Skip to content
Snippets Groups Projects
Select Git revision
  • 0bf380bc70ecba68cb4d74dc656cc2fa8c4d801a
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

compaction.c

Blame
  • compaction.c 20.23 KiB
    /*
     * linux/mm/compaction.c
     *
     * Memory compaction for the reduction of external fragmentation. Note that
     * this heavily depends upon page migration to do all the real heavy
     * lifting
     *
     * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
     */
    #include <linux/swap.h>
    #include <linux/migrate.h>
    #include <linux/compaction.h>
    #include <linux/mm_inline.h>
    #include <linux/backing-dev.h>
    #include <linux/sysctl.h>
    #include <linux/sysfs.h>
    #include "internal.h"
    
    #define CREATE_TRACE_POINTS
    #include <trace/events/compaction.h>
    
    /*
     * compact_control is used to track pages being migrated and the free pages
     * they are being migrated to during memory compaction. The free_pfn starts
     * at the end of a zone and migrate_pfn begins at the start. Movable pages
     * are moved to the end of a zone during a compaction run and the run
     * completes when free_pfn <= migrate_pfn
     */
    struct compact_control {
    	struct list_head freepages;	/* List of free pages to migrate to */
    	struct list_head migratepages;	/* List of pages being migrated */
    	unsigned long nr_freepages;	/* Number of isolated free pages */
    	unsigned long nr_migratepages;	/* Number of pages to migrate */
    	unsigned long free_pfn;		/* isolate_freepages search base */
    	unsigned long migrate_pfn;	/* isolate_migratepages search base */
    	bool sync;			/* Synchronous migration */
    
    	unsigned int order;		/* order a direct compactor needs */
    	int migratetype;		/* MOVABLE, RECLAIMABLE etc */
    	struct zone *zone;
    };
    
    static unsigned long release_freepages(struct list_head *freelist)
    {
    	struct page *page, *next;
    	unsigned long count = 0;
    
    	list_for_each_entry_safe(page, next, freelist, lru) {
    		list_del(&page->lru);
    		__free_page(page);
    		count++;
    	}
    
    	return count;
    }
    
    /* Isolate free pages onto a private freelist. Must hold zone->lock */
    static unsigned long isolate_freepages_block(struct zone *zone,
    				unsigned long blockpfn,
    				struct list_head *freelist)
    {
    	unsigned long zone_end_pfn, end_pfn;
    	int nr_scanned = 0, total_isolated = 0;
    	struct page *cursor;
    
    	/* Get the last PFN we should scan for free pages at */
    	zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
    	end_pfn = min(blockpfn + pageblock_nr_pages, zone_end_pfn);
    
    	/* Find the first usable PFN in the block to initialse page cursor */
    	for (; blockpfn < end_pfn; blockpfn++) {
    		if (pfn_valid_within(blockpfn))
    			break;
    	}
    	cursor = pfn_to_page(blockpfn);
    
    	/* Isolate free pages. This assumes the block is valid */
    	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
    		int isolated, i;
    		struct page *page = cursor;
    
    		if (!pfn_valid_within(blockpfn))
    			continue;
    		nr_scanned++;
    
    		if (!PageBuddy(page))
    			continue;
    
    		/* Found a free page, break it into order-0 pages */
    		isolated = split_free_page(page);
    		total_isolated += isolated;
    		for (i = 0; i < isolated; i++) {
    			list_add(&page->lru, freelist);
    			page++;
    		}
    
    		/* If a page was split, advance to the end of it */
    		if (isolated) {
    			blockpfn += isolated - 1;
    			cursor += isolated - 1;
    		}
    	}
    
    	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
    	return total_isolated;
    }
    
    /* Returns true if the page is within a block suitable for migration to */
    static bool suitable_migration_target(struct page *page)
    {
    
    	int migratetype = get_pageblock_migratetype(page);
    
    	/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
    	if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
    		return false;
    
    	/* If the page is a large free page, then allow migration */
    	if (PageBuddy(page) && page_order(page) >= pageblock_order)
    		return true;
    
