Skip to content
Snippets Groups Projects
Select Git revision
  • 0c2d64fb6cae9aae480f6a46cfe79f8d7d48b59f
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

sys.c

Blame
  • sys.c 42.23 KiB
    /*
     *  linux/kernel/sys.c
     *
     *  Copyright (C) 1991, 1992  Linus Torvalds
     */
    
    #include <linux/module.h>
    #include <linux/mm.h>
    #include <linux/utsname.h>
    #include <linux/mman.h>
    #include <linux/smp_lock.h>
    #include <linux/notifier.h>
    #include <linux/reboot.h>
    #include <linux/prctl.h>
    #include <linux/highuid.h>
    #include <linux/fs.h>
    #include <linux/resource.h>
    #include <linux/kernel.h>
    #include <linux/kexec.h>
    #include <linux/workqueue.h>
    #include <linux/capability.h>
    #include <linux/device.h>
    #include <linux/key.h>
    #include <linux/times.h>
    #include <linux/posix-timers.h>
    #include <linux/security.h>
    #include <linux/dcookies.h>
    #include <linux/suspend.h>
    #include <linux/tty.h>
    #include <linux/signal.h>
    #include <linux/cn_proc.h>
    #include <linux/getcpu.h>
    #include <linux/task_io_accounting_ops.h>
    #include <linux/seccomp.h>
    #include <linux/cpu.h>
    
    #include <linux/compat.h>
    #include <linux/syscalls.h>
    #include <linux/kprobes.h>
    #include <linux/user_namespace.h>
    
    #include <asm/uaccess.h>
    #include <asm/io.h>
    #include <asm/unistd.h>
    
    #ifndef SET_UNALIGN_CTL
    # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
    #endif
    #ifndef GET_UNALIGN_CTL
    # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
    #endif
    #ifndef SET_FPEMU_CTL
    # define SET_FPEMU_CTL(a,b)	(-EINVAL)
    #endif
    #ifndef GET_FPEMU_CTL
    # define GET_FPEMU_CTL(a,b)	(-EINVAL)
    #endif
    #ifndef SET_FPEXC_CTL
    # define SET_FPEXC_CTL(a,b)	(-EINVAL)
    #endif
    #ifndef GET_FPEXC_CTL
    # define GET_FPEXC_CTL(a,b)	(-EINVAL)
    #endif
    #ifndef GET_ENDIAN
    # define GET_ENDIAN(a,b)	(-EINVAL)
    #endif
    #ifndef SET_ENDIAN
    # define SET_ENDIAN(a,b)	(-EINVAL)
    #endif
    #ifndef GET_TSC_CTL
    # define GET_TSC_CTL(a)		(-EINVAL)
    #endif
    #ifndef SET_TSC_CTL
    # define SET_TSC_CTL(a)		(-EINVAL)
    #endif
    
    /*
     * this is where the system-wide overflow UID and GID are defined, for
     * architectures that now have 32-bit UID/GID but didn't in the past
     */
    
    int overflowuid = DEFAULT_OVERFLOWUID;
    int overflowgid = DEFAULT_OVERFLOWGID;
    
    #ifdef CONFIG_UID16
    EXPORT_SYMBOL(overflowuid);
    EXPORT_SYMBOL(overflowgid);
    #endif
    
    /*
     * the same as above, but for filesystems which can only store a 16-bit
     * UID and GID. as such, this is needed on all architectures
     */
    
    int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
    int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
    
    EXPORT_SYMBOL(fs_overflowuid);
    EXPORT_SYMBOL(fs_overflowgid);
    
    /*
     * this indicates whether you can reboot with ctrl-alt-del: the default is yes
     */
    
    int C_A_D = 1;
    struct pid *cad_pid;
    EXPORT_SYMBOL(cad_pid);
    
    /*
     * If set, this is used for preparing the system to power off.
     */
    
    void (*pm_power_off_prepare)(void);
    
    static int set_one_prio(struct task_struct *p, int niceval, int error)
    {
    	int no_nice;
    
    	if (p->uid != current->euid &&
    		p->euid != current->euid && !capable(CAP_SYS_NICE)) {
    		error = -EPERM;
    		goto out;
    	}
    	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
    		error = -EACCES;
    		goto out;
    	}
    	no_nice = security_task_setnice(p, niceval);
    	if (no_nice) {
    		error = no_nice;
    		goto out;
    	}
    	if (error == -ESRCH)
    		error = 0;
    	set_user_nice(p, niceval);
    out:
    	return error;
    }
    
    asmlinkage long sys_setpriority(int which, int who, int niceval)
    {
    	struct task_struct *g, *p;
    	struct user_struct *user;
    	int error = -EINVAL;
    	struct pid *pgrp;
    
    	if (which > PRIO_USER || which < PRIO_PROCESS)
    		goto out;
    
    	/* normalize: avoid signed division (rounding problems) */
    	error = -ESRCH;
    	if (niceval < -20)
    		niceval = -20;
    	if (niceval > 19)
    		niceval = 19;
    
    	read_lock(&tasklist_lock);
    	switch (which) {
    		case PRIO_PROCESS:
    			if (who)
    				p = find_task_by_vpid(who);
    			else
    				p = current;
    			if (p)
    				error = set_one_prio(p, niceval, error);
    			break;
    		case PRIO_PGRP:
    			if (who)
    				pgrp = find_vpid(who);
    			else
    				pgrp = task_pgrp(current);
    			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
    				error = set_one_prio(p, niceval, error);
    			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
    			break;
    		case PRIO_USER:
    			user = current->user;
    			if (!who)
    				who = current->uid;
    			else
    				if ((who != current->uid) && !(user = find_user(who)))
    					goto out_unlock;	/* No processes for this user */
    
    			do_each_thread(g, p)
    				if (p->uid == who)
    					error = set_one_prio(p, niceval, error);
    			while_each_thread(g, p);
    			if (who != current->uid)
    				free_uid(user);		/* For find_user() */
    			break;
    	}
    out_unlock:
    	read_unlock(&tasklist_lock);
    out:
    	return error;
    }
    
