,
    	[BTF_KIND_TYPEDEF] = &modifier_ops,
    	[BTF_KIND_VOLATILE] = &modifier_ops,
    	[BTF_KIND_CONST] = &modifier_ops,
    	[BTF_KIND_RESTRICT] = &modifier_ops,
    	[BTF_KIND_FUNC] = &func_ops,
    	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
    	[BTF_KIND_VAR] = &var_ops,
    	[BTF_KIND_DATASEC] = &datasec_ops,
    };
    
    static s32 btf_check_meta(struct btf_verifier_env *env,
    			  const struct btf_type *t,
    			  u32 meta_left)
    {
    	u32 saved_meta_left = meta_left;
    	s32 var_meta_size;
    
    	if (meta_left < sizeof(*t)) {
    		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
    				 env->log_type_id, meta_left, sizeof(*t));
    		return -EINVAL;
    	}
    	meta_left -= sizeof(*t);
    
    	if (t->info & ~BTF_INFO_MASK) {
    		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
    				 env->log_type_id, t->info);
    		return -EINVAL;
    	}
    
    	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
    	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
    		btf_verifier_log(env, "[%u] Invalid kind:%u",
    				 env->log_type_id, BTF_INFO_KIND(t->info));
    		return -EINVAL;
    	}
    
    	if (!btf_name_offset_valid(env->btf, t->name_off)) {
    		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
    				 env->log_type_id, t->name_off);
    		return -EINVAL;
    	}
    
    	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
    	if (var_meta_size < 0)
    		return var_meta_size;
    
    	meta_left -= var_meta_size;
    
    	return saved_meta_left - meta_left;
    }
    
    static int btf_check_all_metas(struct btf_verifier_env *env)
    {
    	struct btf *btf = env->btf;
    	struct btf_header *hdr;
    	void *cur, *end;
    
    	hdr = &btf->hdr;
    	cur = btf->nohdr_data + hdr->type_off;
    	end = cur + hdr->type_len;
    
    	env->log_type_id = btf->base_btf ? btf->start_id : 1;
    	while (cur < end) {
    		struct btf_type *t = cur;
    		s32 meta_size;
    
    		meta_size = btf_check_meta(env, t, end - cur);
    		if (meta_size < 0)
    			return meta_size;
    
    		btf_add_type(env, t);
    		cur += meta_size;
    		env->log_type_id++;
    	}
    
    	return 0;
    }
    
    static bool btf_resolve_valid(struct btf_verifier_env *env,
    			      const struct btf_type *t,
    			      u32 type_id)
    {
    	struct btf *btf = env->btf;
    
    	if (!env_type_is_resolved(env, type_id))
    		return false;
    
    	if (btf_type_is_struct(t) || btf_type_is_datasec(t))
    		return !btf_resolved_type_id(btf, type_id) &&
    		       !btf_resolved_type_size(btf, type_id);
    
    	if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
    	    btf_type_is_var(t)) {
    		t = btf_type_id_resolve(btf, &type_id);
    		return t &&
    		       !btf_type_is_modifier(t) &&
    		       !btf_type_is_var(t) &&
    		       !btf_type_is_datasec(t);
    	}
    
    	if (btf_type_is_array(t)) {
    		const struct btf_array *array = btf_type_array(t);
    		const struct btf_type *elem_type;
    		u32 elem_type_id = array->type;
    		u32 elem_size;
    
    		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
    		return elem_type && !btf_type_is_modifier(elem_type) &&
    			(array->nelems * elem_size ==
    			 btf_resolved_type_size(btf, type_id));
    	}
    
    	return false;
    }
    
    static int btf_resolve(struct btf_verifier_env *env,
    		       const struct btf_type *t, u32 type_id)
    {
    	u32 save_log_type_id = env->log_type_id;
    	const struct resolve_vertex *v;
    	int err = 0;
    
    	env->resolve_mode = RESOLVE_TBD;
    	env_stack_push(env, t, type_id);
    	while (!err && (v = env_stack_peak(env))) {
    		env->log_type_id = v->type_id;
    		err = btf_type_ops(v->t)->resolve(env, v);
    	}
    
    	env->log_type_id = type_id;
    	if (err == -E2BIG) {
    		btf_verifier_log_type(env, t,
    				      "Exceeded max resolving depth:%u",
    				      MAX_RESOLVE_DEPTH);
    	} else if (err == -EEXIST) {
    		btf_verifier_log_type(env, t, "Loop detected");
    	}
    
    	/* Final sanity check */
    	if (!err && !btf_resolve_valid(env, t, type_id)) {
    		btf_verifier_log_type(env, t, "Invalid resolve state");
    		err = -EINVAL;
    	}
    
    	env->log_type_id = save_log_type_id;
    	return err;
    }
    
    static int btf_check_all_types(struct btf_verifier_env *env)
    {
    	struct btf *btf = env->btf;
    	const struct btf_type *t;
    	u32 type_id, i;
    	int err;
    
    	err = env_resolve_init(env);
    	if (err)
    		return err;
    
    	env->phase++;
    	for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
    		type_id = btf->start_id + i;
    		t = btf_type_by_id(btf, type_id);
    
    		env->log_type_id = type_id;
    		if (btf_type_needs_resolve(t) &&
    		    !env_type_is_resolved(env, type_id)) {
    			err = btf_resolve(env, t, type_id);
    			if (err)
    				return err;
    		}
    
    		if (btf_type_is_func_proto(t)) {
    			err = btf_func_proto_check(env, t);
    			if (err)
    				return err;
    		}
    
    		if (btf_type_is_func(t)) {
    			err = btf_func_check(env, t);
    			if (err)
    				return err;
    		}
    	}
    
    	return 0;
    }
    
    static int btf_parse_type_sec(struct btf_verifier_env *env)
    {
    	const struct btf_header *hdr = &env->btf->hdr;
    	int err;
    
    	/* Type section must align to 4 bytes */
    	if (hdr->type_off & (sizeof(u32) - 1)) {
    		btf_verifier_log(env, "Unaligned type_off");
    		return -EINVAL;
    	}
    
    	if (!env->btf->base_btf && !hdr->type_len) {
    		btf_verifier_log(env, "No type found");
    		return -EINVAL;
    	}
    
    	err = btf_check_all_metas(env);
    	if (err)
    		return err;
    
    	return btf_check_all_types(env);
    }
    
    static int btf_parse_str_sec(struct btf_verifier_env *env)
    {
    	const struct btf_header *hdr;
    	struct btf *btf = env->btf;
    	const char *start, *end;
    
    	hdr = &btf->hdr;
    	start = btf->nohdr_data + hdr->str_off;
    	end = start + hdr->str_len;
    
    	if (end != btf->data + btf->data_size) {
    		btf_verifier_log(env, "String section is not at the end");
    		return -EINVAL;
    	}
    
    	btf->strings = start;
    
    	if (btf->base_btf && !hdr->str_len)
    		return 0;
    	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
    		btf_verifier_log(env, "Invalid string section");
    		return -EINVAL;
    	}
    	if (!btf->base_btf && start[0]) {
    		btf_verifier_log(env, "Invalid string section");
    		return -EINVAL;
    	}
    
    	return 0;
    }
    
    static const size_t btf_sec_info_offset[] = {
    	offsetof(struct btf_header, type_off),
    	offsetof(struct btf_header, str_off),
    };
    
    static int btf_sec_info_cmp(const void *a, const void *b)
    {
    	const struct btf_sec_info *x = a;
    	const struct btf_sec_info *y = b;
    