    	/* If the block is MIGRATE_MOVABLE, allow migration */
    	if (migratetype == MIGRATE_MOVABLE)
    		return true;
    
    	/* Otherwise skip the block */
    	return false;
    }
    
    /*
     * Based on information in the current compact_control, find blocks
     * suitable for isolating free pages from and then isolate them.
     */
    static void isolate_freepages(struct zone *zone,
    				struct compact_control *cc)
    {
    	struct page *page;
    	unsigned long high_pfn, low_pfn, pfn;
    	unsigned long flags;
    	int nr_freepages = cc->nr_freepages;
    	struct list_head *freelist = &cc->freepages;
    
    	/*
    	 * Initialise the free scanner. The starting point is where we last
    	 * scanned from (or the end of the zone if starting). The low point
    	 * is the end of the pageblock the migration scanner is using.
    	 */
    	pfn = cc->free_pfn;
    	low_pfn = cc->migrate_pfn + pageblock_nr_pages;
    
    	/*
    	 * Take care that if the migration scanner is at the end of the zone
    	 * that the free scanner does not accidentally move to the next zone
    	 * in the next isolation cycle.
    	 */
    	high_pfn = min(low_pfn, pfn);
    
    	/*
    	 * Isolate free pages until enough are available to migrate the
    	 * pages on cc->migratepages. We stop searching if the migrate
    	 * and free page scanners meet or enough free pages are isolated.
    	 */
    	for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
    					pfn -= pageblock_nr_pages) {
    		unsigned long isolated;
    
    		if (!pfn_valid(pfn))
    			continue;
    
    		/*
    		 * Check for overlapping nodes/zones. It's possible on some
    		 * configurations to have a setup like
    		 * node0 node1 node0
    		 * i.e. it's possible that all pages within a zones range of
    		 * pages do not belong to a single zone.
    		 */
    		page = pfn_to_page(pfn);
    		if (page_zone(page) != zone)
    			continue;
    
    		/* Check the block is suitable for migration */
    		if (!suitable_migration_target(page))
    			continue;
    
    		/*
    		 * Found a block suitable for isolating free pages from. Now
    		 * we disabled interrupts, double check things are ok and
    		 * isolate the pages. This is to minimise the time IRQs
    		 * are disabled
    		 */
    		isolated = 0;
    		spin_lock_irqsave(&zone->lock, flags);
    		if (suitable_migration_target(page)) {
    			isolated = isolate_freepages_block(zone, pfn, freelist);
    			nr_freepages += isolated;
    		}
    		spin_unlock_irqrestore(&zone->lock, flags);
    
    		/*
    		 * Record the highest PFN we isolated pages from. When next
    		 * looking for free pages, the search will restart here as
    		 * page migration may have returned some pages to the allocator
    		 */
    		if (isolated)
    			high_pfn = max(high_pfn, pfn);
    	}
    
    	/* split_free_page does not map the pages */
    	list_for_each_entry(page, freelist, lru) {
    		arch_alloc_page(page, 0);
    		kernel_map_pages(page, 1, 1);
    	}
    
    	cc->free_pfn = high_pfn;
    	cc->nr_freepages = nr_freepages;
    }
    
    /* Update the number of anon and file isolated pages in the zone */
    static void acct_isolated(struct zone *zone, struct compact_control *cc)
    {
    	struct page *page;
    	unsigned int count[2] = { 0, };
    
    	list_for_each_entry(page, &cc->migratepages, lru)
    		count[!!page_is_file_cache(page)]++;
    
    	__mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
    	__mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
    }
    
    /* Similar to reclaim, but different enough that they don't share logic */
    static bool too_many_isolated(struct zone *zone)
    {
    	unsigned long active, inactive, isolated;
    