    /*
     * Ugh. To avoid negative return values, "getpriority()" will
     * not return the normal nice-value, but a negated value that
     * has been offset by 20 (ie it returns 40..1 instead of -20..19)
     * to stay compatible.
     */
    asmlinkage long sys_getpriority(int which, int who)
    {
    	struct task_struct *g, *p;
    	struct user_struct *user;
    	long niceval, retval = -ESRCH;
    	struct pid *pgrp;
    
    	if (which > PRIO_USER || which < PRIO_PROCESS)
    		return -EINVAL;
    
    	read_lock(&tasklist_lock);
    	switch (which) {
    		case PRIO_PROCESS:
    			if (who)
    				p = find_task_by_vpid(who);
    			else
    				p = current;
    			if (p) {
    				niceval = 20 - task_nice(p);
    				if (niceval > retval)
    					retval = niceval;
    			}
    			break;
    		case PRIO_PGRP:
    			if (who)
    				pgrp = find_vpid(who);
    			else
    				pgrp = task_pgrp(current);
    			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
    				niceval = 20 - task_nice(p);
    				if (niceval > retval)
    					retval = niceval;
    			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
    			break;
    		case PRIO_USER:
    			user = current->user;
    			if (!who)
    				who = current->uid;
    			else
    				if ((who != current->uid) && !(user = find_user(who)))
    					goto out_unlock;	/* No processes for this user */
    
    			do_each_thread(g, p)
    				if (p->uid == who) {
    					niceval = 20 - task_nice(p);
    					if (niceval > retval)
    						retval = niceval;
    				}
    			while_each_thread(g, p);
    			if (who != current->uid)
    				free_uid(user);		/* for find_user() */
    			break;
    	}
    out_unlock:
    	read_unlock(&tasklist_lock);
    
    	return retval;
    }
    
    /**
     *	emergency_restart - reboot the system
     *
     *	Without shutting down any hardware or taking any locks
     *	reboot the system.  This is called when we know we are in
     *	trouble so this is our best effort to reboot.  This is
     *	safe to call in interrupt context.
     */
    void emergency_restart(void)
    {
    	machine_emergency_restart();
    }
    EXPORT_SYMBOL_GPL(emergency_restart);
    
    void kernel_restart_prepare(char *cmd)
    {
    	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
    	system_state = SYSTEM_RESTART;
    	device_shutdown();
    	sysdev_shutdown();
    }
    
    /**
     *	kernel_restart - reboot the system
     *	@cmd: pointer to buffer containing command to execute for restart
     *		or %NULL
     *
     *	Shutdown everything and perform a clean reboot.
     *	This is not safe to call in interrupt context.
     */
    void kernel_restart(char *cmd)
    {
    	kernel_restart_prepare(cmd);
    	if (!cmd)
    		printk(KERN_EMERG "Restarting system.\n");
    	else
    		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
    	machine_restart(cmd);
    }
    EXPORT_SYMBOL_GPL(kernel_restart);
    
    static void kernel_shutdown_prepare(enum system_states state)
    {
    	blocking_notifier_call_chain(&reboot_notifier_list,
    		(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
    	system_state = state;
    	device_shutdown();
    }
    /**
     *	kernel_halt - halt the system
     *
     *	Shutdown everything and perform a clean system halt.
     */
    void kernel_halt(void)
    {
    	kernel_shutdown_prepare(SYSTEM_HALT);
    	sysdev_shutdown();
    	printk(KERN_EMERG "System halted.\n");
    	machine_halt();
    }
    
    EXPORT_SYMBOL_GPL(kernel_halt);
    
    /**
     *	kernel_power_off - power_off the system
     *
     *	Shutdown everything and perform a clean system power_off.
     */
    void kernel_power_off(void)
    {
    	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
    	if (pm_power_off_prepare)
    		pm_power_off_prepare();
    	disable_nonboot_cpus();
    	sysdev_shutdown();
    	printk(KERN_EMERG "Power down.\n");
    	machine_power_off();
    }
    EXPORT_SYMBOL_GPL(kernel_power_off);
    /*
     * Reboot system call: for obvious reasons only root may call it,
     * and even root needs to set up some magic numbers in the registers
     * so that some mistake won't make this reboot the whole machine.
     * You can also set the meaning of the ctrl-alt-del-key here.
     *
     * reboot doesn't sync: do that yourself before calling this.
     */
    asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
    {
    	char buffer[256];
    
    	/* We only trust the superuser with rebooting the system. */
    	if (!capable(CAP_SYS_BOOT))
    		return -EPERM;
    
    	/* For safety, we require "magic" arguments. */
    	if (magic1 != LINUX_REBOOT_MAGIC1 ||
    	    (magic2 != LINUX_REBOOT_MAGIC2 &&
    	                magic2 != LINUX_REBOOT_MAGIC2A &&
    			magic2 != LINUX_REBOOT_MAGIC2B &&
    	                magic2 != LINUX_REBOOT_MAGIC2C))
    		return -EINVAL;
    
    	/* Instead of trying to make the power_off code look like
    	 * halt when pm_power_off is not set do it the easy way.
    	 */
    	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
    		cmd = LINUX_REBOOT_CMD_HALT;
    
    	lock_kernel();
    	switch (cmd) {
    	case LINUX_REBOOT_CMD_RESTART:
    		kernel_restart(NULL);
    		break;
    
    	case LINUX_REBOOT_CMD_CAD_ON:
    		C_A_D = 1;
    		break;
    
    	case LINUX_REBOOT_CMD_CAD_OFF:
    		C_A_D = 0;
    		break;
    
    	case LINUX_REBOOT_CMD_HALT:
    		kernel_halt();
    		unlock_kernel();
    		do_exit(0);
    		break;
    
    	case LINUX_REBOOT_CMD_POWER_OFF:
    		kernel_power_off();
    		unlock_kernel();
    		do_exit(0);
    		break;
    
    	case LINUX_REBOOT_CMD_RESTART2:
    		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
    			unlock_kernel();
    			return -EFAULT;
    		}
    		buffer[sizeof(buffer) - 1] = '\0';
    
    		kernel_restart(buffer);
    		break;
    
    #ifdef CONFIG_KEXEC
    	case LINUX_REBOOT_CMD_KEXEC:
    		{
    			int ret;
    			ret = kernel_kexec();
    			unlock_kernel();
    			return ret;
    		}
    #endif
    
    #ifdef CONFIG_HIBERNATION
    	case LINUX_REBOOT_CMD_SW_SUSPEND:
    		{
    			int ret = hibernate();
    			unlock_kernel();
    			return ret;
    		}
    #endif
    
    	default:
    		unlock_kernel();
    		return -EINVAL;
    	}
    	unlock_kernel();
    	return 0;
    }
    
    static void deferred_cad(struct work_struct *dummy)
    {
    	kernel_restart(NULL);
    }
    
    /*
     * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
     * As it's called within an interrupt, it may NOT sync: the only choice
     * is whether to reboot at once, or just ignore the ctrl-alt-del.
     */
    void ctrl_alt_del(void)
    {
    	static DECLARE_WORK(cad_work, deferred_cad);
    
    	if (C_A_D)
    		schedule_work(&cad_work);
    	else
    		kill_cad_pid(SIGINT, 1);
    }
    	