    	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
    }
    
    static int btf_check_sec_info(struct btf_verifier_env *env,
    			      u32 btf_data_size)
    {
    	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
    	u32 total, expected_total, i;
    	const struct btf_header *hdr;
    	const struct btf *btf;
    
    	btf = env->btf;
    	hdr = &btf->hdr;
    
    	/* Populate the secs from hdr */
    	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
    		secs[i] = *(struct btf_sec_info *)((void *)hdr +
    						   btf_sec_info_offset[i]);
    
    	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
    	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
    
    	/* Check for gaps and overlap among sections */
    	total = 0;
    	expected_total = btf_data_size - hdr->hdr_len;
    	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
    		if (expected_total < secs[i].off) {
    			btf_verifier_log(env, "Invalid section offset");
    			return -EINVAL;
    		}
    		if (total < secs[i].off) {
    			/* gap */
    			btf_verifier_log(env, "Unsupported section found");
    			return -EINVAL;
    		}
    		if (total > secs[i].off) {
    			btf_verifier_log(env, "Section overlap found");
    			return -EINVAL;
    		}
    		if (expected_total - total < secs[i].len) {
    			btf_verifier_log(env,
    					 "Total section length too long");
    			return -EINVAL;
    		}
    		total += secs[i].len;
    	}
    
    	/* There is data other than hdr and known sections */
    	if (expected_total != total) {
    		btf_verifier_log(env, "Unsupported section found");
    		return -EINVAL;
    	}
    
    	return 0;
    }
    
    static int btf_parse_hdr(struct btf_verifier_env *env)
    {
    	u32 hdr_len, hdr_copy, btf_data_size;
    	const struct btf_header *hdr;
    	struct btf *btf;
    	int err;
    
    	btf = env->btf;
    	btf_data_size = btf->data_size;
    
    	if (btf_data_size <
    	    offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
    		btf_verifier_log(env, "hdr_len not found");
    		return -EINVAL;
    	}
    
    	hdr = btf->data;
    	hdr_len = hdr->hdr_len;
    	if (btf_data_size < hdr_len) {
    		btf_verifier_log(env, "btf_header not found");
    		return -EINVAL;
    	}
    
    	/* Ensure the unsupported header fields are zero */
    	if (hdr_len > sizeof(btf->hdr)) {
    		u8 *expected_zero = btf->data + sizeof(btf->hdr);
    		u8 *end = btf->data + hdr_len;
    
    		for (; expected_zero < end; expected_zero++) {
    			if (*expected_zero) {
    				btf_verifier_log(env, "Unsupported btf_header");
    				return -E2BIG;
    			}
    		}
    	}
    
    	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
    	memcpy(&btf->hdr, btf->data, hdr_copy);
    
    	hdr = &btf->hdr;
    
    	btf_verifier_log_hdr(env, btf_data_size);
    
    	if (hdr->magic != BTF_MAGIC) {
    		btf_verifier_log(env, "Invalid magic");
    		return -EINVAL;
    	}
    
    	if (hdr->version != BTF_VERSION) {
    		btf_verifier_log(env, "Unsupported version");
    		return -ENOTSUPP;
    	}
    
    	if (hdr->flags) {
    		btf_verifier_log(env, "Unsupported flags");
    		return -ENOTSUPP;
    	}
    
    	if (btf_data_size == hdr->hdr_len) {
    		btf_verifier_log(env, "No data");
    		return -EINVAL;
    	}
    
    	err = btf_check_sec_info(env, btf_data_size);
    	if (err)
    		return err;
    
    	return 0;
    }
    
    static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size,
    			     u32 log_level, char __user *log_ubuf, u32 log_size)
    {
    	struct btf_verifier_env *env = NULL;
    	struct bpf_verifier_log *log;
    	struct btf *btf = NULL;
    	u8 *data;
    	int err;
    
    	if (btf_data_size > BTF_MAX_SIZE)
    		return ERR_PTR(-E2BIG);
    
    	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
    	if (!env)
    		return ERR_PTR(-ENOMEM);
    
    	log = &env->log;
    	if (log_level || log_ubuf || log_size) {
    		/* user requested verbose verifier output
    		 * and supplied buffer to store the verification trace
    		 */
    		log->level = log_level;
    		log->ubuf = log_ubuf;
    		log->len_total = log_size;
    
    		/* log attributes have to be sane */
    		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
    		    !log->level || !log->ubuf) {
    			err = -EINVAL;
    			goto errout;
    		}
    	}
    
    	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
    	if (!btf) {
    		err = -ENOMEM;
    		goto errout;
    	}
    	env->btf = btf;
    
    	data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
    	if (!data) {
    		err = -ENOMEM;
    		goto errout;
    	}
    
    	btf->data = data;
    	btf->data_size = btf_data_size;
    
    	if (copy_from_user(data, btf_data, btf_data_size)) {
    		err = -EFAULT;
    		goto errout;
    	}
    
    	err = btf_parse_hdr(env);
    	if (err)
    		goto errout;
    
    	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
    
    	err = btf_parse_str_sec(env);
    	if (err)
    		goto errout;
    
    	err = btf_parse_type_sec(env);
    	if (err)
    		goto errout;
    
    	if (log->level && bpf_verifier_log_full(log)) {
    		err = -ENOSPC;
    		goto errout;
    	}
    
    	btf_verifier_env_free(env);
    	refcount_set(&btf->refcnt, 1);
    	return btf;
    
    errout:
    	btf_verifier_env_free(env);
    	if (btf)
    		btf_free(btf);
    	return ERR_PTR(err);
    }
    
    extern char __weak __start_BTF[];
    extern char __weak __stop_BTF[];
    extern struct btf *btf_vmlinux;
    