    	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
    					zone_page_state(zone, NR_INACTIVE_ANON);
    	active = zone_page_state(zone, NR_ACTIVE_FILE) +
    					zone_page_state(zone, NR_ACTIVE_ANON);
    	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
    					zone_page_state(zone, NR_ISOLATED_ANON);
    
    	return isolated > (inactive + active) / 2;
    }
    
    /* possible outcome of isolate_migratepages */
    typedef enum {
    	ISOLATE_ABORT,		/* Abort compaction now */
    	ISOLATE_NONE,		/* No pages isolated, continue scanning */
    	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
    } isolate_migrate_t;
    
    /*
     * Isolate all pages that can be migrated from the block pointed to by
     * the migrate scanner within compact_control.
     */
    static isolate_migrate_t isolate_migratepages(struct zone *zone,
    					struct compact_control *cc)
    {
    	unsigned long low_pfn, end_pfn;
    	unsigned long last_pageblock_nr = 0, pageblock_nr;
    	unsigned long nr_scanned = 0, nr_isolated = 0;
    	struct list_head *migratelist = &cc->migratepages;
    	isolate_mode_t mode = ISOLATE_ACTIVE|ISOLATE_INACTIVE;
    
    	/* Do not scan outside zone boundaries */
    	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
    
    	/* Only scan within a pageblock boundary */
    	end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
    
    	/* Do not cross the free scanner or scan within a memory hole */
    	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
    		cc->migrate_pfn = end_pfn;
    		return ISOLATE_NONE;
    	}
    
    	/*
    	 * Ensure that there are not too many pages isolated from the LRU
    	 * list by either parallel reclaimers or compaction. If there are,
    	 * delay for some time until fewer pages are isolated
    	 */
    	while (unlikely(too_many_isolated(zone))) {
    		/* async migration should just abort */
    		if (!cc->sync)
    			return ISOLATE_ABORT;
    
    		congestion_wait(BLK_RW_ASYNC, HZ/10);
    
    		if (fatal_signal_pending(current))
    			return ISOLATE_ABORT;
    	}
    
    	/* Time to isolate some pages for migration */
    	cond_resched();
    	spin_lock_irq(&zone->lru_lock);
    	for (; low_pfn < end_pfn; low_pfn++) {
    		struct page *page;
    		bool locked = true;
    
    		/* give a chance to irqs before checking need_resched() */
    		if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) {
    			spin_unlock_irq(&zone->lru_lock);
    			locked = false;
    		}
    		if (need_resched() || spin_is_contended(&zone->lru_lock)) {
    			if (locked)
    				spin_unlock_irq(&zone->lru_lock);
    			cond_resched();
    			spin_lock_irq(&zone->lru_lock);
    			if (fatal_signal_pending(current))
    				break;
    		} else if (!locked)
    			spin_lock_irq(&zone->lru_lock);
    
    		/*
    		 * migrate_pfn does not necessarily start aligned to a
    		 * pageblock. Ensure that pfn_valid is called when moving
    		 * into a new MAX_ORDER_NR_PAGES range in case of large
    		 * memory holes within the zone
    		 */
    		if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
    			if (!pfn_valid(low_pfn)) {
    				low_pfn += MAX_ORDER_NR_PAGES - 1;
    				continue;
    			}
    		}
    
    		if (!pfn_valid_within(low_pfn))
    			continue;
    		nr_scanned++;
    
    		/* Get the page and skip if free */
    		page = pfn_to_page(low_pfn);
    		if (PageBuddy(page))
    			continue;
    
    		/*
    		 * For async migration, also only scan in MOVABLE blocks. Async
    		 * migration is optimistic to see if the minimum amount of work
    		 * satisfies the allocation
    		 */
    		pageblock_nr = low_pfn >> pageblock_order;
    		if (!cc->sync && last_pageblock_nr != pageblock_nr &&
    				get_pageblock_migratetype(page) != MIGRATE_MOVABLE) {
    			low_pfn += pageblock_nr_pages;
    			low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
    			last_pageblock_nr = pageblock_nr;
    			continue;
    		}
    
    		if (!PageLRU(page))
    			continue;
    