    /*
     * Unprivileged users may change the real gid to the effective gid
     * or vice versa.  (BSD-style)
     *
     * If you set the real gid at all, or set the effective gid to a value not
     * equal to the real gid, then the saved gid is set to the new effective gid.
     *
     * This makes it possible for a setgid program to completely drop its
     * privileges, which is often a useful assertion to make when you are doing
     * a security audit over a program.
     *
     * The general idea is that a program which uses just setregid() will be
     * 100% compatible with BSD.  A program which uses just setgid() will be
     * 100% compatible with POSIX with saved IDs. 
     *
     * SMP: There are not races, the GIDs are checked only by filesystem
     *      operations (as far as semantic preservation is concerned).
     */
    asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
    {
    	int old_rgid = current->gid;
    	int old_egid = current->egid;
    	int new_rgid = old_rgid;
    	int new_egid = old_egid;
    	int retval;
    
    	retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
    	if (retval)
    		return retval;
    
    	if (rgid != (gid_t) -1) {
    		if ((old_rgid == rgid) ||
    		    (current->egid==rgid) ||
    		    capable(CAP_SETGID))
    			new_rgid = rgid;
    		else
    			return -EPERM;
    	}
    	if (egid != (gid_t) -1) {
    		if ((old_rgid == egid) ||
    		    (current->egid == egid) ||
    		    (current->sgid == egid) ||
    		    capable(CAP_SETGID))
    			new_egid = egid;
    		else
    			return -EPERM;
    	}
    	if (new_egid != old_egid) {
    		set_dumpable(current->mm, suid_dumpable);
    		smp_wmb();
    	}
    	if (rgid != (gid_t) -1 ||
    	    (egid != (gid_t) -1 && egid != old_rgid))
    		current->sgid = new_egid;
    	current->fsgid = new_egid;
    	current->egid = new_egid;
    	current->gid = new_rgid;
    	key_fsgid_changed(current);
    	proc_id_connector(current, PROC_EVENT_GID);
    	return 0;
    }
    
    /*
     * setgid() is implemented like SysV w/ SAVED_IDS 
     *
     * SMP: Same implicit races as above.
     */
    asmlinkage long sys_setgid(gid_t gid)
    {
    	int old_egid = current->egid;
    	int retval;
    
    	retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
    	if (retval)
    		return retval;
    
    	if (capable(CAP_SETGID)) {
    		if (old_egid != gid) {
    			set_dumpable(current->mm, suid_dumpable);
    			smp_wmb();
    		}
    		current->gid = current->egid = current->sgid = current->fsgid = gid;
    	} else if ((gid == current->gid) || (gid == current->sgid)) {
    		if (old_egid != gid) {
    			set_dumpable(current->mm, suid_dumpable);
    			smp_wmb();
    		}
    		current->egid = current->fsgid = gid;
    	}
    	else
    		return -EPERM;
    
    	key_fsgid_changed(current);
    	proc_id_connector(current, PROC_EVENT_GID);
    	return 0;
    }
      
    static int set_user(uid_t new_ruid, int dumpclear)
    {
    	struct user_struct *new_user;
    
    	new_user = alloc_uid(current->nsproxy->user_ns, new_ruid);
    	if (!new_user)
    		return -EAGAIN;
    
    	if (atomic_read(&new_user->processes) >=
    				current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
    			new_user != current->nsproxy->user_ns->root_user) {
    		free_uid(new_user);
    		return -EAGAIN;
    	}
    
    	switch_uid(new_user);
    
    	if (dumpclear) {
    		set_dumpable(current->mm, suid_dumpable);
    		smp_wmb();
    	}
    	current->uid = new_ruid;
    	return 0;
    }
    
    /*
     * Unprivileged users may change the real uid to the effective uid
     * or vice versa.  (BSD-style)
     *
     * If you set the real uid at all, or set the effective uid to a value not
     * equal to the real uid, then the saved uid is set to the new effective uid.
     *
     * This makes it possible for a setuid program to completely drop its
     * privileges, which is often a useful assertion to make when you are doing
     * a security audit over a program.
     *
     * The general idea is that a program which uses just setreuid() will be
     * 100% compatible with BSD.  A program which uses just setuid() will be
     * 100% compatible with POSIX with saved IDs. 
     */
    asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
    {
    	int old_ruid, old_euid, old_suid, new_ruid, new_euid;
    	int retval;
    
    	retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
    	if (retval)
    		return retval;
    
    	new_ruid = old_ruid = current->uid;
    	new_euid = old_euid = current->euid;
    	old_suid = current->suid;
    
    	if (ruid != (uid_t) -1) {
    		new_ruid = ruid;
    		if ((old_ruid != ruid) &&
    		    (current->euid != ruid) &&
    		    !capable(CAP_SETUID))
    			return -EPERM;
    	}
    
    	if (euid != (uid_t) -1) {
    		new_euid = euid;
    		if ((old_ruid != euid) &&
    		    (current->euid != euid) &&
    		    (current->suid != euid) &&
    		    !capable(CAP_SETUID))
    			return -EPERM;
    	}
    
    	if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
    		return -EAGAIN;
    
    	if (new_euid != old_euid) {
    		set_dumpable(current->mm, suid_dumpable);
    		smp_wmb();
    	}
    	current->fsuid = current->euid = new_euid;
    	if (ruid != (uid_t) -1 ||
    	    (euid != (uid_t) -1 && euid != old_ruid))
    		current->suid = current->euid;
    	current->fsuid = current->euid;
    
    	key_fsuid_changed(current);
    	proc_id_connector(current, PROC_EVENT_UID);
    
    	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
    }
    
    
    		
    /*
     * setuid() is implemented like SysV with SAVED_IDS 
     * 
     * Note that SAVED_ID's is deficient in that a setuid root program
     * like sendmail, for example, cannot set its uid to be a normal 
     * user and then switch back, because if you're root, setuid() sets
     * the saved uid too.  If you don't like this, blame the bright people
     * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
     * will allow a root program to temporarily drop privileges and be able to
     * regain them by swapping the real and effective uid.  
     */
    asmlinkage long sys_setuid(uid_t uid)
    {
    	int old_euid = current->euid;
    	int old_ruid, old_suid, new_suid;
    	int retval;
    
    	retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
    	if (retval)
    		return retval;
    
    	old_ruid = current->uid;
    	old_suid = current->suid;
    	new_suid = old_suid;
    	
    	if (capable(CAP_SETUID)) {
    		if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
    			return -EAGAIN;
    		new_suid = uid;
    	} else if ((uid != current->uid) && (uid != new_suid))
    		return -EPERM;
    
    	if (old_euid != uid) {
    		set_dumpable(current->mm, suid_dumpable);
    		smp_wmb();
    	}
    	current->fsuid = current->euid = uid;
    	current->suid = new_suid;
    
    	key_fsuid_changed(current);
    	proc_id_connector(current, PROC_EVENT_UID);
    