    #define BPF_MAP_TYPE(_id, _ops)
    #define BPF_LINK_TYPE(_id, _name)
    static union {
    	struct bpf_ctx_convert {
    #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
    	prog_ctx_type _id##_prog; \
    	kern_ctx_type _id##_kern;
    #include <linux/bpf_types.h>
    #undef BPF_PROG_TYPE
    	} *__t;
    	/* 't' is written once under lock. Read many times. */
    	const struct btf_type *t;
    } bpf_ctx_convert;
    enum {
    #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
    	__ctx_convert##_id,
    #include <linux/bpf_types.h>
    #undef BPF_PROG_TYPE
    	__ctx_convert_unused, /* to avoid empty enum in extreme .config */
    };
    static u8 bpf_ctx_convert_map[] = {
    #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
    	[_id] = __ctx_convert##_id,
    #include <linux/bpf_types.h>
    #undef BPF_PROG_TYPE
    	0, /* avoid empty array */
    };
    #undef BPF_MAP_TYPE
    #undef BPF_LINK_TYPE
    
    static const struct btf_member *
    btf_get_prog_ctx_type(struct bpf_verifier_log *log, struct btf *btf,
    		      const struct btf_type *t, enum bpf_prog_type prog_type,
    		      int arg)
    {
    	const struct btf_type *conv_struct;
    	const struct btf_type *ctx_struct;
    	const struct btf_member *ctx_type;
    	const char *tname, *ctx_tname;
    
    	conv_struct = bpf_ctx_convert.t;
    	if (!conv_struct) {
    		bpf_log(log, "btf_vmlinux is malformed\n");
    		return NULL;
    	}
    	t = btf_type_by_id(btf, t->type);
    	while (btf_type_is_modifier(t))
    		t = btf_type_by_id(btf, t->type);
    	if (!btf_type_is_struct(t)) {
    		/* Only pointer to struct is supported for now.
    		 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
    		 * is not supported yet.
    		 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
    		 */
    		if (log->level & BPF_LOG_LEVEL)
    			bpf_log(log, "arg#%d type is not a struct\n", arg);
    		return NULL;
    	}
    	tname = btf_name_by_offset(btf, t->name_off);
    	if (!tname) {
    		bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
    		return NULL;
    	}
    	/* prog_type is valid bpf program type. No need for bounds check. */
    	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
    	/* ctx_struct is a pointer to prog_ctx_type in vmlinux.
    	 * Like 'struct __sk_buff'
    	 */
    	ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
    	if (!ctx_struct)
    		/* should not happen */
    		return NULL;
    	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
    	if (!ctx_tname) {
    		/* should not happen */
    		bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
    		return NULL;
    	}
    	/* only compare that prog's ctx type name is the same as
    	 * kernel expects. No need to compare field by field.
    	 * It's ok for bpf prog to do:
    	 * struct __sk_buff {};
    	 * int socket_filter_bpf_prog(struct __sk_buff *skb)
    	 * { // no fields of skb are ever used }
    	 */
    	if (strcmp(ctx_tname, tname))
    		return NULL;
    	return ctx_type;
    }
    
    static const struct bpf_map_ops * const btf_vmlinux_map_ops[] = {
    #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type)
    #define BPF_LINK_TYPE(_id, _name)
    #define BPF_MAP_TYPE(_id, _ops) \
    	[_id] = &_ops,
    #include <linux/bpf_types.h>
    #undef BPF_PROG_TYPE
    #undef BPF_LINK_TYPE
    #undef BPF_MAP_TYPE
    };
    
    static int btf_vmlinux_map_ids_init(const struct btf *btf,
    				    struct bpf_verifier_log *log)
    {
    	const struct bpf_map_ops *ops;
    	int i, btf_id;
    
    	for (i = 0; i < ARRAY_SIZE(btf_vmlinux_map_ops); ++i) {
    		ops = btf_vmlinux_map_ops[i];
    		if (!ops || (!ops->map_btf_name && !ops->map_btf_id))
    			continue;
    		if (!ops->map_btf_name || !ops->map_btf_id) {
    			bpf_log(log, "map type %d is misconfigured\n", i);
    			return -EINVAL;
    		}
    		btf_id = btf_find_by_name_kind(btf, ops->map_btf_name,
    					       BTF_KIND_STRUCT);
    		if (btf_id < 0)
    			return btf_id;
    		*ops->map_btf_id = btf_id;
    	}
    
    	return 0;
    }
    
    static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
    				     struct btf *btf,
    				     const struct btf_type *t,
    				     enum bpf_prog_type prog_type,
    				     int arg)
    {
    	const struct btf_member *prog_ctx_type, *kern_ctx_type;
    
    	prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
    	if (!prog_ctx_type)
    		return -ENOENT;
    	kern_ctx_type = prog_ctx_type + 1;
    	return kern_ctx_type->type;
    }
    
    BTF_ID_LIST(bpf_ctx_convert_btf_id)
    BTF_ID(struct, bpf_ctx_convert)
    
    struct btf *btf_parse_vmlinux(void)
    {
    	struct btf_verifier_env *env = NULL;
    	struct bpf_verifier_log *log;
    	struct btf *btf = NULL;
    	int err;
    
    	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
    	if (!env)
    		return ERR_PTR(-ENOMEM);
    
    	log = &env->log;
    	log->level = BPF_LOG_KERNEL;
    
    	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
    	if (!btf) {
    		err = -ENOMEM;
    		goto errout;
    	}
    	env->btf = btf;
    
    	btf->data = __start_BTF;
    	btf->data_size = __stop_BTF - __start_BTF;
    
    	err = btf_parse_hdr(env);
    	if (err)
    		goto errout;
    
    	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
    
    	err = btf_parse_str_sec(env);
    	if (err)
    		goto errout;
    
    	err = btf_check_all_metas(env);
    	if (err)
    		goto errout;
    
    	/* btf_parse_vmlinux() runs under bpf_verifier_lock */
    	bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
    
    	/* find bpf map structs for map_ptr access checking */
    	err = btf_vmlinux_map_ids_init(btf, log);
    	if (err < 0)
    		goto errout;
    
    	bpf_struct_ops_init(btf, log);
    
    	btf_verifier_env_free(env);
    	refcount_set(&btf->refcnt, 1);
    	return btf;
    
    errout:
    	btf_verifier_env_free(env);
    	if (btf) {
    		kvfree(btf->types);
    		kfree(btf);
    	}
    	return ERR_PTR(err);
    }
    
    struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
    {
    	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
    
    	if (tgt_prog) {
    		return tgt_prog->aux->btf;
    	} else {
    		return btf_vmlinux;
    	}
    }
    
    static bool is_string_ptr(struct btf *btf, const struct btf_type *t)
    {
    	/* t comes in already as a pointer */
    	t = btf_type_by_id(btf, t->type);
    
    	/* allow const */
    	if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
    		t = btf_type_by_id(btf, t->type);
    