    		/*
    		 * PageLRU is set, and lru_lock excludes isolation,
    		 * splitting and collapsing (collapsing has already
    		 * happened if PageLRU is set).
    		 */
    		if (PageTransHuge(page)) {
    			low_pfn += (1 << compound_order(page)) - 1;
    			continue;
    		}
    
    		if (!cc->sync)
    			mode |= ISOLATE_ASYNC_MIGRATE;
    
    		/* Try isolate the page */
    		if (__isolate_lru_page(page, mode, 0) != 0)
    			continue;
    
    		VM_BUG_ON(PageTransCompound(page));
    
    		/* Successfully isolated */
    		del_page_from_lru_list(zone, page, page_lru(page));
    		list_add(&page->lru, migratelist);
    		cc->nr_migratepages++;
    		nr_isolated++;
    
    		/* Avoid isolating too much */
    		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
    			++low_pfn;
    			break;
    		}
    	}
    
    	acct_isolated(zone, cc);
    
    	spin_unlock_irq(&zone->lru_lock);
    	cc->migrate_pfn = low_pfn;
    
    	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
    
    	return ISOLATE_SUCCESS;
    }
    
    /*
     * This is a migrate-callback that "allocates" freepages by taking pages
     * from the isolated freelists in the block we are migrating to.
     */
    static struct page *compaction_alloc(struct page *migratepage,
    					unsigned long data,
    					int **result)
    {
    	struct compact_control *cc = (struct compact_control *)data;
    	struct page *freepage;
    
    	/* Isolate free pages if necessary */
    	if (list_empty(&cc->freepages)) {
    		isolate_freepages(cc->zone, cc);
    
    		if (list_empty(&cc->freepages))
    			return NULL;
    	}
    
    	freepage = list_entry(cc->freepages.next, struct page, lru);
    	list_del(&freepage->lru);
    	cc->nr_freepages--;
    
    	return freepage;
    }
    
    /*
     * We cannot control nr_migratepages and nr_freepages fully when migration is
     * running as migrate_pages() has no knowledge of compact_control. When
     * migration is complete, we count the number of pages on the lists by hand.
     */
    static void update_nr_listpages(struct compact_control *cc)
    {
    	int nr_migratepages = 0;
    	int nr_freepages = 0;
    	struct page *page;
    
    	list_for_each_entry(page, &cc->migratepages, lru)
    		nr_migratepages++;
    	list_for_each_entry(page, &cc->freepages, lru)
    		nr_freepages++;
    
    	cc->nr_migratepages = nr_migratepages;
    	cc->nr_freepages = nr_freepages;
    }
    
    static int compact_finished(struct zone *zone,
    			    struct compact_control *cc)
    {
    	unsigned int order;
    	unsigned long watermark;
    
    	if (fatal_signal_pending(current))
    		return COMPACT_PARTIAL;
    
    	/* Compaction run completes if the migrate and free scanner meet */
    	if (cc->free_pfn <= cc->migrate_pfn)
    		return COMPACT_COMPLETE;
    
    	/*
    	 * order == -1 is expected when compacting via
    	 * /proc/sys/vm/compact_memory
    	 */
    	if (cc->order == -1)
    		return COMPACT_CONTINUE;
    
    	/* Compaction run is not finished if the watermark is not met */
    	watermark = low_wmark_pages(zone);
    	watermark += (1 << cc->order);
    
    	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
    		return COMPACT_CONTINUE;
    
    	/* Direct compactor: Is a suitable page free? */
    	for (order = cc->order; order < MAX_ORDER; order++) {
    		/* Job done if page is free of the right migratetype */
    		if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
    			return COMPACT_PARTIAL;
    
    		/* Job done if allocation would set block type */
    		if (order >= pageblock_order && zone->free_area[order].nr_free)
    			return COMPACT_PARTIAL;
    	}
    
    	return COMPACT_CONTINUE;
    }
    
    /*
     * compaction_suitable: Is this suitable to run compaction on this zone now?
     * Returns
     *   COMPACT_SKIPPED  - If there are too few free pages for compaction
     *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
     *   COMPACT_CONTINUE - If compaction should run now
     */
    unsigned long compaction_suitable(struct zone *zone, int order)
    {
    	int fragindex;
    	unsigned long watermark;
    