    	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
    }
    
    
    /*
     * This function implements a generic ability to update ruid, euid,
     * and suid.  This allows you to implement the 4.4 compatible seteuid().
     */
    asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
    {
    	int old_ruid = current->uid;
    	int old_euid = current->euid;
    	int old_suid = current->suid;
    	int retval;
    
    	retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
    	if (retval)
    		return retval;
    
    	if (!capable(CAP_SETUID)) {
    		if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
    		    (ruid != current->euid) && (ruid != current->suid))
    			return -EPERM;
    		if ((euid != (uid_t) -1) && (euid != current->uid) &&
    		    (euid != current->euid) && (euid != current->suid))
    			return -EPERM;
    		if ((suid != (uid_t) -1) && (suid != current->uid) &&
    		    (suid != current->euid) && (suid != current->suid))
    			return -EPERM;
    	}
    	if (ruid != (uid_t) -1) {
    		if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
    			return -EAGAIN;
    	}
    	if (euid != (uid_t) -1) {
    		if (euid != current->euid) {
    			set_dumpable(current->mm, suid_dumpable);
    			smp_wmb();
    		}
    		current->euid = euid;
    	}
    	current->fsuid = current->euid;
    	if (suid != (uid_t) -1)
    		current->suid = suid;
    
    	key_fsuid_changed(current);
    	proc_id_connector(current, PROC_EVENT_UID);
    
    	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
    }
    
    asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
    {
    	int retval;
    
    	if (!(retval = put_user(current->uid, ruid)) &&
    	    !(retval = put_user(current->euid, euid)))
    		retval = put_user(current->suid, suid);
    
    	return retval;
    }
    
    /*
     * Same as above, but for rgid, egid, sgid.
     */
    asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
    {
    	int retval;
    
    	retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
    	if (retval)
    		return retval;
    
    	if (!capable(CAP_SETGID)) {
    		if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
    		    (rgid != current->egid) && (rgid != current->sgid))
    			return -EPERM;
    		if ((egid != (gid_t) -1) && (egid != current->gid) &&
    		    (egid != current->egid) && (egid != current->sgid))
    			return -EPERM;
    		if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
    		    (sgid != current->egid) && (sgid != current->sgid))
    			return -EPERM;
    	}
    	if (egid != (gid_t) -1) {
    		if (egid != current->egid) {
    			set_dumpable(current->mm, suid_dumpable);
    			smp_wmb();
    		}
    		current->egid = egid;
    	}
    	current->fsgid = current->egid;
    	if (rgid != (gid_t) -1)
    		current->gid = rgid;
    	if (sgid != (gid_t) -1)
    		current->sgid = sgid;
    
    	key_fsgid_changed(current);
    	proc_id_connector(current, PROC_EVENT_GID);
    	return 0;
    }
    
    asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
    {
    	int retval;
    
    	if (!(retval = put_user(current->gid, rgid)) &&
    	    !(retval = put_user(current->egid, egid)))
    		retval = put_user(current->sgid, sgid);
    
    	return retval;
    }
    
    
    /*
     * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
     * is used for "access()" and for the NFS daemon (letting nfsd stay at
     * whatever uid it wants to). It normally shadows "euid", except when
     * explicitly set by setfsuid() or for access..
     */
    asmlinkage long sys_setfsuid(uid_t uid)
    {
    	int old_fsuid;
    
    	old_fsuid = current->fsuid;
    	if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
    		return old_fsuid;
    
    	if (uid == current->uid || uid == current->euid ||
    	    uid == current->suid || uid == current->fsuid || 
    	    capable(CAP_SETUID)) {
    		if (uid != old_fsuid) {
    			set_dumpable(current->mm, suid_dumpable);
    			smp_wmb();
    		}
    		current->fsuid = uid;
    	}
    
    	key_fsuid_changed(current);
    	proc_id_connector(current, PROC_EVENT_UID);
    
    	security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
    
    	return old_fsuid;
    }
    
    /*
     * Samma på svenska..
     */
    asmlinkage long sys_setfsgid(gid_t gid)
    {
    	int old_fsgid;
    
    	old_fsgid = current->fsgid;
    	if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
    		return old_fsgid;
    
    	if (gid == current->gid || gid == current->egid ||
    	    gid == current->sgid || gid == current->fsgid || 
    	    capable(CAP_SETGID)) {
    		if (gid != old_fsgid) {
    			set_dumpable(current->mm, suid_dumpable);
    			smp_wmb();
    		}
    		current->fsgid = gid;
    		key_fsgid_changed(current);
    		proc_id_connector(current, PROC_EVENT_GID);
    	}
    	return old_fsgid;
    }
    
    asmlinkage long sys_times(struct tms __user * tbuf)
    {
    	/*
    	 *	In the SMP world we might just be unlucky and have one of
    	 *	the times increment as we use it. Since the value is an
    	 *	atomically safe type this is just fine. Conceptually its
    	 *	as if the syscall took an instant longer to occur.
    	 */
    	if (tbuf) {
    		struct tms tmp;
    		struct task_struct *tsk = current;
    		struct task_struct *t;
    		cputime_t utime, stime, cutime, cstime;
    
    		spin_lock_irq(&tsk->sighand->siglock);
    		utime = tsk->signal->utime;
    		stime = tsk->signal->stime;
    		t = tsk;
    		do {
    			utime = cputime_add(utime, t->utime);
    			stime = cputime_add(stime, t->stime);
    			t = next_thread(t);
    		} while (t != tsk);
    
    		cutime = tsk->signal->cutime;
    		cstime = tsk->signal->cstime;
    		spin_unlock_irq(&tsk->sighand->siglock);
    
    		tmp.tms_utime = cputime_to_clock_t(utime);
    		tmp.tms_stime = cputime_to_clock_t(stime);
    		tmp.tms_cutime = cputime_to_clock_t(cutime);
    		tmp.tms_cstime = cputime_to_clock_t(cstime);
    		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
    			return -EFAULT;
    	}
    	return (long) jiffies_64_to_clock_t(get_jiffies_64());
    }
    