    	/* char, signed char, unsigned char */
    	return btf_type_is_int(t) && t->size == 1;
    }
    
    bool btf_ctx_access(int off, int size, enum bpf_access_type type,
    		    const struct bpf_prog *prog,
    		    struct bpf_insn_access_aux *info)
    {
    	const struct btf_type *t = prog->aux->attach_func_proto;
    	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
    	struct btf *btf = bpf_prog_get_target_btf(prog);
    	const char *tname = prog->aux->attach_func_name;
    	struct bpf_verifier_log *log = info->log;
    	const struct btf_param *args;
    	u32 nr_args, arg;
    	int i, ret;
    
    	if (off % 8) {
    		bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
    			tname, off);
    		return false;
    	}
    	arg = off / 8;
    	args = (const struct btf_param *)(t + 1);
    	/* if (t == NULL) Fall back to default BPF prog with 5 u64 arguments */
    	nr_args = t ? btf_type_vlen(t) : 5;
    	if (prog->aux->attach_btf_trace) {
    		/* skip first 'void *__data' argument in btf_trace_##name typedef */
    		args++;
    		nr_args--;
    	}
    
    	if (arg > nr_args) {
    		bpf_log(log, "func '%s' doesn't have %d-th argument\n",
    			tname, arg + 1);
    		return false;
    	}
    
    	if (arg == nr_args) {
    		switch (prog->expected_attach_type) {
    		case BPF_LSM_MAC:
    		case BPF_TRACE_FEXIT:
    			/* When LSM programs are attached to void LSM hooks
    			 * they use FEXIT trampolines and when attached to
    			 * int LSM hooks, they use MODIFY_RETURN trampolines.
    			 *
    			 * While the LSM programs are BPF_MODIFY_RETURN-like
    			 * the check:
    			 *
    			 *	if (ret_type != 'int')
    			 *		return -EINVAL;
    			 *
    			 * is _not_ done here. This is still safe as LSM hooks
    			 * have only void and int return types.
    			 */
    			if (!t)
    				return true;
    			t = btf_type_by_id(btf, t->type);
    			break;
    		case BPF_MODIFY_RETURN:
    			/* For now the BPF_MODIFY_RETURN can only be attached to
    			 * functions that return an int.
    			 */
    			if (!t)
    				return false;
    
    			t = btf_type_skip_modifiers(btf, t->type, NULL);
    			if (!btf_type_is_small_int(t)) {
    				bpf_log(log,
    					"ret type %s not allowed for fmod_ret\n",
    					btf_kind_str[BTF_INFO_KIND(t->info)]);
    				return false;
    			}
    			break;
    		default:
    			bpf_log(log, "func '%s' doesn't have %d-th argument\n",
    				tname, arg + 1);
    			return false;
    		}
    	} else {
    		if (!t)
    			/* Default prog with 5 args */
    			return true;
    		t = btf_type_by_id(btf, args[arg].type);
    	}
    
    	/* skip modifiers */
    	while (btf_type_is_modifier(t))
    		t = btf_type_by_id(btf, t->type);
    	if (btf_type_is_small_int(t) || btf_type_is_enum(t))
    		/* accessing a scalar */
    		return true;
    	if (!btf_type_is_ptr(t)) {
    		bpf_log(log,
    			"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
    			tname, arg,
    			__btf_name_by_offset(btf, t->name_off),
    			btf_kind_str[BTF_INFO_KIND(t->info)]);
    		return false;
    	}
    
    	/* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
    	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
    		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
    
    		if (ctx_arg_info->offset == off &&
    		    (ctx_arg_info->reg_type == PTR_TO_RDONLY_BUF_OR_NULL ||
    		     ctx_arg_info->reg_type == PTR_TO_RDWR_BUF_OR_NULL)) {
    			info->reg_type = ctx_arg_info->reg_type;
    			return true;
    		}
    	}
    
    	if (t->type == 0)
    		/* This is a pointer to void.
    		 * It is the same as scalar from the verifier safety pov.
    		 * No further pointer walking is allowed.
    		 */
    		return true;
    
    	if (is_string_ptr(btf, t))
    		return true;
    
    	/* this is a pointer to another type */
    	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
    		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
    
    		if (ctx_arg_info->offset == off) {
    			info->reg_type = ctx_arg_info->reg_type;
    			info->btf_id = ctx_arg_info->btf_id;
    			return true;
    		}
    	}
    
    	info->reg_type = PTR_TO_BTF_ID;
    	if (tgt_prog) {
    		enum bpf_prog_type tgt_type;
    
    		if (tgt_prog->type == BPF_PROG_TYPE_EXT)
    			tgt_type = tgt_prog->aux->saved_dst_prog_type;
    		else
    			tgt_type = tgt_prog->type;
    
    		ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
    		if (ret > 0) {
    			info->btf_id = ret;
    			return true;
    		} else {
    			return false;
    		}
    	}
    
    	info->btf_id = t->type;
    	t = btf_type_by_id(btf, t->type);
    	/* skip modifiers */
    	while (btf_type_is_modifier(t)) {
    		info->btf_id = t->type;
    		t = btf_type_by_id(btf, t->type);
    	}
    	if (!btf_type_is_struct(t)) {
    		bpf_log(log,
    			"func '%s' arg%d type %s is not a struct\n",
    			tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]);
    		return false;
    	}
    	bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
    		tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)],
    		__btf_name_by_offset(btf, t->name_off));
    	return true;
    }
    
    enum bpf_struct_walk_result {
    	/* < 0 error */
    	WALK_SCALAR = 0,
    	WALK_PTR,
    	WALK_STRUCT,
    };
    
    static int btf_struct_walk(struct bpf_verifier_log *log,
    			   const struct btf_type *t, int off, int size,
    			   u32 *next_btf_id)
    {
    	u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
    	const struct btf_type *mtype, *elem_type = NULL;
    	const struct btf_member *member;
    	const char *tname, *mname;
    	u32 vlen, elem_id, mid;
    
    again:
    	tname = __btf_name_by_offset(btf_vmlinux, t->name_off);
    	if (!btf_type_is_struct(t)) {
    		bpf_log(log, "Type '%s' is not a struct\n", tname);
    		return -EINVAL;
    	}
    
    	vlen = btf_type_vlen(t);
    	if (off + size > t->size) {
    		/* If the last element is a variable size array, we may
    		 * need to relax the rule.
    		 */
    		struct btf_array *array_elem;
    
    		if (vlen == 0)
    			goto error;
    
    		member = btf_type_member(t) + vlen - 1;
    		mtype = btf_type_skip_modifiers(btf_vmlinux, member->type,
    						NULL);
    		if (!btf_type_is_array(mtype))
    			goto error;
    
    		array_elem = (struct btf_array *)(mtype + 1);
    		if (array_elem->nelems != 0)
    			goto error;
    
    		moff = btf_member_bit_offset(t, member) / 8;
    		if (off < moff)
    			goto error;
    
    		/* Only allow structure for now, can be relaxed for
    		 * other types later.
    		 */
    		t = btf_type_skip_modifiers(btf_vmlinux, array_elem->type,
    					    NULL);
    		if (!btf_type_is_struct(t))
    			goto error;
    
    		off = (off - moff) % t->size;
    		goto again;
    
    error:
    		bpf_log(log, "access beyond struct %s at off %u size %u\n",
    			tname, off, size);
    		return -EACCES;
    	}
    
    	for_each_member(i, t, member) {
    		/* offset of the field in bytes */
    		moff = btf_member_bit_offset(t, member) / 8;
    		if (off + size <= moff)
    			/* won't find anything, field is already too far */
    			break;
    
    		if (btf_member_bitfield_size(t, member)) {
    			u32 end_bit = btf_member_bit_offset(t, member) +
    				btf_member_bitfield_size(t, member);
    