    	/*
    	 * order == -1 is expected when compacting via
    	 * /proc/sys/vm/compact_memory
    	 */
    	if (order == -1)
    		return COMPACT_CONTINUE;
    
    	/*
    	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
    	 * This is because during migration, copies of pages need to be
    	 * allocated and for a short time, the footprint is higher
    	 */
    	watermark = low_wmark_pages(zone) + (2UL << order);
    	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
    		return COMPACT_SKIPPED;
    
    	/*
    	 * fragmentation index determines if allocation failures are due to
    	 * low memory or external fragmentation
    	 *
    	 * index of -1000 implies allocations might succeed depending on
    	 * watermarks
    	 * index towards 0 implies failure is due to lack of memory
    	 * index towards 1000 implies failure is due to fragmentation
    	 *
    	 * Only compact if a failure would be due to fragmentation.
    	 */
    	fragindex = fragmentation_index(zone, order);
    	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
    		return COMPACT_SKIPPED;
    
    	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
    	    0, 0))
    		return COMPACT_PARTIAL;
    
    	return COMPACT_CONTINUE;
    }
    
    static int compact_zone(struct zone *zone, struct compact_control *cc)
    {
    	int ret;
    
    	ret = compaction_suitable(zone, cc->order);
    	switch (ret) {
    	case COMPACT_PARTIAL:
    	case COMPACT_SKIPPED:
    		/* Compaction is likely to fail */
    		return ret;
    	case COMPACT_CONTINUE:
    		/* Fall through to compaction */
    		;
    	}
    
    	/* Setup to move all movable pages to the end of the zone */
    	cc->migrate_pfn = zone->zone_start_pfn;
    	cc->free_pfn = cc->migrate_pfn + zone->spanned_pages;
    	cc->free_pfn &= ~(pageblock_nr_pages-1);
    
    	migrate_prep_local();
    
    	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
    		unsigned long nr_migrate, nr_remaining;
    		int err;
    
    		switch (isolate_migratepages(zone, cc)) {
    		case ISOLATE_ABORT:
    			ret = COMPACT_PARTIAL;
    			goto out;
    		case ISOLATE_NONE:
    			continue;
    		case ISOLATE_SUCCESS:
    			;
    		}
    
    		nr_migrate = cc->nr_migratepages;
    		err = migrate_pages(&cc->migratepages, compaction_alloc,
    				(unsigned long)cc, false,
    				cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC);
    		update_nr_listpages(cc);
    		nr_remaining = cc->nr_migratepages;
    
    		count_vm_event(COMPACTBLOCKS);
    		count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
    		if (nr_remaining)
    			count_vm_events(COMPACTPAGEFAILED, nr_remaining);
    		trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
    						nr_remaining);
    
    		/* Release LRU pages not migrated */
    		if (err) {
    			putback_lru_pages(&cc->migratepages);
    			cc->nr_migratepages = 0;
    		}
    
    	}
    
    out:
    	/* Release free pages and check accounting */
    	cc->nr_freepages -= release_freepages(&cc->freepages);
    	VM_BUG_ON(cc->nr_freepages != 0);
    
    	return ret;
    }
    
    static unsigned long compact_zone_order(struct zone *zone,
    				 int order, gfp_t gfp_mask,
    				 bool sync)
    {
    	struct compact_control cc = {
    		.nr_freepages = 0,
    		.nr_migratepages = 0,
    		.order = order,
    		.migratetype = allocflags_to_migratetype(gfp_mask),
    		.zone = zone,
    		.sync = sync,
    	};
    	INIT_LIST_HEAD(&cc.freepages);
    	INIT_LIST_HEAD(&cc.migratepages);
    
    	return compact_zone(zone, &cc);
    }
    
    int sysctl_extfrag_threshold = 500;
    