    /*
     * This needs some heavy checking ...
     * I just haven't the stomach for it. I also don't fully
     * understand sessions/pgrp etc. Let somebody who does explain it.
     *
     * OK, I think I have the protection semantics right.... this is really
     * only important on a multi-user system anyway, to make sure one user
     * can't send a signal to a process owned by another.  -TYT, 12/12/91
     *
     * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
     * LBT 04.03.94
     */
    asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
    {
    	struct task_struct *p;
    	struct task_struct *group_leader = current->group_leader;
    	struct pid *pgrp;
    	int err;
    
    	if (!pid)
    		pid = task_pid_vnr(group_leader);
    	if (!pgid)
    		pgid = pid;
    	if (pgid < 0)
    		return -EINVAL;
    
    	/* From this point forward we keep holding onto the tasklist lock
    	 * so that our parent does not change from under us. -DaveM
    	 */
    	write_lock_irq(&tasklist_lock);
    
    	err = -ESRCH;
    	p = find_task_by_vpid(pid);
    	if (!p)
    		goto out;
    
    	err = -EINVAL;
    	if (!thread_group_leader(p))
    		goto out;
    
    	if (same_thread_group(p->real_parent, group_leader)) {
    		err = -EPERM;
    		if (task_session(p) != task_session(group_leader))
    			goto out;
    		err = -EACCES;
    		if (p->did_exec)
    			goto out;
    	} else {
    		err = -ESRCH;
    		if (p != group_leader)
    			goto out;
    	}
    
    	err = -EPERM;
    	if (p->signal->leader)
    		goto out;
    
    	pgrp = task_pid(p);
    	if (pgid != pid) {
    		struct task_struct *g;
    
    		pgrp = find_vpid(pgid);
    		g = pid_task(pgrp, PIDTYPE_PGID);
    		if (!g || task_session(g) != task_session(group_leader))
    			goto out;
    	}
    
    	err = security_task_setpgid(p, pgid);
    	if (err)
    		goto out;
    
    	if (task_pgrp(p) != pgrp) {
    		change_pid(p, PIDTYPE_PGID, pgrp);
    		set_task_pgrp(p, pid_nr(pgrp));
    	}
    
    	err = 0;
    out:
    	/* All paths lead to here, thus we are safe. -DaveM */
    	write_unlock_irq(&tasklist_lock);
    	return err;
    }
    
    asmlinkage long sys_getpgid(pid_t pid)
    {
    	struct task_struct *p;
    	struct pid *grp;
    	int retval;
    
    	rcu_read_lock();
    	if (!pid)
    		grp = task_pgrp(current);
    	else {
    		retval = -ESRCH;
    		p = find_task_by_vpid(pid);
    		if (!p)
    			goto out;
    		grp = task_pgrp(p);
    		if (!grp)
    			goto out;
    
    		retval = security_task_getpgid(p);
    		if (retval)
    			goto out;
    	}
    	retval = pid_vnr(grp);
    out:
    	rcu_read_unlock();
    	return retval;
    }
    
    #ifdef __ARCH_WANT_SYS_GETPGRP
    
    asmlinkage long sys_getpgrp(void)
    {
    	return sys_getpgid(0);
    }
    
    #endif
    
    asmlinkage long sys_getsid(pid_t pid)
    {
    	struct task_struct *p;
    	struct pid *sid;
    	int retval;
    
    	rcu_read_lock();
    	if (!pid)
    		sid = task_session(current);
    	else {
    		retval = -ESRCH;
    		p = find_task_by_vpid(pid);
    		if (!p)
    			goto out;
    		sid = task_session(p);
    		if (!sid)
    			goto out;
    
    		retval = security_task_getsid(p);
    		if (retval)
    			goto out;
    	}
    	retval = pid_vnr(sid);
    out:
    	rcu_read_unlock();
    	return retval;
    }
    
    asmlinkage long sys_setsid(void)
    {
    	struct task_struct *group_leader = current->group_leader;
    	struct pid *sid = task_pid(group_leader);
    	pid_t session = pid_vnr(sid);
    	int err = -EPERM;
    
    	write_lock_irq(&tasklist_lock);
    	/* Fail if I am already a session leader */
    	if (group_leader->signal->leader)
    		goto out;
    
    	/* Fail if a process group id already exists that equals the
    	 * proposed session id.
    	 */
    	if (pid_task(sid, PIDTYPE_PGID))
    		goto out;
    
    	group_leader->signal->leader = 1;
    	__set_special_pids(sid);
    
    	proc_clear_tty(group_leader);
    
    	err = session;
    out:
    	write_unlock_irq(&tasklist_lock);
    	return err;
    }
    
    /*
     * Supplementary group IDs
     */
    
    /* init to 2 - one for init_task, one to ensure it is never freed */
    struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
    
    struct group_info *groups_alloc(int gidsetsize)
    {
    	struct group_info *group_info;
    	int nblocks;
    	int i;
    
    	nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
    	/* Make sure we always allocate at least one indirect block pointer */
    	nblocks = nblocks ? : 1;
    	group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
    	if (!group_info)
    		return NULL;
    	group_info->ngroups = gidsetsize;
    	group_info->nblocks = nblocks;
    	atomic_set(&group_info->usage, 1);
    
    	if (gidsetsize <= NGROUPS_SMALL)
    		group_info->blocks[0] = group_info->small_block;
    	else {
    		for (i = 0; i < nblocks; i++) {
    			gid_t *b;
    			b = (void *)__get_free_page(GFP_USER);
    			if (!b)
    				goto out_undo_partial_alloc;
    			group_info->blocks[i] = b;
    		}
    	}
    	return group_info;
    
    out_undo_partial_alloc:
    	while (--i >= 0) {
    		free_page((unsigned long)group_info->blocks[i]);
    	}
    	kfree(group_info);
    	return NULL;
    }
    
    EXPORT_SYMBOL(groups_alloc);
    
    void groups_free(struct group_info *group_info)
    {
    	if (group_info->blocks[0] != group_info->small_block) {
    		int i;
    		for (i = 0; i < group_info->nblocks; i++)
    			free_page((unsigned long)group_info->blocks[i]);
    	}
    	kfree(group_info);
    }
    
    EXPORT_SYMBOL(groups_free);
    