    			/* off <= moff instead of off == moff because clang
    			 * does not generate a BTF member for anonymous
    			 * bitfield like the ":16" here:
    			 * struct {
    			 *	int :16;
    			 *	int x:8;
    			 * };
    			 */
    			if (off <= moff &&
    			    BITS_ROUNDUP_BYTES(end_bit) <= off + size)
    				return WALK_SCALAR;
    
    			/* off may be accessing a following member
    			 *
    			 * or
    			 *
    			 * Doing partial access at either end of this
    			 * bitfield.  Continue on this case also to
    			 * treat it as not accessing this bitfield
    			 * and eventually error out as field not
    			 * found to keep it simple.
    			 * It could be relaxed if there was a legit
    			 * partial access case later.
    			 */
    			continue;
    		}
    
    		/* In case of "off" is pointing to holes of a struct */
    		if (off < moff)
    			break;
    
    		/* type of the field */
    		mid = member->type;
    		mtype = btf_type_by_id(btf_vmlinux, member->type);
    		mname = __btf_name_by_offset(btf_vmlinux, member->name_off);
    
    		mtype = __btf_resolve_size(btf_vmlinux, mtype, &msize,
    					   &elem_type, &elem_id, &total_nelems,
    					   &mid);
    		if (IS_ERR(mtype)) {
    			bpf_log(log, "field %s doesn't have size\n", mname);
    			return -EFAULT;
    		}
    
    		mtrue_end = moff + msize;
    		if (off >= mtrue_end)
    			/* no overlap with member, keep iterating */
    			continue;
    
    		if (btf_type_is_array(mtype)) {
    			u32 elem_idx;
    
    			/* __btf_resolve_size() above helps to
    			 * linearize a multi-dimensional array.
    			 *
    			 * The logic here is treating an array
    			 * in a struct as the following way:
    			 *
    			 * struct outer {
    			 *	struct inner array[2][2];
    			 * };
    			 *
    			 * looks like:
    			 *
    			 * struct outer {
    			 *	struct inner array_elem0;
    			 *	struct inner array_elem1;
    			 *	struct inner array_elem2;
    			 *	struct inner array_elem3;
    			 * };
    			 *
    			 * When accessing outer->array[1][0], it moves
    			 * moff to "array_elem2", set mtype to
    			 * "struct inner", and msize also becomes
    			 * sizeof(struct inner).  Then most of the
    			 * remaining logic will fall through without
    			 * caring the current member is an array or
    			 * not.
    			 *
    			 * Unlike mtype/msize/moff, mtrue_end does not
    			 * change.  The naming difference ("_true") tells
    			 * that it is not always corresponding to
    			 * the current mtype/msize/moff.
    			 * It is the true end of the current
    			 * member (i.e. array in this case).  That
    			 * will allow an int array to be accessed like
    			 * a scratch space,
    			 * i.e. allow access beyond the size of
    			 *      the array's element as long as it is
    			 *      within the mtrue_end boundary.
    			 */
    
    			/* skip empty array */
    			if (moff == mtrue_end)
    				continue;
    
    			msize /= total_nelems;
    			elem_idx = (off - moff) / msize;
    			moff += elem_idx * msize;
    			mtype = elem_type;
    			mid = elem_id;
    		}
    
    		/* the 'off' we're looking for is either equal to start
    		 * of this field or inside of this struct
    		 */
    		if (btf_type_is_struct(mtype)) {
    			/* our field must be inside that union or struct */
    			t = mtype;
    
    			/* return if the offset matches the member offset */
    			if (off == moff) {
    				*next_btf_id = mid;
    				return WALK_STRUCT;
    			}
    
    			/* adjust offset we're looking for */
    			off -= moff;
    			goto again;
    		}
    
    		if (btf_type_is_ptr(mtype)) {
    			const struct btf_type *stype;
    			u32 id;
    
    			if (msize != size || off != moff) {
    				bpf_log(log,
    					"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
    					mname, moff, tname, off, size);
    				return -EACCES;
    			}
    			stype = btf_type_skip_modifiers(btf_vmlinux, mtype->type, &id);
    			if (btf_type_is_struct(stype)) {
    				*next_btf_id = id;
    				return WALK_PTR;
    			}
    		}
    
    		/* Allow more flexible access within an int as long as
    		 * it is within mtrue_end.
    		 * Since mtrue_end could be the end of an array,
    		 * that also allows using an array of int as a scratch
    		 * space. e.g. skb->cb[].
    		 */
    		if (off + size > mtrue_end) {
    			bpf_log(log,
    				"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
    				mname, mtrue_end, tname, off, size);
    			return -EACCES;
    		}
    
    		return WALK_SCALAR;
    	}
    	bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
    	return -EINVAL;
    }
    
    int btf_struct_access(struct bpf_verifier_log *log,
    		      const struct btf_type *t, int off, int size,
    		      enum bpf_access_type atype __maybe_unused,
    		      u32 *next_btf_id)
    {
    	int err;
    	u32 id;
    
    	do {
    		err = btf_struct_walk(log, t, off, size, &id);
    
    		switch (err) {
    		case WALK_PTR:
    			/* If we found the pointer or scalar on t+off,
    			 * we're done.
    			 */
    			*next_btf_id = id;
    			return PTR_TO_BTF_ID;
    		case WALK_SCALAR:
    			return SCALAR_VALUE;
    		case WALK_STRUCT:
    			/* We found nested struct, so continue the search
    			 * by diving in it. At this point the offset is
    			 * aligned with the new type, so set it to 0.
    			 */
    			t = btf_type_by_id(btf_vmlinux, id);
    			off = 0;
    			break;
    		default:
    			/* It's either error or unknown return value..
    			 * scream and leave.
    			 */
    			if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
    				return -EINVAL;
    			return err;
    		}
    	} while (t);
    
    	return -EINVAL;
    }
    
    bool btf_struct_ids_match(struct bpf_verifier_log *log,
    			  int off, u32 id, u32 need_type_id)
    {
    	const struct btf_type *type;
    	int err;
    
    	/* Are we already done? */
    	if (need_type_id == id && off == 0)
    		return true;
    
    again:
    	type = btf_type_by_id(btf_vmlinux, id);
    	if (!type)
    		return false;
    	err = btf_struct_walk(log, type, off, 1, &id);
    	if (err != WALK_STRUCT)
    		return false;
    