    /**
     * try_to_compact_pages - Direct compact to satisfy a high-order allocation
     * @zonelist: The zonelist used for the current allocation
     * @order: The order of the current allocation
     * @gfp_mask: The GFP mask of the current allocation
     * @nodemask: The allowed nodes to allocate from
     * @sync: Whether migration is synchronous or not
     *
     * This is the main entry point for direct page compaction.
     */
    unsigned long try_to_compact_pages(struct zonelist *zonelist,
    			int order, gfp_t gfp_mask, nodemask_t *nodemask,
    			bool sync)
    {
    	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
    	int may_enter_fs = gfp_mask & __GFP_FS;
    	int may_perform_io = gfp_mask & __GFP_IO;
    	struct zoneref *z;
    	struct zone *zone;
    	int rc = COMPACT_SKIPPED;
    
    	/*
    	 * Check whether it is worth even starting compaction. The order check is
    	 * made because an assumption is made that the page allocator can satisfy
    	 * the "cheaper" orders without taking special steps
    	 */
    	if (!order || !may_enter_fs || !may_perform_io)
    		return rc;
    
    	count_vm_event(COMPACTSTALL);
    
    	/* Compact each zone in the list */
    	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
    								nodemask) {
    		int status;
    
    		status = compact_zone_order(zone, order, gfp_mask, sync);
    		rc = max(status, rc);
    
    		/* If a normal allocation would succeed, stop compacting */
    		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
    			break;
    	}
    
    	return rc;
    }
    
    
    /* Compact all zones within a node */
    static int compact_node(int nid)
    {
    	int zoneid;
    	pg_data_t *pgdat;
    	struct zone *zone;
    
    	if (nid < 0 || nid >= nr_node_ids || !node_online(nid))
    		return -EINVAL;
    	pgdat = NODE_DATA(nid);
    
    	/* Flush pending updates to the LRU lists */
    	lru_add_drain_all();
    
    	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
    		struct compact_control cc = {
    			.nr_freepages = 0,
    			.nr_migratepages = 0,
    			.order = -1,
    			.sync = true,
    		};
    
    		zone = &pgdat->node_zones[zoneid];
    		if (!populated_zone(zone))
    			continue;
    
    		cc.zone = zone;
    		INIT_LIST_HEAD(&cc.freepages);
    		INIT_LIST_HEAD(&cc.migratepages);
    
    		compact_zone(zone, &cc);
    
    		VM_BUG_ON(!list_empty(&cc.freepages));
    		VM_BUG_ON(!list_empty(&cc.migratepages));
    	}
    
    	return 0;
    }
    
    /* Compact all nodes in the system */
    static int compact_nodes(void)
    {
    	int nid;
    
    	for_each_online_node(nid)
    		compact_node(nid);
    
    	return COMPACT_COMPLETE;
    }
    
    /* The written value is actually unused, all memory is compacted */
    int sysctl_compact_memory;
    
    /* This is the entry point for compacting all nodes via /proc/sys/vm */
    int sysctl_compaction_handler(struct ctl_table *table, int write,
    			void __user *buffer, size_t *length, loff_t *ppos)
    {
    	if (write)
    		return compact_nodes();
    
    	return 0;
    }
    
    int sysctl_extfrag_handler(struct ctl_table *table, int write,
    			void __user *buffer, size_t *length, loff_t *ppos)
    {
    	proc_dointvec_minmax(table, write, buffer, length, ppos);
    
    	return 0;
    }
    
    #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
    ssize_t sysfs_compact_node(struct device *dev,
    			struct device_attribute *attr,
    			const char *buf, size_t count)
    {
    	compact_node(dev->id);
    
    	return count;
    }
    static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
    
    int compaction_register_node(struct node *node)
    {
    	return device_create_file(&node->dev, &dev_attr_compact);
    }
    
    void compaction_unregister_node(struct node *node)
    {
    	return device_remove_file(&node->dev, &dev_attr_compact);
    }
    #endif /* CONFIG_SYSFS && CONFIG_NUMA */