    /* export the group_info to a user-space array */
    static int groups_to_user(gid_t __user *grouplist,
        struct group_info *group_info)
    {
    	int i;
    	unsigned int count = group_info->ngroups;
    
    	for (i = 0; i < group_info->nblocks; i++) {
    		unsigned int cp_count = min(NGROUPS_PER_BLOCK, count);
    		unsigned int len = cp_count * sizeof(*grouplist);
    
    		if (copy_to_user(grouplist, group_info->blocks[i], len))
    			return -EFAULT;
    
    		grouplist += NGROUPS_PER_BLOCK;
    		count -= cp_count;
    	}
    	return 0;
    }
    
    /* fill a group_info from a user-space array - it must be allocated already */
    static int groups_from_user(struct group_info *group_info,
        gid_t __user *grouplist)
    {
    	int i;
    	unsigned int count = group_info->ngroups;
    
    	for (i = 0; i < group_info->nblocks; i++) {
    		unsigned int cp_count = min(NGROUPS_PER_BLOCK, count);
    		unsigned int len = cp_count * sizeof(*grouplist);
    
    		if (copy_from_user(group_info->blocks[i], grouplist, len))
    			return -EFAULT;
    
    		grouplist += NGROUPS_PER_BLOCK;
    		count -= cp_count;
    	}
    	return 0;
    }
    
    /* a simple Shell sort */
    static void groups_sort(struct group_info *group_info)
    {
    	int base, max, stride;
    	int gidsetsize = group_info->ngroups;
    
    	for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
    		; /* nothing */
    	stride /= 3;
    
    	while (stride) {
    		max = gidsetsize - stride;
    		for (base = 0; base < max; base++) {
    			int left = base;
    			int right = left + stride;
    			gid_t tmp = GROUP_AT(group_info, right);
    
    			while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
    				GROUP_AT(group_info, right) =
    				    GROUP_AT(group_info, left);
    				right = left;
    				left -= stride;
    			}
    			GROUP_AT(group_info, right) = tmp;
    		}
    		stride /= 3;
    	}
    }
    
    /* a simple bsearch */
    int groups_search(struct group_info *group_info, gid_t grp)
    {
    	unsigned int left, right;
    
    	if (!group_info)
    		return 0;
    
    	left = 0;
    	right = group_info->ngroups;
    	while (left < right) {
    		unsigned int mid = (left+right)/2;
    		int cmp = grp - GROUP_AT(group_info, mid);
    		if (cmp > 0)
    			left = mid + 1;
    		else if (cmp < 0)
    			right = mid;
    		else
    			return 1;
    	}
    	return 0;
    }
    
    /* validate and set current->group_info */
    int set_current_groups(struct group_info *group_info)
    {
    	int retval;
    	struct group_info *old_info;
    
    	retval = security_task_setgroups(group_info);
    	if (retval)
    		return retval;
    
    	groups_sort(group_info);
    	get_group_info(group_info);
    
    	task_lock(current);
    	old_info = current->group_info;
    	current->group_info = group_info;
    	task_unlock(current);
    
    	put_group_info(old_info);
    
    	return 0;
    }
    
    EXPORT_SYMBOL(set_current_groups);
    
    asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
    {
    	int i = 0;
    
    	/*
    	 *	SMP: Nobody else can change our grouplist. Thus we are
    	 *	safe.
    	 */
    
    	if (gidsetsize < 0)
    		return -EINVAL;
    
    	/* no need to grab task_lock here; it cannot change */
    	i = current->group_info->ngroups;
    	if (gidsetsize) {
    		if (i > gidsetsize) {
    			i = -EINVAL;
    			goto out;
    		}
    		if (groups_to_user(grouplist, current->group_info)) {
    			i = -EFAULT;
    			goto out;
    		}
    	}
    out:
    	return i;
    }
    
    /*
     *	SMP: Our groups are copy-on-write. We can set them safely
     *	without another task interfering.
     */
     
    asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
    {
    	struct group_info *group_info;
    	int retval;
    
    	if (!capable(CAP_SETGID))
    		return -EPERM;
    	if ((unsigned)gidsetsize > NGROUPS_MAX)
    		return -EINVAL;
    
    	group_info = groups_alloc(gidsetsize);
    	if (!group_info)
    		return -ENOMEM;
    	retval = groups_from_user(group_info, grouplist);
    	if (retval) {
    		put_group_info(group_info);
    		return retval;
    	}
    
    	retval = set_current_groups(group_info);
    	put_group_info(group_info);
    
    	return retval;
    }
    
    /*
     * Check whether we're fsgid/egid or in the supplemental group..
     */
    int in_group_p(gid_t grp)
    {
    	int retval = 1;
    	if (grp != current->fsgid)
    		retval = groups_search(current->group_info, grp);
    	return retval;
    }
    
    EXPORT_SYMBOL(in_group_p);
    
    int in_egroup_p(gid_t grp)
    {
    	int retval = 1;
    	if (grp != current->egid)
    		retval = groups_search(current->group_info, grp);
    	return retval;
    }
    
    EXPORT_SYMBOL(in_egroup_p);
    
    DECLARE_RWSEM(uts_sem);
    
    asmlinkage long sys_newuname(struct new_utsname __user * name)
    {
    	int errno = 0;
    
    	down_read(&uts_sem);
    	if (copy_to_user(name, utsname(), sizeof *name))
    		errno = -EFAULT;
    	up_read(&uts_sem);
    	return errno;
    }
    
    asmlinkage long sys_sethostname(char __user *name, int len)
    {
    	int errno;
    	char tmp[__NEW_UTS_LEN];
    
    	if (!capable(CAP_SYS_ADMIN))
    		return -EPERM;
    	if (len < 0 || len > __NEW_UTS_LEN)
    		return -EINVAL;
    	down_write(&uts_sem);
    	errno = -EFAULT;
    	if (!copy_from_user(tmp, name, len)) {
    		memcpy(utsname()->nodename, tmp, len);
    		utsname()->nodename[len] = 0;
    		errno = 0;
    	}
    	up_write(&uts_sem);
    	return errno;
    }
    
    #ifdef __ARCH_WANT_SYS_GETHOSTNAME
    
    asmlinkage long sys_gethostname(char __user *name, int len)
    {
    	int i, errno;
    
    	if (len < 0)
    		return -EINVAL;
    	down_read(&uts_sem);
    	i = 1 + strlen(utsname()->nodename);
    	if (i > len)
    		i = len;
    	errno = 0;
    	if (copy_to_user(name, utsname()->nodename, i))
    		errno = -EFAULT;
    	up_read(&uts_sem);
    	return errno;
    }
    