    	/* We found nested struct object. If it matches
    	 * the requested ID, we're done. Otherwise let's
    	 * continue the search with offset 0 in the new
    	 * type.
    	 */
    	if (need_type_id != id) {
    		off = 0;
    		goto again;
    	}
    
    	return true;
    }
    
    static int __get_type_size(struct btf *btf, u32 btf_id,
    			   const struct btf_type **bad_type)
    {
    	const struct btf_type *t;
    
    	if (!btf_id)
    		/* void */
    		return 0;
    	t = btf_type_by_id(btf, btf_id);
    	while (t && btf_type_is_modifier(t))
    		t = btf_type_by_id(btf, t->type);
    	if (!t) {
    		*bad_type = btf_type_by_id(btf, 0);
    		return -EINVAL;
    	}
    	if (btf_type_is_ptr(t))
    		/* kernel size of pointer. Not BPF's size of pointer*/
    		return sizeof(void *);
    	if (btf_type_is_int(t) || btf_type_is_enum(t))
    		return t->size;
    	*bad_type = t;
    	return -EINVAL;
    }
    
    int btf_distill_func_proto(struct bpf_verifier_log *log,
    			   struct btf *btf,
    			   const struct btf_type *func,
    			   const char *tname,
    			   struct btf_func_model *m)
    {
    	const struct btf_param *args;
    	const struct btf_type *t;
    	u32 i, nargs;
    	int ret;
    
    	if (!func) {
    		/* BTF function prototype doesn't match the verifier types.
    		 * Fall back to 5 u64 args.
    		 */
    		for (i = 0; i < 5; i++)
    			m->arg_size[i] = 8;
    		m->ret_size = 8;
    		m->nr_args = 5;
    		return 0;
    	}
    	args = (const struct btf_param *)(func + 1);
    	nargs = btf_type_vlen(func);
    	if (nargs >= MAX_BPF_FUNC_ARGS) {
    		bpf_log(log,
    			"The function %s has %d arguments. Too many.\n",
    			tname, nargs);
    		return -EINVAL;
    	}
    	ret = __get_type_size(btf, func->type, &t);
    	if (ret < 0) {
    		bpf_log(log,
    			"The function %s return type %s is unsupported.\n",
    			tname, btf_kind_str[BTF_INFO_KIND(t->info)]);
    		return -EINVAL;
    	}
    	m->ret_size = ret;
    
    	for (i = 0; i < nargs; i++) {
    		ret = __get_type_size(btf, args[i].type, &t);
    		if (ret < 0) {
    			bpf_log(log,
    				"The function %s arg%d type %s is unsupported.\n",
    				tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]);
    			return -EINVAL;
    		}
    		m->arg_size[i] = ret;
    	}
    	m->nr_args = nargs;
    	return 0;
    }
    
    /* Compare BTFs of two functions assuming only scalars and pointers to context.
     * t1 points to BTF_KIND_FUNC in btf1
     * t2 points to BTF_KIND_FUNC in btf2
     * Returns:
     * EINVAL - function prototype mismatch
     * EFAULT - verifier bug
     * 0 - 99% match. The last 1% is validated by the verifier.
     */
    static int btf_check_func_type_match(struct bpf_verifier_log *log,
    				     struct btf *btf1, const struct btf_type *t1,
    				     struct btf *btf2, const struct btf_type *t2)
    {
    	const struct btf_param *args1, *args2;
    	const char *fn1, *fn2, *s1, *s2;
    	u32 nargs1, nargs2, i;
    
    	fn1 = btf_name_by_offset(btf1, t1->name_off);
    	fn2 = btf_name_by_offset(btf2, t2->name_off);
    
    	if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
    		bpf_log(log, "%s() is not a global function\n", fn1);
    		return -EINVAL;
    	}
    	if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
    		bpf_log(log, "%s() is not a global function\n", fn2);
    		return -EINVAL;
    	}
    
    	t1 = btf_type_by_id(btf1, t1->type);
    	if (!t1 || !btf_type_is_func_proto(t1))
    		return -EFAULT;
    	t2 = btf_type_by_id(btf2, t2->type);
    	if (!t2 || !btf_type_is_func_proto(t2))
    		return -EFAULT;
    
    	args1 = (const struct btf_param *)(t1 + 1);
    	nargs1 = btf_type_vlen(t1);
    	args2 = (const struct btf_param *)(t2 + 1);
    	nargs2 = btf_type_vlen(t2);
    
    	if (nargs1 != nargs2) {
    		bpf_log(log, "%s() has %d args while %s() has %d args\n",
    			fn1, nargs1, fn2, nargs2);
    		return -EINVAL;
    	}
    
    	t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
    	t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
    	if (t1->info != t2->info) {
    		bpf_log(log,
    			"Return type %s of %s() doesn't match type %s of %s()\n",
    			btf_type_str(t1), fn1,
    			btf_type_str(t2), fn2);
    		return -EINVAL;
    	}
    
    	for (i = 0; i < nargs1; i++) {
    		t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
    		t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
    
    		if (t1->info != t2->info) {
    			bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
    				i, fn1, btf_type_str(t1),
    				fn2, btf_type_str(t2));
    			return -EINVAL;
    		}
    		if (btf_type_has_size(t1) && t1->size != t2->size) {
    			bpf_log(log,
    				"arg%d in %s() has size %d while %s() has %d\n",
    				i, fn1, t1->size,
    				fn2, t2->size);
    			return -EINVAL;
    		}
    
    		/* global functions are validated with scalars and pointers
    		 * to context only. And only global functions can be replaced.
    		 * Hence type check only those types.
    		 */
    		if (btf_type_is_int(t1) || btf_type_is_enum(t1))
    			continue;
    		if (!btf_type_is_ptr(t1)) {
    			bpf_log(log,
    				"arg%d in %s() has unrecognized type\n",
    				i, fn1);
    			return -EINVAL;
    		}
    		t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
    		t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
    		if (!btf_type_is_struct(t1)) {
    			bpf_log(log,
    				"arg%d in %s() is not a pointer to context\n",
    				i, fn1);
    			return -EINVAL;
    		}
    		if (!btf_type_is_struct(t2)) {
    			bpf_log(log,
    				"arg%d in %s() is not a pointer to context\n",
    				i, fn2);
    			return -EINVAL;
    		}
    		/* This is an optional check to make program writing easier.
    		 * Compare names of structs and report an error to the user.
    		 * btf_prepare_func_args() already checked that t2 struct
    		 * is a context type. btf_prepare_func_args() will check
    		 * later that t1 struct is a context type as well.
    		 */
    		s1 = btf_name_by_offset(btf1, t1->name_off);
    		s2 = btf_name_by_offset(btf2, t2->name_off);
    		if (strcmp(s1, s2)) {
    			bpf_log(log,
    				"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
    				i, fn1, s1, fn2, s2);
    			return -EINVAL;
    		}
    	}
    	return 0;
    }
    