    #endif
    
    /*
     * Only setdomainname; getdomainname can be implemented by calling
     * uname()
     */
    asmlinkage long sys_setdomainname(char __user *name, int len)
    {
    	int errno;
    	char tmp[__NEW_UTS_LEN];
    
    	if (!capable(CAP_SYS_ADMIN))
    		return -EPERM;
    	if (len < 0 || len > __NEW_UTS_LEN)
    		return -EINVAL;
    
    	down_write(&uts_sem);
    	errno = -EFAULT;
    	if (!copy_from_user(tmp, name, len)) {
    		memcpy(utsname()->domainname, tmp, len);
    		utsname()->domainname[len] = 0;
    		errno = 0;
    	}
    	up_write(&uts_sem);
    	return errno;
    }
    
    asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
    {
    	if (resource >= RLIM_NLIMITS)
    		return -EINVAL;
    	else {
    		struct rlimit value;
    		task_lock(current->group_leader);
    		value = current->signal->rlim[resource];
    		task_unlock(current->group_leader);
    		return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
    	}
    }
    
    #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
    
    /*
     *	Back compatibility for getrlimit. Needed for some apps.
     */
     
    asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
    {
    	struct rlimit x;
    	if (resource >= RLIM_NLIMITS)
    		return -EINVAL;
    
    	task_lock(current->group_leader);
    	x = current->signal->rlim[resource];
    	task_unlock(current->group_leader);
    	if (x.rlim_cur > 0x7FFFFFFF)
    		x.rlim_cur = 0x7FFFFFFF;
    	if (x.rlim_max > 0x7FFFFFFF)
    		x.rlim_max = 0x7FFFFFFF;
    	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
    }
    
    #endif
    
    asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
    {
    	struct rlimit new_rlim, *old_rlim;
    	unsigned long it_prof_secs;
    	int retval;
    
    	if (resource >= RLIM_NLIMITS)
    		return -EINVAL;
    	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
    		return -EFAULT;
    	old_rlim = current->signal->rlim + resource;
    	if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
    	    !capable(CAP_SYS_RESOURCE))
    		return -EPERM;
    
    	if (resource == RLIMIT_NOFILE) {
    		if (new_rlim.rlim_max == RLIM_INFINITY)
    			new_rlim.rlim_max = sysctl_nr_open;
    		if (new_rlim.rlim_cur == RLIM_INFINITY)
    			new_rlim.rlim_cur = sysctl_nr_open;
    		if (new_rlim.rlim_max > sysctl_nr_open)
    			return -EPERM;
    	}
    
    	if (new_rlim.rlim_cur > new_rlim.rlim_max)
    		return -EINVAL;
    
    	retval = security_task_setrlimit(resource, &new_rlim);
    	if (retval)
    		return retval;
    
    	if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) {
    		/*
    		 * The caller is asking for an immediate RLIMIT_CPU
    		 * expiry.  But we use the zero value to mean "it was
    		 * never set".  So let's cheat and make it one second
    		 * instead
    		 */
    		new_rlim.rlim_cur = 1;
    	}
    
    	task_lock(current->group_leader);
    	*old_rlim = new_rlim;
    	task_unlock(current->group_leader);
    
    	if (resource != RLIMIT_CPU)
    		goto out;
    
    	/*
    	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
    	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
    	 * very long-standing error, and fixing it now risks breakage of
    	 * applications, so we live with it
    	 */
    	if (new_rlim.rlim_cur == RLIM_INFINITY)
    		goto out;
    
    	it_prof_secs = cputime_to_secs(current->signal->it_prof_expires);
    	if (it_prof_secs == 0 || new_rlim.rlim_cur <= it_prof_secs) {
    		unsigned long rlim_cur = new_rlim.rlim_cur;
    		cputime_t cputime;
    
    		cputime = secs_to_cputime(rlim_cur);
    		read_lock(&tasklist_lock);
    		spin_lock_irq(&current->sighand->siglock);
    		set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
    		spin_unlock_irq(&current->sighand->siglock);
    		read_unlock(&tasklist_lock);
    	}
    out:
    	return 0;
    }
    
    /*
     * It would make sense to put struct rusage in the task_struct,
     * except that would make the task_struct be *really big*.  After
     * task_struct gets moved into malloc'ed memory, it would
     * make sense to do this.  It will make moving the rest of the information
     * a lot simpler!  (Which we're not doing right now because we're not
     * measuring them yet).
     *
     * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
     * races with threads incrementing their own counters.  But since word
     * reads are atomic, we either get new values or old values and we don't
     * care which for the sums.  We always take the siglock to protect reading
     * the c* fields from p->signal from races with exit.c updating those
     * fields when reaping, so a sample either gets all the additions of a
     * given child after it's reaped, or none so this sample is before reaping.
     *
     * Locking:
     * We need to take the siglock for CHILDEREN, SELF and BOTH
     * for  the cases current multithreaded, non-current single threaded
     * non-current multithreaded.  Thread traversal is now safe with
     * the siglock held.
     * Strictly speaking, we donot need to take the siglock if we are current and
     * single threaded,  as no one else can take our signal_struct away, no one
     * else can  reap the  children to update signal->c* counters, and no one else
     * can race with the signal-> fields. If we do not take any lock, the
     * signal-> fields could be read out of order while another thread was just
     * exiting. So we should  place a read memory barrier when we avoid the lock.
     * On the writer side,  write memory barrier is implied in  __exit_signal
     * as __exit_signal releases  the siglock spinlock after updating the signal->
     * fields. But we don't do this yet to keep things simple.
     *
     */
    
    static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r,
    				     cputime_t *utimep, cputime_t *stimep)
    {
    	*utimep = cputime_add(*utimep, t->utime);
    	*stimep = cputime_add(*stimep, t->stime);
    	r->ru_nvcsw += t->nvcsw;
    	r->ru_nivcsw += t->nivcsw;
    	r->ru_minflt += t->min_flt;
    	r->ru_majflt += t->maj_flt;
    	r->ru_inblock += task_io_get_inblock(t);
    	r->ru_oublock += task_io_get_oublock(t);
    }
    
    static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
    {
    	struct task_struct *t;
    	unsigned long flags;
    	cputime_t utime, stime;
    
    	memset((char *) r, 0, sizeof *r);
    	utime = stime = cputime_zero;
    
    	if (who == RUSAGE_THREAD) {
    		accumulate_thread_rusage(p, r, &utime, &stime);
    		goto out;
    	}
    
    	if (!lock_task_sighand(p, &flags))
    		return;
    
    	switch (who) {
    		case RUSAGE_BOTH:
    		case RUSAGE_CHILDREN:
    			utime = p->signal->cutime;
    			stime = p->signal->cstime;
    			r->ru_nvcsw = p->signal->cnvcsw;
    			r->ru_nivcsw = p->signal->cnivcsw;
    			r->ru_minflt = p->signal->cmin_flt;
    			r->ru_majflt = p->signal->cmaj_flt;
    			r->ru_inblock = p->signal->cinblock;
    			r->ru_oublock = p->signal->coublock;
    