    /* Compare BTFs of given program with BTF of target program */
    int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
    			 struct btf *btf2, const struct btf_type *t2)
    {
    	struct btf *btf1 = prog->aux->btf;
    	const struct btf_type *t1;
    	u32 btf_id = 0;
    
    	if (!prog->aux->func_info) {
    		bpf_log(log, "Program extension requires BTF\n");
    		return -EINVAL;
    	}
    
    	btf_id = prog->aux->func_info[0].type_id;
    	if (!btf_id)
    		return -EFAULT;
    
    	t1 = btf_type_by_id(btf1, btf_id);
    	if (!t1 || !btf_type_is_func(t1))
    		return -EFAULT;
    
    	return btf_check_func_type_match(log, btf1, t1, btf2, t2);
    }
    
    /* Compare BTF of a function with given bpf_reg_state.
     * Returns:
     * EFAULT - there is a verifier bug. Abort verification.
     * EINVAL - there is a type mismatch or BTF is not available.
     * 0 - BTF matches with what bpf_reg_state expects.
     * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
     */
    int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog,
    			     struct bpf_reg_state *reg)
    {
    	struct bpf_verifier_log *log = &env->log;
    	struct bpf_prog *prog = env->prog;
    	struct btf *btf = prog->aux->btf;
    	const struct btf_param *args;
    	const struct btf_type *t;
    	u32 i, nargs, btf_id;
    	const char *tname;
    
    	if (!prog->aux->func_info)
    		return -EINVAL;
    
    	btf_id = prog->aux->func_info[subprog].type_id;
    	if (!btf_id)
    		return -EFAULT;
    
    	if (prog->aux->func_info_aux[subprog].unreliable)
    		return -EINVAL;
    
    	t = btf_type_by_id(btf, btf_id);
    	if (!t || !btf_type_is_func(t)) {
    		/* These checks were already done by the verifier while loading
    		 * struct bpf_func_info
    		 */
    		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
    			subprog);
    		return -EFAULT;
    	}
    	tname = btf_name_by_offset(btf, t->name_off);
    
    	t = btf_type_by_id(btf, t->type);
    	if (!t || !btf_type_is_func_proto(t)) {
    		bpf_log(log, "Invalid BTF of func %s\n", tname);
    		return -EFAULT;
    	}
    	args = (const struct btf_param *)(t + 1);
    	nargs = btf_type_vlen(t);
    	if (nargs > 5) {
    		bpf_log(log, "Function %s has %d > 5 args\n", tname, nargs);
    		goto out;
    	}
    	/* check that BTF function arguments match actual types that the
    	 * verifier sees.
    	 */
    	for (i = 0; i < nargs; i++) {
    		t = btf_type_by_id(btf, args[i].type);
    		while (btf_type_is_modifier(t))
    			t = btf_type_by_id(btf, t->type);
    		if (btf_type_is_int(t) || btf_type_is_enum(t)) {
    			if (reg[i + 1].type == SCALAR_VALUE)
    				continue;
    			bpf_log(log, "R%d is not a scalar\n", i + 1);
    			goto out;
    		}
    		if (btf_type_is_ptr(t)) {
    			if (reg[i + 1].type == SCALAR_VALUE) {
    				bpf_log(log, "R%d is not a pointer\n", i + 1);
    				goto out;
    			}
    			/* If function expects ctx type in BTF check that caller
    			 * is passing PTR_TO_CTX.
    			 */
    			if (btf_get_prog_ctx_type(log, btf, t, prog->type, i)) {
    				if (reg[i + 1].type != PTR_TO_CTX) {
    					bpf_log(log,
    						"arg#%d expected pointer to ctx, but got %s\n",
    						i, btf_kind_str[BTF_INFO_KIND(t->info)]);
    					goto out;
    				}
    				if (check_ctx_reg(env, &reg[i + 1], i + 1))
    					goto out;
    				continue;
    			}
    		}
    		bpf_log(log, "Unrecognized arg#%d type %s\n",
    			i, btf_kind_str[BTF_INFO_KIND(t->info)]);
    		goto out;
    	}
    	return 0;
    out:
    	/* Compiler optimizations can remove arguments from static functions
    	 * or mismatched type can be passed into a global function.
    	 * In such cases mark the function as unreliable from BTF point of view.
    	 */
    	prog->aux->func_info_aux[subprog].unreliable = true;
    	return -EINVAL;
    }
    
    /* Convert BTF of a function into bpf_reg_state if possible
     * Returns:
     * EFAULT - there is a verifier bug. Abort verification.
     * EINVAL - cannot convert BTF.
     * 0 - Successfully converted BTF into bpf_reg_state
     * (either PTR_TO_CTX or SCALAR_VALUE).
     */
    int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
    			  struct bpf_reg_state *reg)
    {
    	struct bpf_verifier_log *log = &env->log;
    	struct bpf_prog *prog = env->prog;
    	enum bpf_prog_type prog_type = prog->type;
    	struct btf *btf = prog->aux->btf;
    	const struct btf_param *args;
    	const struct btf_type *t;
    	u32 i, nargs, btf_id;
    	const char *tname;
    
    	if (!prog->aux->func_info ||
    	    prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
    		bpf_log(log, "Verifier bug\n");
    		return -EFAULT;
    	}
    
    	btf_id = prog->aux->func_info[subprog].type_id;
    	if (!btf_id) {
    		bpf_log(log, "Global functions need valid BTF\n");
    		return -EFAULT;
    	}
    
    	t = btf_type_by_id(btf, btf_id);
    	if (!t || !btf_type_is_func(t)) {
    		/* These checks were already done by the verifier while loading
    		 * struct bpf_func_info
    		 */
    		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
    			subprog);
    		return -EFAULT;
    	}
    	tname = btf_name_by_offset(btf, t->name_off);
    
    	if (log->level & BPF_LOG_LEVEL)
    		bpf_log(log, "Validating %s() func#%d...\n",
    			tname, subprog);
    
    	if (prog->aux->func_info_aux[subprog].unreliable) {
    		bpf_log(log, "Verifier bug in function %s()\n", tname);
    		return -EFAULT;
    	}
    	if (prog_type == BPF_PROG_TYPE_EXT)
    		prog_type = prog->aux->dst_prog->type;
    
    	t = btf_type_by_id(btf, t->type);
    	if (!t || !btf_type_is_func_proto(t)) {
    		bpf_log(log, "Invalid type of function %s()\n", tname);
    		return -EFAULT;
    	}
    	args = (const struct btf_param *)(t + 1);
    	nargs = btf_type_vlen(t);
    	if (nargs > 5) {
    		bpf_log(log, "Global function %s() with %d > 5 args. Buggy compiler.\n",
    			tname, nargs);
    		return -EINVAL;
    	}
    	/* check that function returns int */
    	t = btf_type_by_id(btf, t->type);
    	while (btf_type_is_modifier(t))
    		t = btf_type_by_id(btf, t->type);
    	if (!btf_type_is_int(t) && !btf_type_is_enum(t)) {
    		bpf_log(log,
    			"Global function %s() doesn't return scalar. Only those are supported.\n",
    			tname);
    		return -EINVAL;
    	}
    	/* Convert BTF function arguments into verifier types.
    	 * Only PTR_TO_CTX and SCALAR are supported atm.
    	 */
    	for (i = 0; i < nargs; i++) {
    		t = btf_type_by_id(btf, args[i].type);
    		while (btf_type_is_modifier(t))
    			t = btf_type_by_id(btf, t->type);
    		if (btf_type_is_int(t) || btf_type_is_enum(t)) {
    			reg[i + 1].type = SCALAR_VALUE;
    			continue;
    		}
    		if (btf_type_is_ptr(t) &&
    		    btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
    			reg[i + 1].type = PTR_TO_CTX;
    			continue;
    		}
    		bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
    			i, btf_kind_str[BTF_INFO_KIND(t->info)], tname);
    		return -EINVAL;
    	}
    	return 0;
    }
    
    static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
    			  struct btf_show *show)
    {
    	const struct btf_type *t = btf_type_by_id(btf, type_id);
    
    	show->btf = btf;
    	memset(&show->state, 0, sizeof(show->state));
    	memset(&show->obj, 0, sizeof(show->obj));
    
    	btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
    }
    
    static void btf_seq_show(struct btf_show *show, const char *fmt,
    			 va_list args)
    {
    	seq_vprintf((struct seq_file *)show->target, fmt, args);
    }
    
    int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
    			    void *obj, struct seq_file *m, u64 flags)
    {
    	struct btf_show sseq;
    
    	sseq.target = m;
    	sseq.showfn = btf_seq_show;
    	sseq.flags = flags;
    
    	btf_type_show(btf, type_id, obj, &sseq);
    
    	return sseq.state.status;
    }
    
    void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
    		       struct seq_file *m)
    {
    	(void) btf_type_seq_show_flags(btf, type_id, obj, m,
    				       BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
    				       BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
    }
    
    struct btf_show_snprintf {
    	struct btf_show show;
    	int len_left;		/* space left in string */
    	int len;		/* length we would have written */
    };
    
    static void btf_snprintf_show(struct btf_show *show, const char *fmt,
    			      va_list args)
    {
    	struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
    	int len;
    
    	len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
    
    	if (len < 0) {
    		ssnprintf->len_left = 0;
    		ssnprintf->len = len;
    	} else if (len > ssnprintf->len_left) {
    		/* no space, drive on to get length we would have written */
    		ssnprintf->len_left = 0;
    		ssnprintf->len += len;
    	} else {
    		ssnprintf->len_left -= len;
    		ssnprintf->len += len;
    		show->target += len;
    	}
    }
    
    int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
    			   char *buf, int len, u64 flags)
    {
    	struct btf_show_snprintf ssnprintf;
    
    	ssnprintf.show.target = buf;
    	ssnprintf.show.flags = flags;
    	ssnprintf.show.showfn = btf_snprintf_show;
    	ssnprintf.len_left = len;
    	ssnprintf.len = 0;
    
    	btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
    
    	/* If we encontered an error, return it. */
    	if (ssnprintf.show.state.status)
    		return ssnprintf.show.state.status;
    
    	/* Otherwise return length we would have written */
    	return ssnprintf.len;
    }
    
    #ifdef CONFIG_PROC_FS
    static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
    {
    	const struct btf *btf = filp->private_data;
    
    	seq_printf(m, "btf_id:\t%u\n", btf->id);
    }
    #endif
    
    static int btf_release(struct inode *inode, struct file *filp)
    {
    	btf_put(filp->private_data);
    	return 0;
    }
    
    const struct file_operations btf_fops = {
    #ifdef CONFIG_PROC_FS
    	.show_fdinfo	= bpf_btf_show_fdinfo,
    #endif
    	.release	= btf_release,
    };
    
    static int __btf_new_fd(struct btf *btf)
    {
    	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
    }
    
    int btf_new_fd(const union bpf_attr *attr)
    {
    	struct btf *btf;
    	int ret;
    
    	btf = btf_parse(u64_to_user_ptr(attr->btf),
    			attr->btf_size, attr->btf_log_level,
    			u64_to_user_ptr(attr->btf_log_buf),
    			attr->btf_log_size);
    	if (IS_ERR(btf))
    		return PTR_ERR(btf);
    
    	ret = btf_alloc_id(btf);
    	if (ret) {
    		btf_free(btf);
    		return ret;
    	}
    
    	/*
    	 * The BTF ID is published to the userspace.
    	 * All BTF free must go through call_rcu() from
    	 * now on (i.e. free by calling btf_put()).
    	 */
    
    	ret = __btf_new_fd(btf);
    	if (ret < 0)
    		btf_put(btf);
    
    	return ret;
    }
    
    struct btf *btf_get_by_fd(int fd)
    {
    	struct btf *btf;
    	struct fd f;
    
    	f = fdget(fd);
    
    	if (!f.file)
    		return ERR_PTR(-EBADF);
    
    	if (f.file->f_op != &btf_fops) {
    		fdput(f);
    		return ERR_PTR(-EINVAL);
    	}
    
    	btf = f.file->private_data;
    	refcount_inc(&btf->refcnt);
    	fdput(f);
    
    	return btf;
    }
    
    int btf_get_info_by_fd(const struct btf *btf,
    		       const union bpf_attr *attr,
    		       union bpf_attr __user *uattr)
    {
    	struct bpf_btf_info __user *uinfo;
    	struct bpf_btf_info info;
    	u32 info_copy, btf_copy;
    	void __user *ubtf;
    	u32 uinfo_len;
    
    	uinfo = u64_to_user_ptr(attr->info.info);
    	uinfo_len = attr->info.info_len;
    
    	info_copy = min_t(u32, uinfo_len, sizeof(info));
    	memset(&info, 0, sizeof(info));
    	if (copy_from_user(&info, uinfo, info_copy))
    		return -EFAULT;
    
    	info.id = btf->id;
    	ubtf = u64_to_user_ptr(info.btf);
    	btf_copy = min_t(u32, btf->data_size, info.btf_size);
    	if (copy_to_user(ubtf, btf->data, btf_copy))
    		return -EFAULT;
    	info.btf_size = btf->data_size;
    
    	if (copy_to_user(uinfo, &info, info_copy) ||
    	    put_user(info_copy, &uattr->info.info_len))
    		return -EFAULT;
    
    	return 0;
    }
    
    int btf_get_fd_by_id(u32 id)
    {
    	struct btf *btf;
    	int fd;
    
    	rcu_read_lock();
    	btf = idr_find(&btf_idr, id);
    	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
    		btf = ERR_PTR(-ENOENT);
    	rcu_read_unlock();
    
    	if (IS_ERR(btf))
    		return PTR_ERR(btf);
    
    	fd = __btf_new_fd(btf);
    	if (fd < 0)
    		btf_put(btf);
    
    	return fd;
    }
    
    u32 btf_id(const struct btf *btf)
    {
    	return btf->id;
    }
    
    static int btf_id_cmp_func(const void *a, const void *b)
    {
    	const int *pa = a, *pb = b;
    
    	return *pa - *pb;
    }
    
    bool btf_id_set_contains(const struct btf_id_set *set, u32 id)
    {
    	return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL;
    }