    			if (who == RUSAGE_CHILDREN)
    				break;
    
    		case RUSAGE_SELF:
    			utime = cputime_add(utime, p->signal->utime);
    			stime = cputime_add(stime, p->signal->stime);
    			r->ru_nvcsw += p->signal->nvcsw;
    			r->ru_nivcsw += p->signal->nivcsw;
    			r->ru_minflt += p->signal->min_flt;
    			r->ru_majflt += p->signal->maj_flt;
    			r->ru_inblock += p->signal->inblock;
    			r->ru_oublock += p->signal->oublock;
    			t = p;
    			do {
    				accumulate_thread_rusage(t, r, &utime, &stime);
    				t = next_thread(t);
    			} while (t != p);
    			break;
    
    		default:
    			BUG();
    	}
    	unlock_task_sighand(p, &flags);
    
    out:
    	cputime_to_timeval(utime, &r->ru_utime);
    	cputime_to_timeval(stime, &r->ru_stime);
    }
    
    int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
    {
    	struct rusage r;
    	k_getrusage(p, who, &r);
    	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
    }
    
    asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
    {
    	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
    	    who != RUSAGE_THREAD)
    		return -EINVAL;
    	return getrusage(current, who, ru);
    }
    
    asmlinkage long sys_umask(int mask)
    {
    	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
    	return mask;
    }
    
    asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
    			  unsigned long arg4, unsigned long arg5)
    {
    	long error = 0;
    
    	if (security_task_prctl(option, arg2, arg3, arg4, arg5, &error))
    		return error;
    
    	switch (option) {
    		case PR_SET_PDEATHSIG:
    			if (!valid_signal(arg2)) {
    				error = -EINVAL;
    				break;
    			}
    			current->pdeath_signal = arg2;
    			break;
    		case PR_GET_PDEATHSIG:
    			error = put_user(current->pdeath_signal, (int __user *)arg2);
    			break;
    		case PR_GET_DUMPABLE:
    			error = get_dumpable(current->mm);
    			break;
    		case PR_SET_DUMPABLE:
    			if (arg2 < 0 || arg2 > 1) {
    				error = -EINVAL;
    				break;
    			}
    			set_dumpable(current->mm, arg2);
    			break;
    
    		case PR_SET_UNALIGN:
    			error = SET_UNALIGN_CTL(current, arg2);
    			break;
    		case PR_GET_UNALIGN:
    			error = GET_UNALIGN_CTL(current, arg2);
    			break;
    		case PR_SET_FPEMU:
    			error = SET_FPEMU_CTL(current, arg2);
    			break;
    		case PR_GET_FPEMU:
    			error = GET_FPEMU_CTL(current, arg2);
    			break;
    		case PR_SET_FPEXC:
    			error = SET_FPEXC_CTL(current, arg2);
    			break;
    		case PR_GET_FPEXC:
    			error = GET_FPEXC_CTL(current, arg2);
    			break;
    		case PR_GET_TIMING:
    			error = PR_TIMING_STATISTICAL;
    			break;
    		case PR_SET_TIMING:
    			if (arg2 != PR_TIMING_STATISTICAL)
    				error = -EINVAL;
    			break;
    
    		case PR_SET_NAME: {
    			struct task_struct *me = current;
    			unsigned char ncomm[sizeof(me->comm)];
    
    			ncomm[sizeof(me->comm)-1] = 0;
    			if (strncpy_from_user(ncomm, (char __user *)arg2,
    						sizeof(me->comm)-1) < 0)
    				return -EFAULT;
    			set_task_comm(me, ncomm);
    			return 0;
    		}
    		case PR_GET_NAME: {
    			struct task_struct *me = current;
    			unsigned char tcomm[sizeof(me->comm)];
    
    			get_task_comm(tcomm, me);
    			if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))
    				return -EFAULT;
    			return 0;
    		}
    		case PR_GET_ENDIAN:
    			error = GET_ENDIAN(current, arg2);
    			break;
    		case PR_SET_ENDIAN:
    			error = SET_ENDIAN(current, arg2);
    			break;
    
    		case PR_GET_SECCOMP:
    			error = prctl_get_seccomp();
    			break;
    		case PR_SET_SECCOMP:
    			error = prctl_set_seccomp(arg2);
    			break;
    		case PR_GET_TSC:
    			error = GET_TSC_CTL(arg2);
    			break;
    		case PR_SET_TSC:
    			error = SET_TSC_CTL(arg2);
    			break;
    		default:
    			error = -EINVAL;
    			break;
    	}
    	return error;
    }
    
    asmlinkage long sys_getcpu(unsigned __user *cpup, unsigned __user *nodep,
    			   struct getcpu_cache __user *unused)
    {
    	int err = 0;
    	int cpu = raw_smp_processor_id();
    	if (cpup)
    		err |= put_user(cpu, cpup);
    	if (nodep)
    		err |= put_user(cpu_to_node(cpu), nodep);
    	return err ? -EFAULT : 0;
    }
    
    char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
    
    static void argv_cleanup(char **argv, char **envp)
    {
    	argv_free(argv);
    }
    
    /**
     * orderly_poweroff - Trigger an orderly system poweroff
     * @force: force poweroff if command execution fails
     *
     * This may be called from any context to trigger a system shutdown.
     * If the orderly shutdown fails, it will force an immediate shutdown.
     */
    int orderly_poweroff(bool force)
    {
    	int argc;
    	char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
    	static char *envp[] = {
    		"HOME=/",
    		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
    		NULL
    	};
    	int ret = -ENOMEM;
    	struct subprocess_info *info;
    
    	if (argv == NULL) {
    		printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
    		       __func__, poweroff_cmd);
    		goto out;
    	}
    
    	info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
    	if (info == NULL) {
    		argv_free(argv);
    		goto out;
    	}
    
    	call_usermodehelper_setcleanup(info, argv_cleanup);
    
    	ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
    
      out:
    	if (ret && force) {
    		printk(KERN_WARNING "Failed to start orderly shutdown: "
    		       "forcing the issue\n");
    
    		/* I guess this should try to kick off some daemon to
    		   sync and poweroff asap.  Or not even bother syncing
    		   if we're doing an emergency shutdown? */
    		emergency_sync();
    		kernel_power_off();
    	}
    
    	return ret;
    }
    EXPORT_SYMBOL_GPL(orderly_poweroff);